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Abstract
We explore the properties of various types of public and private pricing on a congested road
network with heterogeneous users and allowing for elastic demand. Heterogeneity is
represented by a continuum of values of time. The network consists of both serial and parallel
links, which allows us to model second-best pricing restrictions on either complementary or
substitute links, while still accounting for interaction between different groups on shared links
(e.g. in city centres). We find that private (revenue-maximizing) pricing is much less efficient
than public pricing, whether on the partial or the full network; but this difference is mitigated
by the product differentiation made possible by heterogeneous users. Ignoring heterogeneity
causes the welfare benefits of second-best pricing of one parallel link, a policy currently
receiving favourable consideration, to be dramatically underestimated. Product
differentiation produces some unexpected distributional effects, including the possibility that
first-best pricing can result in one of the parallel routes being both more congested than
without pricing.
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1 Introduction

Public-finance economists have long advocated Pigovian taxes and related ‘market-like’

policies to attain better pricing of goods supplied by the public sector. Most such policies are

enacted on a piecemeal and limited basis, if at all. Cases in point are the marketable permits

established by the US Clean Air Act of 1990, which apply only to sulphur oxides emitted by

large sources, and several heavily restricted pollution trading schemes reviewed by Hahn

(1989).

One of the best-studied applications of Pigovian taxes is road pricing. The economic

fundamentals were well laid out by Pigou (1920), Knight (1924), Walters (1961), and Vickrey

(1963, 1969). The concept is favoured by many transportation policy makers, but mainly in the

form of experiments or demonstrations rather than full-scale applications (Small and Gómez-

Ibáñez, 1998). Examples include toll rings in Norway, peak-period toll surcharges on certain

French expressways, special tolled express lanes on two freeway segments in southern

California, and a fully congestion-priced new expressway near Toronto.

This history suggests an increasing importance of partial congestion-pricing schemes,

for which the applicable theory is that of the second best. Such schemes include privately or

publicly operated toll roads parallel to unpriced highways, and a variant of high-occupancy

vehicle lanes in which low-occupancy vehicles can use the premium lane by paying a toll.1

Depending on the particular scheme, pricing may be prohibited on either substitute or

complementary routes to the one that is priced, and may involve either social or private

objectives. Thus the analysis requires a model with a variety of possible objectives and pricing

constraints.

Furthermore, because much of the purpose is to test and shape public opinion, it is

crucial to focus on distributional issues. Doing so turns out to have an additional advantage

because one of the features of some demonstrations is to offer highly differentiated products,

e.g. a free highly congested road or a very expensive free-flowing road. Not only does this turn

out to substantially affect the choice of toll or even the preferred toll regime, but it is itself a

potent political factor in the debate over such policies, exemplified by the term “Lexus Lane”

applied by opponents of optional high-priced lanes with premium service.

In this paper, we directly and simultaneously address issues of second-best, public or

private objectives, product differentiation, and distribution as they arise from limited road-

pricing demonstrations. We use the results to consider how a project’s design affects its

economic efficiency and political viability. Specifically, we design a model with the following

features: (1) pricing of some links but not others; (2) heterogeneous population with respect to

willingness to pay for travel-time savings; (3) product differentiation arising either from

inherent traits (road length) or from endogenously-determined service quality (amount of

congestion); and (4) a comparison between second-best and revenue-maximizing policies. The

                                               
1 Both of the California projects are of this latter type, known as High Occupancy/Toll (HOT) Lanes. One
(Interstate 15 near San Diego) is publicly operated while the other (State Route 91 in Orange County, near Los
Angeles) is private.
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model allows for elastic demand, allowing us to examine the two roles of second-best prices,

as Ramsey-like prices targeted at less elastic market segments and as route-allocation devices

aimed at minimizing user costs for a given demand. The numerical version of the model uses

(for its base case) an empirically obtained distribution of values of time for morning peak road

use, based on a recent questionnaire among morning peak road users in the Dutch Randstad

area (Verhoef, Nijkamp and Rietveld, 1997). We analyse both substitute and complementary

services to the one being priced by using a simple network that has both parallel and serial links

and examining the results of various pricing restrictions on them. Such a set-up can represent,

for example, parallel priced and unpriced arterials entering a city centre where users of both

interact on congested streets. The existence of a complementary (serial) link turns out to add

some interesting features to the policy evaluations.

A preview of especially interesting results: We find that ignoring heterogeneity in

values of time may cause the welfare benefits of second-best policies to be dramatically

underestimated, by a factor of nine in our base case. Private pricing is almost always worse

than no pricing, except when a private route has significant free-flow speed advantages over

the free parallel route. Dispersion makes first-best pricing quite dramatically anti-egalitarian, in

that it may actually worsen the travel times faced by low-value-of-time users – a paradox

explained by its effect of channelling these users onto just a portion of the total capacity but

then applying a low price to them. Second-best pricing is much more egalitarian; however,

welfare is greatly enhanced if instead of pricing just a small portion of the network, most

capacity is priced with a small portion reserved as a free option. (Thus the special lanes should

be free “Lemon Lanes” rather than high-priced “Lexus Lanes”). Finally, offering a

differentiated product can produce the intriguing possibility that a second-best pricing policy

may provide benefits to those who care least and to those who care most about service quality,

while hurting those in the middle – probably not an ideal set-up for political success.

Such results pose challenges for the demonstration-project approach. There is a real

danger that most of the hoped-for welfare benefits from pricing will be lost, or even turned into

disbenefits; or that specific groups will incur perverse results such as both higher price and

worse service. On the other hand, dispersion in preferences does offer the potential to reap

substantial benefits through product differentiation, which lends itself to an experimental

approach. Our model provides a flexible and realistic tool to study these advantages and

disadvantages.

It is worth noting at this point that the correlation between value of time and income is

actually far from perfect. One of the most striking findings from actual experience on SR-91 is

that most people who use the express lanes do so intermittently, and the mix of incomes using

the express and the free lanes on any given day overlaps considerably (Sullivan, 1998; Parkany,

1999). Thus, we caution against the tempting simplification (embodied in the “Lexus lane”

epithet) that the value-of-time distribution represents the income distribution.
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2 The analytical model

2.1 Prior literature

Most of the second-best literature addresses two parallel routes where one of the two routes is

untolled. Lévy-Lambert (1968), Marchand (1968), and Verhoef, Nijkamp and Rietveld (1996)

use the static model of Walters (1961) and Vickrey (1963), while Braid (1996) uses the

dynamic bottleneck model of Vickrey (1969). The main conclusions are that the second-best

toll trades off route split effects against overall demand effects; that this toll is usually

considerably smaller than the first-best toll and may even be negative; and that second-best

pricing often leads to much smaller welfare gains than first-best pricing. Liu and McDonald

(1998) confirm these results for parameters designed to match one of the California pricing

demonstration projects (SR-91 in Orange County). Yang and Huang (1999), finally, focus

explicitly on HOT lanes, endogenizing the choice of being a car-pooler.

Revenue-maximizing congestion tolls for a single highway are derived by Edelson

(1971). For two parallel roads, Verhoef et al. (1996) and Liu and McDonald (1998) find that a

private operator will typically set a price much higher than the second-best toll and will achieve

very much lower, usually negative, welfare gains. (Of course, this does not address the

question of whether the new capacity could have been financed without the private enterprise.)

A recent and probably the most complete analysis of private tolling on a parallel route network

is given by De Palma and Lindsey (1999), who consider a variety of ownership regimes,

including private and mixed duopolies.

As noted, however, these studies do not account for any product-differentiation

advantages because they treat homogenous users. Very few studies of the two-route problem

incorporate heterogeneity. Arnott, De Palma and Lindsey (1992) consider two user groups and

two routes within the bottleneck model, but do not consider the case when one route cannot be

priced. Small and Yan (1999) do consider such a case, also with just two discrete user groups.

Less closely related is the analysis by Train, McFadden and Goett (1987) and by Train, Ben-

Akiva and Atherton (1989) of electricity and telephone users, respectively, facing a voluntary

choice among alternate rate schedules with different time-of-day characteristics.

Models that treat two discrete user groups, besides providing only a crude

approximation to real heterogeneity, result in analytical difficulties because several types of

equilibria can arise: pooled (where both groups use both routes), partially separated (where

one group uses both routes but the other group uses only one route), and fully separated

(where each group exclusively uses one route). In the present paper, we consider a continuum

of groups. Only two types of equilibria can then occur: pooled (when tolls are absent or

exactly equal on the two parallel routes), or fully separated (in all other cases). Moreover,

using a continuum of values of time allows intermediate groups to be considered explicitly.

2.2 Basic set-up and equilibrium conditions

The network considered is shown in Figure 1. There is just one origin-destination pair, OD,

connected by two routes: AC (consisting of links A and C) and BC (consisting of links B and

C). The travel time on link L is a non-decreasing function of the level of use: TL(NL) with
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TL′≥0 (primes are used to denote derivatives). Link L may have a toll, τL. Because there are

three links but only two routes, there is one redundant toll: a constant can be subtracted from

τA and τB, and added to τC, without affecting the price of either route. For convenience, we

normalize τC to zero except when we wish to require the prices of the two routes to be equal,

in which case we normalize τA=τB=0 and allow τC to represent the single uniform price.

Figure 1. The network considered

We consider a continuum of values of time, α. For a traveller with value α, the travel cost on a

link is α⋅TL. The density function of users, by value of time, is denoted Nα; that is, there are Nα

users within an infinitesimally small range [α,α+dα]. However, this density is endogenous due

to the fact that for each value of time, there is a downward-sloping inverse demand function

Dα(Nα). Figure 2 shows an example of the resulting demand plane, depicting the one used in

the numerical model in Sections 3 and 4.
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Figure 2. An inverse demand plane

Let NαL and NαR be the corresponding densities on link L and route R. The conditions of user

equilibrium are the complementary slackness conditions of Wardrop (1952):

( ) 0=−⋅ ααα DPN RR (1a)

0≥RNα (1b)

0≥− αα DP R (1c)

for every α and for both routes R, where PαR is the ‘full price’ of using route R, defined as:

( ) },{},,{},{, BCBACARLTTP CLCLR =+++⋅≡ τταα (1d)

O D

A
C

B
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These equations state that type-α users will use only the route(s) that have least cost to them,

or will not travel at all if all routes have costs exceeding willingness to pay.

Formally, we must proceed differently in solving equations (1) depending on whether

or not τA=τB. If τA=τB, positive use can occur on both roads only if travel times are equal, since

otherwise all users would choose the road with the lower travel time. In that case, we need an

additional condition to obtain a unique equilibrium. The one we choose is that NαA/NαB=NA/NB

for every α, which may be viewed as a mixed strategy Nash equilibrium.2 This is a perfectly

pooled equilibrium, which we can analyse by merging links A and B into a single link, D,

whose travel time is simply a function TD(N) of total traffic N.3

When τA≠τB, both routes can be used only when TA≠TB, and there is a separated

equilibrium. More precisely, for both routes to be used, sign{τB–τA}=sign{TA–TB} is required.

Since the difference in full prices on both routes can be written as (τA+α⋅TA)–(τB+α⋅TB) for

each α, the critical value of time α*, for which drivers are indifferent between both routes, is:

BA

AB

TT −
−

=
ττ

α * (2)

It is easily checked that, when τA<τB, link A is more attractive for all drivers with α<α*, and

link B for all drivers with α>α*. Drivers with a relatively low value of time thus only use the

link with the lower toll, and similarly for a relatively high value of time and the higher toll.

To complete the model, the following identities are added:

BAC NNN ααα += (3)

∫=
max

min

d
α

α
α αLL NN (4)

where αmin (αmax) gives the minimum (maximum) value of time in the population. In the case

where τA<τB, (4) implies:

∫=

*

min

d
α

α

α αAA NN (4a)

                                               
2 The reason that an extra condition is needed is that, although we know that all drivers with all relevant values
of time could be present on both routes, they do not have to be. For example, with identical routes A and B, one
of the possible equilibria satisfying (1) would be if all drivers with a value of time smaller than or equal to the
median α were on the one route, and the rest on the other route. By contrast, in the symmetric Nash
equilibrium every user plays the same strategy, which is the best strategy given that all other users play that
same strategy. That strategy is to play a mixed strategy, choosing link A with a probability pA=NA/(NA+NB). NA

and NB are then determined from the condition that TA(NA)=TB(NB). With a sufficiently large number of users,
the equilibrium then indeed comes about, with all users playing the same strategy and having no strategy that
would improve their pay-off. In particular, note that a driver applying a different value of pA will have a
marginally higher expected travel time if all other users stick to pA.
3 This function is chosen to be consistent with an allocation N= NA+NB such that TA(NA)=TB(NB)=TD(N) is
satisfied. It has the property that:

BAD TTT ′
+

′
=

′
111

Note that, when one of the two links, say link A, is unused in the equilibrium because the free-flow travel time
on A exceeds the equilibrium travel time on B, we would have TD(N)=TB(N) and TD′=TB′.
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∫=
max

*

d

α

α

α αBB NN (4b)

2.3 Tolling regimes

Despite its simplicity, the network considered allows us to consider a large variety of toll

regimes. Ignoring the possibility of private or mixed duopolies, as considered in De Palma and

Lindsey (1999), we still have the seven possibilities of no tolls, private or public tolls on the

entire network, on one of the parallel links (labelled B without loss of generality), or on the

serial link. Table 1 summarizes these tolling regimes.

Abbreviation Description Tolls on:

  NT No Tolls –

Public tolling:

  FB First-Best tolls on the full network A and B

  SBPL Second-Best toll on one of the Parallel Links B

  SBSL Second-Best toll on the Serial Link C

Private tolling

  PF Private tolls on the Full network A and B

  PPL Private toll on one of the Parallel Links B

  PSL Private toll on the Serial Link C

Table 1. Tolling regimes

For the public operator, we assume that the objective is to maximize social welfare W. It is

defined as total benefits based on the Marshallian consumers’ surplus (in this case represented

by the volume of the three-dimensional body below the demand plane over the relevant area)

minus total cost. In this section, we label without loss of generality the link with the higher toll

link B whenever τA≠τB. When τA≠τB, welfare can be written as:

∫ ∫

∫ ∫∫ ∫∫ ∫
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where α* is given by (2), and where we have used that NαB=0 for α<α* and NαA=0 for α>α*.

When τA=τB=0, so when only τC is used and the merged link D is considered, the

objective is:

∫ ∫∫ ∫∫ ∫ 
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(5b)

With private tolling, the objective is assumed to be the maximization of total toll revenues, R.

Using dummies δL to denote whether a toll is in operation on link L, this objective function can

be written as:
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∫∫∫ ⋅⋅+⋅⋅+⋅⋅=
max

min

max

*

*

min

ddd
α

α
α

α

α

α

α

α
α ατδατδατδ NNNR CCBBBAAA (6)

These objective functions can be turned into the relevant Lagrangians by adding terms

representing the appropriate constraints, of which there is a continuum for all values of α.

These constraints represent the requirement of free user choice as embodied in equation (1),

and they are identical for the public and the private operator. When τA≠τB, the constraints are

represented by the following Lagrangian terms:

ατδααααλ

ατδααααλ

α

α
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where λαL is the Lagrangian multiplier for the constraint implied by (1a) for those values of α
having positive Nα. When τA=τB=0, the Lagrangian term is:

ατααααλ
α

α
αα

α

α

α

α
α d)(dddd

max

min

max

min

max

min

∫ ∫∫ 
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⋅⋅+ NDaNTaNT CaDaC (7b)

For each of the schemes considered, the optimal tax rules can then be found by maximizing the

appropriate Lagrangian, found by adding the relevant objective function (5a), (5b) or (6) to the

relevant constraints (7a) or (7b). Unfortunately, we failed to find a closed form analytical

solution for three of the more interesting cases, namely SBPL, PF and PPL, due to a

discontinuity at α*. For the cases where we did find closed form analytical solutions (FB,

SBSL, PSL), the tax rules are rather straightforward generalizations of those applying in the

much simpler case with only one single value of time, as given, for instance, in Verhoef et al.

(1996). We therefore relegate the derivation and discussion of the first-order conditions, and of

the tax-rules for the cases where they could be solved, to the Appendix. For the other cases,

we devised a numerical algorithm which finds the toll that maximizes welfare (for SBPL) or

revenue (for PF and PPL).

3 A numerical model: the base case

In this section we present a numerical model to assess and illustrate the economic properties of

these regimes.

3.1 The cost side

The cost side of the model consists of link travel-time functions, describing travel times TL as a

function of usage NL. The following general functional form is used:
k

L

L
FLFLL K

N
bTTT 








⋅⋅+= (8)

where b and k are parameters, TFL is the free-flow travel time on link L, and KL is the

‘capacity’ of link L. Because there is in fact no maximum capacity for this type of travel time
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function, ‘relative capacity’ would actually be a better term. With b=0.15 and k=4, as assumed

throughout the simulations, this function is the well-known Bureau of Public Roads formula.

For the base-case of the model, it is assumed that link B (the tolled link in case of parallel-

route pricing) has 25%, and link A 75%, of their joint capacity (8 000 vehicles per hour). A

and B have equal free-flow travel times (22.5 minutes). This could correspond to a four-lane

highway with one lane subject to tolling. Furthermore, it is assumed that link C has the same

capacity as A and B together, and that the free-flow travel time on C is 25% (i.e. 7.5 minutes)

of the total free-flow travel time. The latter is set at 30 minutes, which is a reasonable average

for commuting trips in The Randstad and many other urban areas, at least for commuters using

main highways. Table 2 gives the base-case parameters for the three links:

Link A Link B Link C

b
k
TFL

KL

0.15

4

0.375

6000

0.15

4

0.375

2000

0.15

4

0.125

8000

Table 2. The base-case parameters for the cost functions

3.2 The demand side

The base-case inverse demand plane is depicted in Figure 2 above. It is assumed that for every

value of time, the demand function is linear over the relevant range (between the lowest and

highest use levels considered), and can thus be written as:

αααα NdmD ⋅−= (9)

Functions mα and dα were calibrated so as to achieve three objectives: (1) a weighted demand

elasticity (over all α) of –0.4 in the NT-equilibrium4; (2) a distribution of values of time in the

NT-equilibrium similar to that found in an earlier stated preference study for the Dutch

Randstad area (Verhoef et al., 1997)5; and (3) NT travel times approximately double the free-

flow travel time of 0.5 hours implied by Table 2. The following functions accomplished this:

αα += 50m (10a)

                                               
4 We calculated this elasticity assuming that the variable monetary cost of the trip is DFl 12 (6 litres of fuel
times DFl 2) in the NT-equilibrium; i.e. both the demand plane and the cost level were shifted upwards by DFl
12 to calculate this generalized price elasticity. These variable monetary costs, however, are assumed to be
constant over the various tolling regimes considered, and so are ignored in the simulations. Note that because
the full price Pα increases with the value of time, so would the absolute value of demand elasticity ceteris
paribus (i.e., with equally steep demand functions).
5 The dashed line in the left panel in Figure 3 below shows this distribution (approximately). It was derived
using 961 (93%) of the 1027 respondents for whom a value of time could be calculated, eliminating the 7%
with the highest values of time so as to keep a compact distribution. A simple fourth-order polynomial was
fitted on the histogram of values of time, split in 12 categories of size DFl 2 (R2=0.975). Because of the
selection, the average value of time used here is DFl 9.08, as opposed to DFl 10.92 for the full set of
respondents. The distribution is clearly skewed to the left, which is what one would intuitively expect when
values of time are non-negative.



Product Differentiation on Roads 9

432 000079.000468093.00950357.0705429.0713714.0

0434783.0

ααααα ⋅−⋅+⋅−⋅+−
=

−
d (10b)

The values of time considered in the simulations range between a minimum of DFl 1.2 and a

maximum of DFl 23.8 per hour.6

Although we do not claim to present a full-fledged empirical analysis here, we believe

these parameters result in a base case that is representative of realistic morning peak traffic

situations, and therefore allows a meaningful comparison of the comparative static properties

of the equilibria arising under the various tolling regimes considered. In the next sub-section,

such a comparison will be given.

3.3 General results: base case

Table 3 presents the equilibrium values of important variables for the various tolling regimes,

using the base-case parameters discussed above.

The first-best (FB) policy produces substantial service differentiation, with travel time

on link A 0.204 hours less than on link B. But this policy also produces some surprises. First,

for these particular parameters it is the facility with the larger capacity (link A) that gets the

premium service, in contrast to what one might expect from the analogy of first-class service

on aeroplanes and trains. Second, although overall demand is reduced (by 14 percent)

compared to the no-toll (NT) scenario, congestion on the lower-priced link is actually worse

than with no tolls. This finding highlights the effect of differentiated pricing on optimal service

levels, through the separation of users it induces. We note that when the portion of the trip on

link C is taken into account, all users receive faster service in the first-best policy than in the

no-toll policy – average time losses, compared to free flow travel times, reduce by 10 and 54

percent for users of the slower and faster parallel links, respectively. However, Section 4.2

presents an example where also the total travel times for low-value-of-time users actually

increase in the first-best optimum.

A third surprise is how small the toll differentiation is: the tolls on links A and B differ

from each other by only 15 percent. There are three reasons for this. First, although the

average value of time of link-B users is smaller, there are more of them (per unit of capacity),

and these two effects work in opposite directions on the externality cost of a trip. Second, link-

B users interact with higher-value-of-time users on the shared link C, which further increases

the marginal cost they impose. Finally, the travel-time functions are rather steep in the region

of the FB solution. So even a modest difference in usage rates produces a substantial difference

in service quality.

Given the limited degree of optimal toll differentiation, it is not too surprising that the

uniform toll policy, SBSL, performs nearly as well in terms of efficiency. It achieves 92 percent

of the maximum possible welfare gains, at a uniform toll quite close to the higher of the

differentiated FB tolls. Although not shown in the table, one can readily see that most or all

low-value-of-time users are worse off with a uniform toll policy than with FB because the

                                               
6 The exchange rate of the Dutch guilder is approximately DFl 2.2≈ � 1 ≈$1.1.
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former forces them to accept a higher service quality and higher price than they prefer. (We

discuss the distributional effects at greater length in the next subsection.)

NT FB SBPL SBSL PF PPL PSL Free-flow

Rel. use Aa 1 0.812 1.046 0.854 0.498 1.117 0.527

Rel. use Ba 1 1.003 0.831 0.854 0.616 0.533 0.527

Rel. use Ca 1 0.860 0.992 0.854 0.527 0.971 0.527

αα* - 5.919 12.996 - 6.138 15.265 -

Travel time A 0.729 0.529 0.798 0.563 0.397 0.926 0.402 0.375

Travel time B 0.729 0.733 0.544 0.563 0.426 0.404 0.402 0.375

Travel time C 0.243 0.189 0.239 0.188 0.134 0.230 0.134 0.125

Toll A 0 9.50 0 0 27.83 0 0

Toll B 0 8.29 3.31 0 27.65 7.98 0

Toll C 0 0 0 9.38 0 0 27.80

Toll revenues 0 99 606 8703 101 484 185 603 13 468 185 487

ωωb 0/0 1 0.229 0.920 -2.599 -0.272 -2.623
a Use relative to that in NT scenario. The latter is: 9501 on link A, 3167 on link B, 12669 on link C. As discussed in the

text, the fact that these exceed link ‘capacity’ is entirely consistent with the power-law model of equation (8). The NT-
use levels are probably best thought of as covering a peak period of about 1.5 hours.

b Index of relative efficiency: increase in social welfare (compared to NT) as a share of the increase in social welfare
(compared to NT) obtained in the first-best optimum

Table 3. Performance of the various toll regimes for the base-case parameters

By contrast, when only one of two parallel links can be priced (SBPL), with 25% of total

capacity, less than one-fourth of the possible welfare gains are achieved. Consistent with the

studies reviewed earlier, the second-best toll is much lower than first-best, only DFl 3.31. The

reason is that now, welfare gains on link B have to be traded off against induced welfare losses

on link A, as described in Verhoef et al. (1996). Nevertheless there is a surprise for second-

best policy as well: as we shall see in Section 4.1, more than twice as great a welfare gain

could be achieved with second-best parallel pricing by pricing the high-capacity section of the

road instead of the low-capacity section. This result is consistent with the fact that with first-

best pricing, it was the higher-capacity road that received the higher price.

We now turn to revenue-maximizing tolling by a private operator. Unrestricted tolling

extracts a high social cost: welfare is substantially reduced, compared to no tolls. The loss is 27

percent of the maximum achievable gain when only link B can be priced (PPL), and a

whopping 260 percent when both links can be priced (PF). The tolls are much higher than the

corresponding second-best or first-best optimal tolls: more than twice as high for PPL as for

SBPL, and around three times as high for PF as for FB. This is consistent with earlier results,

although it is not necessarily the case that revenue-maximizing tolling would always lead to a

decrease in social welfare (see Verhoef et al., 1996, and De Palma and Lindsey, 1999). From

the point of view of the private operator, being restricted to pricing only the smaller part of the

roadway is very costly: it takes away 93 percent of the potential revenues.

There is a surprise in private tolling, as well: the toll differentiation in unrestricted

private pricing is negligible. The reason is that the monopoly toll level has reduced total traffic
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by so much (47 percent) that nearly all congestion is eliminated, rendering significant toll and

service differentiation impossible. A corollary to this result is the negligible difference between

policies PF and PSL (which differ only in allowing or not allowing the operator to charge

differentially).

3.4 Welfare results: base case

The numerical simulations allow a detailed analysis of the welfare effects of the various tolling

regimes, differentiated by value of time. In this sub-section, we present such results for two

public tolling regimes: FB and SBPL. We ignore SBSL because of its close similarity to FB.

Private tolling regimes are ignored mainly for reasons of space, further motivated by the fact

that the results presented below will give quite some insight already into the corresponding

private tolling regimes.

Figure 3 gives the absolute (left panel) and relative (right panel) levels of road use by

value of time for the two policies. Since the usage under SBPL is close to the NT use levels –

graphically indistinguishable in the left panel – the dashed line in the left panel also gives an

accurate impression of the original distribution of values of time used. Relative use, in the right

panel, is defined in the same way as in Table 3, i.e. relative to NT.

To understand the differences in use between the two tolling regimes, it is easier to

start with Figure 4. This figure shows the changes in total (left panel) and average (right panel)

consumers’ surplus by value of time, compared to the surplus enjoyed in the NT-regime. For

each value of time, the change in total consumers’ surplus is given by the change in generalized

costs (including the toll) for those users who remain on the road, plus the change in surplus for

those who leave the road due to tolling (as described by the demand plane). Note that the

welfare losses for the latter group are smaller than for the former. The average change is then

defined as the change in the total surplus divided by the level of use in the NT-regime.
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Figure 3. Absolute (left panel) and relative (right panel) use, under FB (solid) and SBPL (dashed)
tolling; the vertical lines indicate α*
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Figure 4. Absolute (left panel) and average (right panel) change in consumers’ surplus, compared to
NT, before tax recycling, under FB (solid) and SBPL (dashed) tolling
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Figure 5. Absolute (left panel) and average (right panel) change in consumers’ surplus, compared to
NT, after non-differentiated tax recycling, under FB (solid) and SBPL (dashed) tolling

The changes in average consumers’ surplus are closely related to the changes in generalized

price. Under FB tolling, the loss in average surplus is strictly decreasing with the value of time.

This result can be expected to be generally valid as long as the relative changes in use do not

vary too greatly by value of time, so that the change in generalized costs dominates the

distribution of average welfare effects. For each link individually, one would expect the

average change in consumers’ surplus to increase with the value of time; because the users

with the critical value of time are indifferent between both routes, this result readily carries

over to the full range of values of time. The kink at α* can be explained by the fact that the

ratio of toll paid and travel times gained is different between the two links. Figure 3 follows the

same general pattern as Figure 4 simply because the change in consumers’ surplus is closely

related to the change in full price, which in turn determines the change in usage.

The pattern of changes in average consumers’ surplus by values of time is notably

different for the SBPL regime (dashed lines in Figures 3-5). In this case, users near the critical

value of time suffer the largest average losses (Figure 4, right panel). This result is also likely

to be valid quite generally; again as long as the change in generalized price is the dominating

factor in the change of average consumers’ surplus. The reason is that imposition of second-

best tolling on link B substantially improves travel time for people taking that route while

worsening it for those taking the other route. On the link without the toll, it is users near the
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critical value of time who suffer most from this travel-time increase; while on the other link, it

is users near the critical value who benefit least from the travel-time reduction. One could say

that the policy caters to the more extreme users at both ends, leaving users in the middle

disadvantaged. However, we note that none of the consumer-surplus changes are very large,

the biggest loss amounting to just DFl 0.85 (US$ 0.40) per trip. Again, the changes in relative

use, depicted in Figure 3, are consistent with the changes in average consumers’ surplus.

Note that the changes in consumers’ surplus for SBPL are much smaller than under FB.

Users with a relatively high value of time even benefit directly from SBPL. This helps explain

why parallel-route pricing appears to be a socially more acceptable regime than first-best

tolling. As expected, the relative attractiveness of both regimes is reversed as soon as

redistribution of the toll revenues is considered. Figure 5 shows the change in total and average

consumers’ surplus by α after applying the simplest possible tax-recycling scheme: an equal

redistribution to all initial road users. (This simply means an upward shift of the curves shown

in the right panel of Figure 4.) Because revenue is much larger under first- than second-best

pricing, the solid curve is shifted up by much more than the dashed curve, so that first-best

pricing is now better than second-best pricing of link B for all but the very lowest-value-of-

time users. In fact, with this toll redistribution, first-best pricing is welfare-enhancing for every

user compared to no tolls. When these average surplus changes are multiplied by the level of

usage shown in the left panel of Figure 3, the result is the curious double-peaked distribution

of change in total consumer surplus shown on the left panel of Figure 5.

A simple variation on the redistribution scheme considered, favouring the lowest values

of time relatively stronger, should make everybody significantly better off under FB than under

SBPL. If the regulator fails to make this recycling known to and understood by the public at

large beforehand, so that opinions are based on Figure 4 rather than Figure 5, FB will

nevertheless evoke much stronger public opposition than SBPL will.

Figures 3-5 thus convey an interesting message on the distributional impacts of first-

best tolling versus second-best tolling with an unpriced parallel substitute. The former would

be regressive, unless a progressive tax-recycling scheme is used. Second-best tolling, however,

would show a more complex distributional pattern. The greatest welfare losses now occur for

those users with an intermediate (i.e. the critical) value of time, because even after (non-

differentiated) tax recycling, these users remain worse off under SBPL.

It can be expected that the changes in average consumers’ surplus by values of time under

private tolling will show patterns comparable to those shown in the right panel of Figure 4, for

the same reasons as outlined above. Of course, the absolute welfare losses will be larger; and

since all the private tolling regimes generate net welfare losses, no redistribution (e.g. from

auctioning franchise rights and using the proceeds to reduce taxes) could make everyone better

off. In practice, private tolls are likely to be restricted by additional regulations, such as rate-

of-return caps or direct price regulation. Our results provide support for some such restriction

on private tolls, subject to the possibility that the revenues are needed to finance capacity as for

example on California’s SR91.
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4 The impact of some key parameters on the performance of the tolling regimes

In this section, we present the results of a number of simulation exercises that assess the impact

of key parameters upon the relative performance of the different tolling regimes. We start by

varying parameters related to the cost side of the model, namely the capacities and lengths of

the links. We next consider the impact of two characteristics of the demand side: the

(weighted) demand elasticity, and the type of distribution of values of time.

4.1 Varying the relative capacities of the two parallel links

We first consider the impacts of increasing the fraction of the highway subject to tolling,

keeping total joint capacity of A and B fixed. Figures 6a and 6b show the optimal tolls and the

relative efficiency ω, respectively, if the capacity of B is increased, in 25% steps, from 0% to

100% of the joint capacity (recall that the base-case is at 25%). On the left-hand side of these

figures, therefore, SBPL and PPL are identical to NT, because there is no parallel link to be

tolled; whereas on the right-hand side, they are identical to SBSL and PSL, respectively,

because there is only one route to be tolled. Furthermore, it should be no surprise that the

absolute performance of SBSL and PSL remain completely unaffected by this variation.

Finally, we observe that when link B has 0% or 100% of the total capacity, toll differentiation

is not possible, rendering FB and PF identical to SBSL and PSL, respectively.

Unsurprisingly, the greatest impacts of capacity allocation occur for SBPL and PPL.

The greater capacity of B implies that SBPL becomes relatively more efficient, because the

importance of the unpriced substitute diminishes. Nevertheless, at 75% capacity, still only

48.5% of the possible welfare gains can be realized, because counter-productive spill-overs to

the unpriced parallel route remain important. Still, these results suggest that from an efficiency

viewpoint, and taking into account heterogeneity of users, one public ‘free-lane’ on a four-lane

highway is preferable to one public ‘pay-lane’. In other words, it would be better to think of a

priced system with a ‘life-line’ type of unpriced service available to those who most need it,

rather than an unpriced system with special premium service for the elite.

The opposite holds for private tolling. The private operator, ignoring the efficiency

aspects of spill-overs, increases the toll on the parallel route rapidly as its relative capacity

increases, which dramatically increases the relative welfare losses from PPL. It is even more

efficient to have the private operator controlling the entire road rather than just 75% of its

capacity. This counterintuitive result, that in some cases it may be inefficient to restrict a

monopolist’s market share when the alternative is not optimally priced, was found earlier in for

instance Verhoef et al. (1996). The main intuition is that, with incomplete control, monopolist

pricing creates a highly inefficient route split, which is avoided with full pricing. Finally, it can

be observed that the relatively limited degree of price differentiation remains intact in Figures

6a and 6b, although the price differences reach their maxima at a fifty-fifty distribution of the

relative capacities of A and B.
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Note: For graphical clarity, tolls for SBSL and PSL, being close to those for FB and PF, are surpressed.

Figure 6a. Varying the relative capacities of the two parallel links: tolls

Note: For graphical clarity, relative efficiency for PSL, being close to that for PF, is surpressed.

Figure 6b. Varying the relative capacities of the two parallel links: relative efficiency

Together, these results constitute something of a reversal of the usual notions of the public

sector. With product differentiation, it seems that if one insists on a system with both priced

and unpriced alternatives, it is more efficient to allow a public operator to price most of the

capacity, but a private operator to price only a small portion of it.7

4.2 Varying the relative length of the serial link

Most studies ignore the fact that users of two parallel routes will usually not be completed

isolated but will often share some links, upstream or downstream of the split road section. A

                                               
7 The intersection of the lines representing τA and τB for FB in Figures 6a and 8a should not be misinterpreted
as implying that at that specific combination of parameters, these two tolls should be equal. Rather, it is near
the point where it makes no difference whether it is link A or link B that gets the higher toll, but still the tolls
will be unequal. A similar argument holds for PF.
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similar interaction is likely for other congestible facilities. Figure 7 shows how this feature

affects the relative efficiency of the various tolling regimes considered. Along the horizontal

axis, the relative length of the serial link C – represented by the free-flow travel time – is

increased in 25% steps, keeping the total free-flow travel time constant. Note that FB and PF

become identical to SBSL and PSL, respectively, when the relative length of C has become 1.

Note: For graphical clarity, relative efficiency for PSL, being close to that for PF, is surpressed.

Figure 7. Varying the relative length of the serial length: relative efficiency

As the relative length of the serial link increases, second-best toll differentiation becomes less

viable. Both the public and the private toll on the parallel link (not shown diagrammatically)

fall and approach zero as link C increases toward 1. As a result, the relative efficiency of these

regimes approach zero as well. This is, from the efficiency perspective, bad news for the public

toll and good news for the private toll.8 This finding suggests that the relative efficiency gains

or losses from parallel route pricing are likely to be overstated in studies ignoring the existence

of serial, common used links. For instance, ωSBPL is equal to 0.29 when link C has zero length,

but falls to 0.16 when C is equally long as A and B and to 0.08 when C is 3 times as long. A

similar pattern would be found if instead of increasing the relative length of the serial link, its

relative capacity were decreased.

The base-case result that FB tolling actually increases congestion (not shown in diagram)

on link B, compared to no toll, remains true when link C has zero length. Therefore, product

differentiation alone is strong enough to produce a result in which optimal pricing increases

congestion for the entire trip by lower-value-of-time users, compared to no pricing. This can

only mean that these users cause such large externalities when allowed to mix with other users

(as in the NT case) that socially it becomes desirable to restrict the capacity available to them

so much as to increase their travel times even while pricing them efficiently as a group. Of

course, since FB pricing is a potential Pareto improvement, it remains true that these users

                                               
8 Of course, if link C were of zero length throughout, these tolls would also approach zero when the length of A
and B were reduced to zero, but not as rapidly as in the present case; and the relative efficiencies of both SBPL
and PPL would remain constant as long as the links would have a positive length.
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could be made better off by some lump-sum redistribution of revenues. In practice, this result

raises a strong political barrier to FB pricing – qualified, however, by a reminder that low-

value-of-time users are not necessarily the same people from one day to the next.

4.3 Varying the relative length of the parallel links

It is of course possible that the two parallel links are not lanes of the same highway, but are

separate roads instead. In that case, the parallel links need not be equally long. Figures 8a and

8b show how the tolls and the relative efficiency change if the free-flow travel times on links A

and B are changed in opposite directions. The base case is now in the centre of the diagram. As

the tolled link B becomes shorter when moving to the left, it becomes relatively more

attractive; moreover, an equalization of marginal private costs implies that the marginal

external costs are relatively higher on B. The tolls for link B therefore have the tendency to

increase when moving to the left.

For SBPL, there will be a specific combination of parameters for which the second-best

optimal toll is actually zero (this combination is not among the plotted points). This requires

link B to be longer than link A. The two forces governing the second-best optimal level of the

toll – reducing overall traffic, and diverting traffic from link A, where marginal external costs

are higher, to link B – then exactly off-set each other. In this case, ω is zero, as the toll has a

zero second-best optimal level. Beyond that point, a subsidy is welfare improving as we can

see on the extreme right of Figure 8a (see also Verhoef et al., 1996).

Toll differentiation naturally becomes more important when the two links are of

different lengths: that is, when products vary in more dimensions that just amount of

congestion.9 Consequently, ωSBSL is largest when the free-flow travel times on links A and B

are equal and decreases rapidly when moving to the edges of the diagram. The shorter link

tends to get the higher price, and carries the higher value of time travellers, both for FB and for

PF. 10

The relative efficiency of PPL declines somewhat more strongly than that of SBPL

when moving to the right. In the range where a subsidy would be welfare enhancing when only

link B can be tolled, ω for PPL remains low. It does not decrease any further though, since link

B has become relatively so unattractive that the monopolist is quite ‘harmless’.

With the other private tolling policies (PF and PSL), the private operator actually has

closed down link B at both observations to the right of the base-case by setting the tolls so that

                                               
9 This is illustrated by a curious result which appears when free-flow travel time is 0.3 hours less on A than on
B. This case produces substantial price differentiation under FB pricing, as seen at the far right of Figure 8a.
But the second-best serial pricing for this case (SBSL, not shown in the diagram) produces a toll that is lower
than both FB tolls – in contrast to all other simulations, where the serial toll lies between the two FB tolls. The
reason appears to be that SBSL pricing provides such an inferior option for high-value-of-time users, relative to
FB, that it substantially reduces their proportion in the overall composition of traffic. This lowers the marginal
cost imposed by any driver sufficiently to result in a second-best toll lower even than the lowest of the two first-
best tolls.
10 It should be noted that the ω’s are in a sense ‘deflated’ when moving to either side of Figure 8b, since the
welfare gain with FB increases, due to growing efficiency gains of toll differentiation. Therefore, the same
absolute welfare change with any given policy would show as a smaller relative welfare change.
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it is not used. The shorter and higher-capacity link A gets all the traffic, despite the toll. On the

far left-hand side, in contrast, we witness an instance of private tolling leading to an efficiency

gain (but only when restricted to link B).

Note: For graphical clarity, tolls for SBSL and PSL, being close to those for FB and PF, are surpressed.

Figure 8a. Varying the relative lengths of the parallel links: tolls

Figure 8b. Varying the relative lengths of the parallel links: relative efficiency

4.4 Varying the overall capacity of the network

Next, we consider the effect of a simultaneous proportional increase of the three links’

capacities. We examined the tolls for a total capacity of 6 000, the base-case of 8 000, then 10

000, and finally, after a jump, 100 000 vehicles per hour, all for the same demand plane. The

results (not depicted graphically) show that the degree of toll differentiation (in FB and PF)

increases with the equilibrium level of congestion. All public tolls approach zero as the

capacity of the network approaches infinity, and congestion vanishes. Also the PPL toll

approaches zero: with equally long links A and B, no one will use link B if it is tolled. With PF
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and PSL, however, the private operator can still extract monopoly profits and relative

efficiency ω for these two regimes approach minus infinity.11

4.5 Varying the total (weighted) demand elasticity

In the next round of simulations, mα and dα (see equations (10ab)) were changed

simultaneously so as to generate different weighted demand elasticities in the NT-equilibrium,

keeping the total level of road use approximately fixed. The demand elasticities considered are

those explained in the Footnote to Section 3.2, and values of approximately –0.1, –0.2, –0.4

(the base case), and –0.8 were produced. Figure 9 shows the effect on relative efficiency.

At a more inelastic demand, the welfare effects of monopolistic pricing become

increasingly negative, as is well known from earlier studies (Verhoef et al., 1996). Therefore,

for PF and PSL, and to a lesser extent also for PPL, ω falls rapidly and at an increasing rate

when moving leftwards. A new result is, however, that as demand becomes more inelastic,

separation of traffic with different values of time becomes relatively more important for overall

efficiency. Therefore, ωSBSL decreases when moving to the left.

Note: For graphical clarity, relative efficiency for PSL, being close to that for PF, is surpressed.

Figure 9. Varying the weighted demand elasticity: relative efficiency

4.6 Varying the type of distribution of values of time

Finally, we consider the extent to which the results presented depend on the shape and degree

of dispersion in the distribution of values of time. To that end, we reconsidered the base case

assuming two other types of distribution. The exact distribution varies between equilibria,

because drivers with a different value of time will generally respond differently to tolls (see e.g.

Figure 3). We therefore considered the distribution in the NT-equilibrium. Two extreme

alternatives were studied: a uniform distribution, implying an increase in the dispersion, and a

                                               
11 We also used this variation to double-check the logic of our private tolls by confirming that, as expected
when congestion is negligible, the monopolist operates at the point where the total demand elasticity (with
respect to toll, not full price) is –1.
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single value of time, implying a complete elimination of dispersion. We considered ‘mean

preserving’ changes, with the same average of DFl 9.08 per hour. For the uniform distribution,

we accomplished this using an interval [1.2,16.96]. The total level of NT road use and the

weighted demand elasticity in the NT-equilibrium remained the same.

Figure 10 shows the impacts on relative efficiency. Of course, the significance of toll

differentiation disappears with a single value of time;12 as a result, policies restricted to pricing

just one parallel link perform considerably worse than in the base case. Thus ignoring

heterogeneity may lead to serious underestimation of the efficiency of parallel link pricing. Of

particular interest, ignoring heterogeneity would lead one to underestimate the relative

efficiency of the SBPL policy by a factor of nine (0.025 compared to 0.229 in the base case).

This establishes that product differentiation by congestion level is indeed critical to the

evaluation of pricing policies that leave parallel roads unpriced.

Note: For graphical clarity, relative efficiency for PSL, being close to that for PF, is surpressed.

Figure 10. Varying the type of distribution of values of time: relative efficiency

At the other extreme, moving from the base-case to the uniform distribution produces slightly

more toll differentiation in the FB case, and thus the second-best policies are slightly worse

relatively. These latter differences are small, however, so we conclude that the results of this

paper are not sensitive to the shape of the value-of-time distribution.

5 Conclusion

This paper has re-considered the standard parallel-route pricing problem in a significantly

broader context. Heterogeneity of road users is accounted for by assuming a continuous

distribution of values of time. In addition, a third, jointly shared serial link allows for

interaction of users of the two routes and also permits analysis of pricing policies where

                                               
12 This is true also of PSL, not shown in the figure, and of PF which, as noted earlier, produces very little toll
differentiation even when there is dispersion in values of time.
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differentiation is prohibited. A numerical model was calibrated using a standard type of

congestion function, and an empirically obtained distribution of values of time.

A number of new results stand out. First, when heterogeneity of road users is

considered, travel times in the first-best optimum might for some users actually be higher than

in the no-toll equilibrium. This is caused by the trade-off between the value of travel time gains

for users with a higher value of time against the losses for those with a lower value of time.

Second, the traditional focus of parallel-route pricing studies on the parallel roads only,

with homogeneous users, leads to two opposing biases. Ignoring interaction of users on a third

serial link causes benefits of second-best parallel-route pricing to be overestimated because

users of the free lanes cause additional external congestion costs elsewhere (on the serial link,

in our model). Ignoring heterogeneity, on the other hand, causes great underestimation of

benefits, by a factor of nine in our base case, by ignoring the efficiency gains due to separation

of traffic. Interestingly, it did not matter much to our results exactly what form of distribution

was assumed to represent heterogeneity.

A third result considers the distribution of benefits and losses. First-best pricing, or

pricing on the serial link only, combined with uniform tax redistribution, makes the users with

the lowest values of time suffer the greatest average welfare losses, or enjoy the smallest gains.

This pattern changes when parallel-route pricing is considered: then, the users with the critical

value of time, being indifferent between the two routes, suffer most or gain least.

The degree of toll differentiation applied by either a public or a private operator is

smaller than expected. It is especially small for the private operator, because at the revenue-

maximizing toll nearly all congestion is eliminated. The importance of toll differentiation

increases when demand becomes less elastic, and when the parallel links have different free-

flow travel times.

For public parallel-route pricing, it turned out that ‘free-lanes’, where a small fraction

of a highway remains untolled, is preferable to ‘pay-lanes’, where the opposite holds. The

percentage welfare gain of the former is about double that of the latter. An opposite pattern

was found for a private operator (although clearly the operator’s objective is better met by

pricing more of the road). It may actually be efficiency enhancing to have the private operator

tolling the entire highway rather than three out of four lanes, due to non-internalized spill-overs

caused with incomplete control.

Finally, the results reconfirmed a more general insight that can be extracted also from

other studies in second-best pricing. This is that the amount of information necessary for

applying a policy instrument optimally seems to be increasing with the ‘imperfectness’ of this

instrument. In a single value of time setting, the second-best tax rule for parallel route pricing

implies that the regulator should not only observe the level of marginal external costs, but

demand and cost elasticities as well. Our results show that especially for second-best pricing, it

is in addition important to know the distribution of values of time. Second-best policies are not

only less efficient per se, but may in addition yield even smaller net benefits because

information needed to efficiently apply the instrument available is lacking.
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Appendix: analytical derivation of optimal tolls in the various regimes
In this appendix, we consider the analytical derivation of the optimal tax rules for the various

pricing regimes considered in the main text. These results provide insights into the solution

and, in three cases (FB, SBSL and PSL), were used to calculate the numerical solutions.

A.1 FB and SBPL: public differentiated tolling

The Lagrangian Λ for schemes FB and SBPL results from adding the objective (5a) and the

constraints (7a) (with Nα=NαA+NαB). For FB we set the ‘toll-dummies’ δA=δB=1 and δC=0,

while for SBPL we set δB=1 and δA=δC=0. The first-order conditions can be found by setting

the partial derivatives of Λ with respect to each of the following variables equal to zero: NαL

(for all α present on L); λαL (for all α present on L); τA; and τB. When taking these derivatives,

equation (2) is substituted for α*, which therefore depends on τA, τB, and all Nα (since every Nα

appears in the argument of either TA or TB). We again assume without loss of generality that

τB>τA and we define dummy variable *α
δ , which takes on the value of 1 only when α=α*. The

first-order conditions then imply (simplified by using the constraints):
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with:
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The first two conditions (A1a) and (A1b) involve trading off the direct benefits of road use on

the one route against the direct costs on that same route, as well as the indirect costs on the

other. The direct costs are represented by the first two terms, which are familiar expressions

reflecting the marginal external congestion costs imposed by a vehicle on all others using the

same road. Note that the marginal benefits Dα and private travel costs α⋅T do not appear in

(A1a) and (A1b) because they were eliminated by substituting the constraints (7a) into the

first-order conditions, causing the tolls τ to appear instead.

Next come four terms involving the Lagrangian multipliers λα, each of which gives the

shadow price of a constraint which in simplified form is just α⋅(TL+TC)+τL=Dα for which ever

link L applies. If we think of Dα as containing an exogenous parameter shifting the inverse

demand curve for α-type users downward, we see that λα represents the marginal impact on

social welfare of such a demand shift. In the first-best optimum, FB, it will turn out that

everyone is priced at marginal cost so a demand shift has no welfare impact at the margin and

λα=0 for every α. In the second-best optimum SBPL, however, even users of the priced link

are paying less than their marginal cost so there is positive social welfare from shifting their

demand downward, hence λα>0 for all α. These three terms in equations (A1), then, show that

in evaluating the marginal cost of a user with value of time α, one should also consider the

indirect effects of this change upon road use by all other users, the latter being caused by the

change in travel time (hence full prices) on the two alternative routes, plus an adjustment for

the own elasticity of demand (relevant for both routes when α* is considered). Note that these

demand-related terms are the only ones that differ when comparing (A1a) or (A1b) for

different values of α present on either link A or B. Therefore, the shadow prices λαL are

inversely proportional to the steepness of the demand Dα: when α-users are less sensitive to

price differentials, the shadow price λαL decreases in proportion.

The terms related to X*, defined in (A3), reflect the welfare impact of induced marginal

changes in α*, again via induced changes in travel times. Equation (A3) shows that this impact

includes the change in travel time for α*-drivers transferred from link B to link A, the direct

external congestion cost changes of such a transfer on both routes, and indirect welfare effects,

like those just discussed.

Equations (A2a) and (A2b) show that when a toll can be charged on a given link, the

shadow price for users of that link would average to zero except for the effect of induced shifts

to and from the other link (by users with value of time α*). When both links are tolled, adding

(A2a) and (A2b) show that overall, the shadow prices average to zero. In fact, we already

noted that they are identically zero in that case.
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These equations exhibit a highly inconvenient discontinuity at α* – which is why the

dummy *α
δ was needed. This discontinuity arises from the fact that a marginal increase of use

by α*-users on either route will affect marginal benefits on both routes. As a result, unless all

λ’s are equal to zero, a closed-form analytical solution to (A1a)-(A2b) cannot be found.13 To

see why, observe that we can solve all λ’s for 
BA ** αα

λλ +  from (A1a) and (A1b):

( ) **

** αλλλ α
αα

≠∀
′−

′−
⋅+= a

D

D

a
BAa (A4)

Substituting (A4) into equations like (A1a) and (A1b) lead to problems of discontinuity at α*.

In the first-best case, because it can be shown that all λ’s are zero, the following intuitive tax-

rules apply:
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These tax rules simply state that each toll should be equal to the marginal external cost for that

route. With optimal pricing on one route, the optimal price on the other can be determined

independently, a normal consequence of the envelope theorem. We can also see that, with

λα=0, (A2) require X*=0, which, from (A3), requires that for α*-users the valued time

difference between the two routes be exactly balanced by the difference in externality costs.

With first-best tolls applying on both routes, this is indeed the case.

For SBPL, a closed-form analytical solution can be found only if it happens that

0N * =
α

, so that no one is indifferent and hence there are no direct spill-over effects between

links A and B. We then end up with an independent first-best optimization problem for the

priced link. (Similarly, for FB we would end up with two independent first-best optimization

problems.) Such a case can only arise if the distribution of values of time is bimodal. It is for

this reason that assuming two groups, each with a distinct value of time, permits an analytical

solution as in Small and Yan (1999).

A.2 SBSL: Public undifferentiated tolling

The second-best public toll on the serial link can be found by solving the Lagrangian consisting

of objective (5b) and constraints (7b). The optimal non-differentiating toll on link C can be

shown to be equal to:

                                               
13 If one would ignore the terms with *α

δ  in (A1a) and (A1b), a closed-form solution can be found, but using

the simulation model, it was found to produce second-best taxes considerably different from the optimal second-
best taxes. Ignoring these terms is ignoring the important role that α* drivers play, as the ‘means of
communication’ between links A and B, in finding the optimal solution as represented in equation (A3).
Comparable erroneous simplifications were tested and refuted for other cases where no closed-form solution
can be found (PF and PPL).
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We expect this solution to provide typically lower welfare than that computed for the first-best

problem, but in fact we need to check because the latter was derived on the assumption that

the tolls were unequal. We accomplish this by showing that in SBSL, the same traffic flow can

be accommodated at lower total cost by setting τA marginally lower and τB marginally higher

than τC as defined by (A6). Doing so would lead to a separation of traffic at α*, and would

induce a marginal shift of users from link B to link A. For simplicity, suppose the two links are

identical, so that TA=TB, TA′=TB′ and NA=NB at the solution to SBSL. Denote the size of the

shifted traffic as ∆*. Because travel times are equal on both links, the change in total travel

costs resulting from this marginal tax change can be written as:
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The change in travel costs is thus equal to ∆* times the difference in marginal external

congestion costs. With TA′=TB′ and NA=NB this change in cost is negative, because on route B,

α will be higher. With different routes, the same type of proof can be given by setting the

marginally higher toll on the link that carries more traffic in SBSL. It could be the case,

however, that counter-examples can be constructed where differences in TA′ and TB′ happen to

exactly off-set the differences in ∫ ⋅ αα N in the SBSL equilibrium.

A.3 PF and PPL: Private differentiated tolling

For PF and PPL, the Lagrangian consists of equations (6) plus (7a). Proceeding as in Section

A.1, the first-order conditions imply:
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Again, the first-order conditions are hard to interpret, and we refer to Verhoef et al. (1996) for

an interpretation of simpler versions. Roughly speaking, the first two conditions consider the

direct and indirect effects of marginal changes of road use upon the objective of maximizing

revenue, whereas the latter two help to define the Lagrangian multipliers in the (private)

optimum considered. Neither PF nor PPL has a closed-form analytical solution.

A.6 PPS: Private undifferentiated tolling

The problem of a private toll on the serial link has a Lagrangian which combines equation (6)

and (7b). The first-order conditions are:
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Equation (A10a) can be solved for ∫ αλ by using that λα⋅–Dα′ is constant for all α. The

following pricing rule can then be found:
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This rule is a somewhat complicated variant of the standard revenue-maximizing toll on a

congested road. It shares with earlier results (e.g. Edelson, 1971; Verhoef et al., 1996) the

feature that the toll is decreasing in the elasticity of demand (the monopolistic mark-up), and

increases in the marginal external congestion costs.


