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Abstract 
 
Two stylized facts on job tenures are the increasing tenure profiles in wages and the hump 
shaped tenure profile in job separation rates. Both can be generated by a model with specific 
investments and random shocks to productivity after the job start. Assumptions on risk 
neutrality and efficient bargaining on wages allow the job separation decision to be analyzed 
separately from wage setting. A simple bargaining rule for surplus sharing between worker 
and firm generates the tenure profile in wages. Estimation results using job tenure data from 
the NLSY support the humped shaped pattern in job separation rates and favor this model 
above the learning model. When assuming a Last-In-First-Out (LIFO) separation rule, this 
model of individual employment relations is embedded in a model of firm level employment, 
that satisfies Gibrat’s law. The LIFO rule is interpreted as an institution protecting the 
property rights on specific investments of incumbent workers. 
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1 Introduction 
 
Though a lot of work has been done on the analysis of the job tenure distribution, we are still 
uncertain about the nature of the process triggering job separation. The literature provides a 
number of explanations, where search and learning models are two prominent lines of 
thought. The present paper focuses on the unpredictable evolution of future match 
productivity after the date of job start. A job start requires some specific investments. When 
the match productivity evolves unfavorably, the investments loose their value and separation 
becomes the efficient alternative. We refer to this model as the random growth model. The 
model is easily embedded in a firm-level model of employment, when random shocks to 
future productivity are interpreted as shocks in the firm’s demand curve. 
 For a better understanding of the relation of the random growth model to other strands of 
the literature in this field, it is useful to contrast the type of stochastic processes triggering 
separation, in search models on the one hand and learning models on the other hand. In search 
models (e.g. Jovanovic (1979b), Burdett and Mortensen (1998)), two types of stochastic shocks 
contribute to the separation decision: first, the arrival process of new offers, and second, 
conditional on arrival, the value of that offer. When the value of a newly arrived offer exceeds 
the value of the present job, there is separation. In search models, both types op shocks are 
usually modelled as transitory shocks. The arrival of a job offer today does not affect the 
probability of the arrival of an offer tomorrow, neither does the value of one job offer affect the 
value of the next. A major achievement of search models is that they provide a simple 
explanation for the empirical regularity that separation rates decline with the accumulation of 
experience. The longer a worker has been around on the labor market, the more job offers she 
has received. Where the present job is the best of these offers, this maximum will –in 
expectation- move up with experience. Hence, the probability of receiving an even better job 
declines over time.  

In learning models, the workers and the firm have only imperfect information about 
the quality of their match (Jovanovic, 1979a; Miller, 1984). Each period, the match produces 
a random output with a constant mean. The mean value of the output is the quality of the 
match. The worker and the firm gradually learn about match quality by observing realizations 
of this random output. Hence, shocks have a permanent effect on the probability of future 
separations. However, the more shocks are accumulated, the less is the share of each shock. 
In this paper, we contrast the (Bayesian) implication that the impact of new information 
decreases as the worker and firm are better informed, with the random growth model. The 
learning model generates a hump shaped separation rate. Directly after the start of an 
employment relation, the worker and firm have not yet collected sufficient information to form 
an accurate belief about match quality. Gradually, beliefs become more accurate and bad 
matches are eliminated. Finally, beliefs are almost exact, and all bad matches have been 
eliminated previously, so that the separation rate drops to zero. 

The information assumptions in the random growth model considered in this paper are 
the mirror image of those in the learning model. The worker and the firm are perfectly 
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informed about today’s match productivity, but they do not know its future evolution. Future 
productivity is supposed to follow a geometric random walk. When the productivity of the 
match falls below a threshold, separation becomes the efficient alternative. Hence, shocks to 
productivity have a permanent effect on future separations: a downward shock today moves 
productivity in the direction of the separation threshold, increasing the probability of 
separation at some time in the future. The uncertainty about future productivity relates the 
model to the literature on firm’s labor demand under uncertainty, see Bentolila and Bertola 
(1990). The stochastic process underlying the random growth model fits in the strand of 
learning models, in the sense that stochastic shocks have a permanent, cumulative effect on 
future separations.1 However, unlike the learning model, the effect of new shocks does not 
decline in the course of time.  

Workers and firms are required to make specific investments at the start of the match. 
These investments can either be hiring cost, or firm-specific formal training programs, or 
more generally, the time that is needed to get acquainted to the type of work that the firm 
expects the worker to do. We do not take a stance on the weights of these components. These 
investments loose their value upon separation. This sets our model apart from the literature 
on temporary lay-offs, where workers expect to be rehired by their previous employer, see for 
example Feldstein (1976).  

Our model is formally equivalent to that of Dixit (1989). Since specific investments 
are required, hiring and separation decisions are irreversible. Hence, these investments have 
an option value. We make three assumptions. First, we assume efficient bargaining on the 
distribution of surpluses from specific investment, so that separation decisions are always 
efficient. Second, we assume risk neutrality, so that the allocation of the uncertainty about the 
future evolution of productivity is irrelevant. These assumptions allow us to analyze 
separation decisions and wage setting separately. Finally, we assume holdup problems to be 
resolved efficiently, so that the surplus value of a job at the moment of job start is equal to the 
cost of investment. 

This model yields a hump shaped separation rate. At first, the separation rate is low. 
Players would not have made the specific investment if the resulting initial match 
productivity were close to the separation threshold. In due time, some matches have 
accumulated negative shocks, leading to an increase in the separation rate. Eventually, 
separation rates decline again, since matches with accumulated negative shocks will have 
been eliminated previously while the remaining matches will be predominantly those which 
have accumulated positive shocks.  

Lancaster, Imbens, and Dolton (1987) and Miller (1984) use the hump shaped 
separation rates as evidence for the learning model. However, their evidence suggests that 
separation rates do not decline as quickly as predicted by the estimated learning model. With 
a negative drift, the separation rates from the random growth decline more slowly, and 
converge to a positive value as empirically observed.  

                                                 
1 Keane and Wolpin (1997) offer a model with randomness in productivity after job start that is driven by transitory shocks. 
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The model is applied to the tenure distribution of individual employment relations, 
using the NLSY. From this distribution, we can identify all structural parameters up to the 
variance of shocks in productivity. For the identification of this final parameter, we extend 
the empirical analysis by using the first order condition for the optimal hours of on-the-job 
training. On-the-job training is just one of the components of the specific investments 
required at the start of a match. Workers and firms set their level of investment for each 
component as such that the marginal cost of this component is equal to the increase in the 
value of job. Since hours of training are observed and since their effect on the value of the job 
can be estimated, the first order condition for this component provides an additional 
constraint that can be applied for the identification of the final parameter. 

We explore the implications for the tenure profile in wages. For this purpose, we 
consider the implications of a simple Nash bargaining rule. Tenure profiles in wages emerge 
naturally from our probability law for the path of productivity. Even when there is no 
deterministic trend in the within-job-productivity of the worker relative to her outside market 
option, the model generates a simple rationale for a tenure profile. Random walks that 
develop unfavorably, are eliminated from the stock of ongoing matches. The remaining stock 
is therefore a selective sample of the random walks where productivity has developed 
favorably. This selection mechanism generates a tenure profile in wages, which is consistent 
with what is reported by for example Topel (1991). 
 An important advantage of the random growth model of individual employment 
relations is that it can be embedded in Bentolila and Bertola’s (1990) model on the evolution 
of employment at the level of the firm. The hiring cost in their model can be identified as the 
specific investments in our model. Bentolila and Bertola assume an iso-elastic demand function 
evolving over time according to a geometric Brownian. With these assumptions, there is a 
one-to-one correspondence between our model of individual matches and the model of Bentolila 
and Bertola, if a Last-In-First-Out (LIFO) separation rule applies. Kuhn (1988) provides a 
rationale for the use of LIFO lay-off rules in the context of a unionized firm. We draw on this 
idea and argue that a LIFO lay-off rule serves to protect the property rights of the specific 
investments of incumbent workers against the claims of workers that are hired later on.  
 The analogy of our model of an individual match and a firm level model also provides a 
rationale for the assumption that productivity evolves according to a geometric Brownian. 
Bentolila and Bertola’s model implies firm size to evolve (almost) according to Gibrat’s law. 
The excess productivity of matches above their separation threshold is shown to correspond to 
the productivity of the intramarginal workers in the firm. With adequate data, we would be able 
to analyze the share of firm level shocks in the total variance of the shocks that drive the 
evolution of match productivity. 
 The set-up of the paper is as follows. The model is derived in Section 2.  Section 3 
discusses the estimation results for the tenure distribution. In Section 4, we analyze the relation 
of our model with that of Bentolila and Bertola (1990). Section 5 concludes. 
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2 The Model  
 

2.1 Assumptions 
 
Consider an economy with risk neutral workers and firms. In the market, workers can collect 
their market value which we normalize to unity per unit of time. Firms own vacancies. A filled 
vacancy (a job) produces a particular type of output with market value Pt per unit of time. At a 
particular time t, a firm can decide to hire a worker to fill the vacancy and to start producing 
output. At the start of an employment relationship, relation specific investments I have to be 
paid. All specific investments are made at the start of the employment relationship. This 
assumption is obviously restrictive but it is a reasonable first approximation. Specific 
investments will be lost upon separation between the worker and the firm. However, the firm 
retains the property rights of the vacancy, that is, it holds the option to hire another worker at a 
later date, for example when the market value of output improves. In that case, specific 
investments have to be made again. Both the worker and the firm are perfectly informed about 
the present value of Pt. However, its future evolution is subject to uncertainty. Pt follows a 
geometric Brownian. 
 Firms and workers are assumed to bargain efficiently. That is, as long as it is efficient to 
continue the relationship, they reach agreement on the distribution of the surplus. Furthermore, 
we assume that the firm and the worker are able to resolve potential hold-up problems and to 
share future surpluses according to their share in specific investments. Together with the risk 
neutrality, these assumptions imply that the pattern of job duration and specific investments can 
be analyzed separately from the distribution of the surplus between the worker and the firm. We 
discuss our model as if the firm pays for all investments and accordingly receives the full surplus 
of the relationship, while the worker gets her outside option. However, any other sharing rule is 
consistent with our results, as long as investment cost and surpluses are shared in the same way. 
Since separation decisions are made efficiently, there is no surplus left at the moment of 
separation and separation is therefore in the mutual interest of both players. Hence, it does not 
make sense to distinguish between quits and lay-offs, compare McLaughlin (1991). Clearly, the 
assumptions on risk neutrality, efficient bargaining and the resolution of hold up problems are 
unlikely to be met completely in practice. For example, the evidence presented Jacobson, 
LaLonde, and Sullivan (1993) supports the idea that there are at least some gains of trade left at 
the date of separation. However, we feel that it is better first to have an idea about the parameters 
that are consistent with first-best before entering the fog of a second-best real world.  
 

2.2 The Tenure Distribution 
 
Using lower cases for logarithms, the law of motion for the market value of log output between 
arbitrary dates s and t shocks is: 
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[pt - ps] ~ N [(t - s) µ, (t - s�� 2] (1) 
  
The value of a vacancy, denoted V(Pt) and a filled job, J(Pt), the latter net of the outside option 
of the worker, both measured at date t are given by: 
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where ρ denotes the interest rate, T is the efficient separation date, and X is the efficient hiring 

date. Both T and X are random variables depending on the ’filter’ Pt, t ≤ X,T and where Et[.] is the 
expectation operator for the filter Ps, s > t. The value of a vacancy is fully determined by the 
option of filling the vacancy by making the specific investment I at some unknown future date 
X. In return for this investment, the firm obtains the value of a filled job. In the second equation, 
the value of filled job is made up of two parts. The first part is the option to fire the worker at 
some unknown future date X. In that case, the firm holds the value of a vacancy. The second part 
is the expected value of the productivity of the worker, minus what she would earn on the 
outside market. At the moments of hiring and separation, when the firm switches back and forth 
between the value of a job and a vacancy, the firm is indifferent between the two alternatives. 
When switching from a vacancy to a filled job, we have to account for the cost of specific 
investments. Hence, letting t=X and t=T respectively in equation (2): 
 

J(PX) = V(PX) + I, 
V(PT) = J(PT). 
 
The stopping rules for hiring and separation depend only on Pt because the law of motion 
formula (1) implies the strong Markov property for Pt and because the time horizon is infinite, 

see McDonald and Siegel (1986, page 712-713). Its logarithm Pt is a Brownian with drift µ and 

variance rate σ2. The firm hires a worker at the moment X when Pt hits an upper bound PX and 
the worker separates from the firm at the moment T when this ratio hits a lower bound PT.  
 An employment relation ends when the worker and the firm no longer consider its 
continuation beneficial. This happens at the first time after the start of the job that Pt is at the 
separation level PT. Since the employment relation has started at time t such that Pt is at the 
hiring level PX, the duration until separation is determined by the time that is required for the 

random walk to travel down the distance PX-PT. Define: ∆t ≡ (Pt – PT)/σ, ∆ ≡ (PX – PT)/σ, and 

π≡µ/σ. ∆t is the normalized distance between the actual log productivity and the separation 

threshold, ∆ is the normalized distance between the hiring and separation threshold, π is the 

normalized drift. Then the job duration is the required time for ∆t to travel down the distance ∆. 

Hence, the distribution of job tenures is fully determined by two parameters, ∆ and π. Contrary 

                                                                                                                                                        
2 Van der Ende (1997) allows for a mixture of investments at prices Pt and Rt. 
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to π, ∆ is not a structural parameter. It depends on the optimal hiring and separation thresholds 
pX and pT, which will be determined in Section 2.5. 

 The distribution of ∆t - ∆ conditional on the hiring time X is N[(t-X)π,(t-X)σ2]. When ∆t < 

0, separation has occurred at some time X < T < t. However, not all realizations of ∆t > 0 

correspond to an ongoing employment relation. It might be the case that ∆s < 0 for some s, X < s 

< t, but that ∆t traveled back to a positive value since then. However, since the separation 
decision is irreversible, these realizations do not correspond to ongoing employment relations. 

The probability that no separation occurs before time t is the probability that ∆s > 0 for all X ≤ s 
< t. This conditional density can be calculated from the reflection principle. This principle is 
illustrated in Figure 1. There is a one-to-one correspondence between the trajectories starting at 

∆ and ending at ∆t but having crossed the line ∆s = 0 at least once on the one hand, and the 

trajectories starting from -∆ and ending in ∆t on the other hand. These trajectories should be 

subtracted when calculating the density of all trajectories that never crossed the line ∆s  = 0. 

Hence, the joint density of ∆t and the relationship still going on (that is: T > t) conditional on the 
starting time of the job, X=0, and the moment of observation t is: 
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where Θ = e-2∆π. The parameter Θ accounts for the effect of the drift π. It is equal to unity when 

π = 0.3 The distribution function of completed job tenures follows from integrating out ∆t: 
−+ ΘΦ−Φ=−≡= tttF Xtt > T )(1]0,|Pr[  

where Φt
i = Φ(xt

i),  xt
+ = (∆+πt)/√t and xt

- = (-∆+πt)/√t. Other authors have applied this statistical 
model for the description of duration data before. The first paper that we are aware of is that by 
Lancaster (1972), who applies the model to the duration of strikes, with considerable success. 
 The economic model discussed above is not the only model that yields this distribution for 

completed job tenures characterized by ∆ and π. For example, a model where productivity 
follows a Brownian instead of a geometric Brownian, leads to exactly the same statistical model 
for completed job tenures. Hence, the fact that observed tenure distribution matches the 
predicted distribution closely does not necessarily imply that the random growth model is the 
only model that can explain the data. 

 The exit rate from employment is given by λ(t) ≡ f(t)/(1-F(t)). The pattern of this exit rate 
has the following characteristics4: 

i) λ(0) = 0 and increases from then on; 

ii) λ(t) reaches a peak at t0, where 0 < t0 < 2/3∆2; 

                                                 
3 The intuition for Θ is that Pr[∆s=0, ∆t|∆0=∆, s,t,s<t] = Θ Pr[ ∆s=0, ∆t|∆0= - ∆, s,t,s<t]. Note that the factor Θ is independent 
of s. 
4 The proposition of the peak follows from inserting λ’ = 0 into λ" < 0. 
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iii) after t0, λ(t) declines monotonically to:  

 for π > 0: λ(∞) = 0; 

 for π < 0: λ(∞) = ½ π2. 

Stated roughly, ∆ locates the peak of λ(t) in time and π determines its final level. 
There is a clear intuition for this pattern. The firm only hires a worker when the productivity 
of the job is way above the outside option of the worker, since it will have to pay this outside 
option to the worker. Hence, initially, the chance that this surplus is dissipated by random 
shocks is negligible. After some time, a sufficient number of shocks have been accumulated, 
pushing up the separation rate. Later on, the separation rate declines by a selection 
mechanism. Trajectories of the Brownian that started with a large number of negative shocks 
have been eliminated by previous separation, so the probability mass of productivity in 
remaining jobs shifts upward. When the drift is positive, the drift term dominates the random 
shocks in the long run. When the drift is negative, there is a constant force pressing the 
surviving jobs towards the separation threshold. The hump-shaped pattern is indeed a feature 
of empirically observed job-exit rates, see Farber (1994). We return to the issue of the shape 
of the hazard rate when discussing the estimation results. 
 

2.3 A Comparison with the Learning Model 
 
Learning models (Jovanovic (1979a), Lancaster, Imbens, and Dolton (1987) and Miller (1984)) 
also yield a hump shaped pattern in separation rates. However, the random growth model 
generates much higher separation rates at longer tenures. For the sake of comparison, we offer a 
short discussion of a simplified version of the learning model, using a notation that highlights its 
similarity with the random growth model. Match productivity x0 is a match specific constant, 
which is however unknown to the firm and the worker. The distribution of x0 across jobs is 

normal with mean P0 and variance σ0
2. Actual output in period t, xt is equal to x0 plus normally 

distributed white noise εt with variance σ2. Unlike the random growth model, the model is in 
discrete time, but we can approximate a continuous time model arbitrarily close by choosing an 

ever-shorter unit of time and decreasing the value of σ2 proportionally. The firm and the worker 
have to infer match productivity x0 from realizations of output xt. They form beliefs Pt about 
match productivity by Bayes' rule: 



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+
= ∑

=
0
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t
P

t

s
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δ
 

where δ ≡ σ0
2/σ2. Beliefs are a weighted average of expected match productivity and past 

realizations of output. In this simplified version, separation occurs the first time that the belief Pt 
is below a certain threshold, PT. In the full model, the separation threshold is time dependent 
since the variance of the beliefs Pt decreases over time. The smaller the variance of Pt, the 
lower the option value of continuing the employment relation. Hence, the separation 
threshold increases over time. However, this effect is non-linear and cannot be characterized 
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analytically, see Lancaster, Imbens, and Dolton (1987).5 We shall therefore ignore this effect 
in the subsequent analysis. The simplified version of the learning model can be respecified in 

terms of two parameters, ∆ ≡ (P0 –PT)/σ0 and δ. The first is an analogue of the parameter ∆ in 
the random growth model. By ignoring the upward trend in the separation threshold we have 
implicitly set the drift equal to zero. Like in the random growth model, separation occurs 

whenever standardized beliefs ∆t ≡ (Pt-P0)/σ0 have traveled down the distance ∆. 
 The crucial difference between the random growth model and the learning model comes to 

surface when comparing the evolution of the variance of ∆ in both models. For the learning 
model, we have: 
 

[ ]
t

t
Var t δ

δ
+

=∆
1

 

 

while the random growth model yields Var[∆t] = t. Hence, in the learning model, the 

accumulation of shocks leading to the gradual evolution of ∆t proceeds in a time scale that is 
transformed compared to the time scale that applies in the random growth model. Eventually, for 

t → ∞, the variance of beliefs in the learning model converge to: Var[Pt-P0] = Var[x0-P0] = σ0
2, 

since beliefs converge to actual match productivity x0. When we set: ∆learning = δ ∆random growth, 

the accumulation of shocks relative to the size of the initial surplus, starts at the same rate per 

unit of time in both models. Hence, the hazard rates at t → 0 are equal in both models. After a 
while, the accumulation of shocks in the learning model starts lagging behind that in the random 
growth model, and so does the hazard rate. The variance of accumulated shocks in the learning 

model will never get above the value that is achieved at t  = δ-1 in the random growth model. The 

lower δ, the longer it takes before the hazard rate in the learning model starts lagging behind that 
of the zero-drift random growth model. The pattern of separation rates of a zero-drift random 
growth model is therefore a special case of the pattern generated by the simplified version of the 

learning model for δ = 0. 
 This previous thought experiment aims at setting equal the hazard rates of both models at t 

→  0. One can also choose to set equal the hazard rate at later points in time. In each case, the 
hazard rate of the learning model will decline relative to that of the random growth model from 
that time onwards. This is illustrated in Figure 2. The thin line represents the separation rate for a 

random growth model with ∆random growth = 4, while the fat line represents the separation rate for a 

learning model with ∆learning/ δ  = 3.8 and δ = 0.01, implying that the variance of transitory 

shocks in productivity per unit of time is equal to 100 times the variance of x0 around P0. The 
parameters of the learning model are set as such that the location of the peak is similar in both 
models. At that point in time, both models have produced about the same number of separations. 

Even for this low value of δ, the random growth model produces a substantially higher number 

                                                 
5 Hence, contrary to the optimal separation rule in the random growth model, the optimal separation rule in the learning 
model does not have a complete analytical characterization. This complicates a precise comparison between both models. 
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of separations than the learning model for t > 30. For higher values of δ the difference between 
both models is even more pronounced. 
 Where the pattern of separation rates of a zero-drift random growth model is a special case 
of the simplified version of the learning model, this correspondence does not extend to the 
random growth model with a negative drift. This follows from a simple argument. In the random 

growth model, a negative drift implies that eventually all matches will be broken up, since λ(∞) 

= ½ π2 > 0. In the learning model, there is always some fraction of the matches that survive 
forever, since learning the match quality x0 makes sense only if there is some fraction for which 
productivity is above the separation threshold. These matches survive forever, or more precisely, 
end only for reasons that are exogenous to the model. Note that this argument does not rely on 
our simplification of the learning model, by disregarding the non-linear negative drift. Hence, 
the pattern of separation rates of a random growth model with negative drift can never be 
generated by a pure learning model. 

 
2.4 Tenure Profiles in Wages 
 
Simple cross section wage regressions tend to show substantial returns to tenure. There is an 
extensive literature on the measurement of these tenure profiles, see for example Abraham and 
Farber (1987), Altonji and Shakotko (1987) and Topel (1991). This literature takes into account 
all kind of biases introduced by the self-selection of workers into particular types of jobs. The 
question asked by this literature can be summarized as: do high wages cause long tenures, or is it 
the other way around? In this subsection, we address the potential implications of the random 
growth model for observed tenure profiles. For this purpose, we drop the working assumption 
that the firm captures all surpluses of the specific investment. Instead, we extend the model with 
a simple sharing rule for the distribution of surpluses between the worker and the firm. Let wt be 
the log wage of the worker. By the normalization of the worker’s outside option to unity, it 
vanishes in a log linear representation. Our sharing rule simply distributes instantaneous 
surpluses proportional to the worker and the firm6: 
 

wt  =  ln{ 1 + β[exp( pt) – 1] } ≅  β pt = rt + βσ∆t (4) 
 

where β, 0 < β < 1, is the worker's share in specific investments. This sharing rule is consistent 
with the previous assumption that hold up problems are resolved efficiently if workers’ share in 

the specific investments is equal to β.  By letting the worker and the firm share the instantaneous 
surplus in this way, the random growth model generates a natural explanation for the positive 

                                                 
6 In using this sharing rule we apply a pragmatic approach compared to what is most common in the literature, where wage 
setting is done not by sharing the instantaneous surplus but by sharing the return on the expected discounted value of future 
surpluses, yielding: wt = rt + ln{ 1 + ρβ(Vt – Jt) }.  
The second approximation in equation (4) follows from a first order Taylor expansion that applies for small values of pt. For larger 
values of pt, wt converges to pt + lnβ. The advantage of this first order expansion of a sharing rule based on the instantenaous 
surplus is its linearity in ∆t. 
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correlation of job-tenure and wages that is observed in cross section data, even when the 

normalized drift π is negative. To see this, consider the expected value of ∆t for ongoing 

employment relations. This expectation can be calculated from the density of ∆t conditional on 
survival at X < t < T and the date of job start X, see equation (3): 
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For the second equality, we use ϕt
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-. The slope of the tenure profile in a cross-section 

regression on log wages is equal to σβ × the derivative of this expectation with respect to t. The 
latter reads: 
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For a positive drift, this derivative is always positive, leading to a tenure profile. The interesting 

case is that of a negative drift, π < 0, which we discuss below. The derivative consists of two 
terms. The first term measures the direct effect of the drift, which is negative. The second term 
measures the effect of the elimination of unfavorable trajectories of the Brownian by separations 
prior to time t. In the short run, the first term dominates, because there is not yet much selection 

going on, see the discussion on the initial value of λ(t). For t = 0, the second term even vanishes 

due to the factor φt
+. In the long run, the selection effect and the effect of the drift cancel, as 

follows from taking limit for t → ∞ of equation (5)7: 
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Since the conditional expectation of ∆t is equal to ∆ for t = 0 and is equal to -2/π for t → ∞, its 

slope has to be positive in the intermediate run if: -2/π > ∆. In that case, the selection effect 
dominates the drift, so that observed wages exhibit a tenure profile even when there is no 
inherent job specific productivity gain. We shall apply these formulas when discussing the 
implications of our estimation results. 
 
The previous analysis is useful for cross section data, where we observe the starting date X but 
not the stopping time T. However, in panel data, we also observe T for completed spells. The 
random growth model with Nash bargaining implies that wt follows a Brownian with drift. Topel 
(1991), Topel and Ward (1992) and Dustman and Meghir (2001) find indeed strong evidence 
that log wages within a job follow a Brownian, although their evidence includes randomness in 

                                                 
7 We use: limx→-∞ Φ(x) = -(1-x-2) x-1 φ(x) + O(x-4) and: ϕt

+ = Θ ϕt
- 
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the outside option, while the outside option is normalized to a non-random constant in our 
calculations. Then, a simple cross-section regression would overestimate the drift, since log 
wages in surviving jobs are a selective sample of jobs, where wages are above workers’ 
separation threshold. The eventual tenure captures the information that at the moment of 
separation, the wage rate is equal to workers’ separation threshold, while it is above this 
threshold before the moment of separation. Hence, the model implies that the growth in wt 
should be lower just before separation. This prediction gets support in Topel and Ward (1992, 
Table VI, model (v)) not in Topel (1991, Table 4). This difference matters in particular when a 
worker’s human capital is not fully job specific so that the productivity in the job will be 
correlated positively to the value of the outside option. Jacobson, LaLonde, and Sullivan (1993) 
find strong support for a declining profile in wt in the period before separation, though their 
evidence suggests that there are still substantial gains from trade at the moment of separation. 
However, their evidence on the gains of trade refers to lay-offs only, not to quits. If our model is 
correct, there is no such thing as 'the' earnings loss or 'the' tenure profile in wages. Tenure 
profiles depend on the evolution of a match.8 
 

2.5 The Separation Threshold and the Level of Specific Investments 
 
By applying Ito’s lemma, the value functions in equation (2) are defined by two Bellman 
equations, see Dixit (1989): 
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The first term on right hand side of both equations takes care of the drift in Pt. The second term 
accounts for the non-vanishing second order effect of shocks to Pt. The final terms in the second 
equation measure the current output of a filled job, net of the outside option of the worker. The 

hiring threshold PX and the normalized distance between the hiring and firing threshold ∆ are 
implicitly defined by the following relations, see the Appendix for their derivation: 
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8 This observation puts into question much of the literature on the estimation of the tenure profile, see e.g. Altonji and 
Shakotko (1987), which tries to estimate a tenure profile that is independent of the future perspectives of the job. Our model 
also offers a natural explanation why the variance of the error term in a wage equation increases with tenure. 
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where D ≡ e∆, α1 ≡ - π + √(π2+2ρ), and α2 ≡ - π - √(π2+2ρ). The value of a job is finite if and 

only if ρ - π σ - ½ σ2 > 0 and ρ > 0, which we assume to be the case. Equation (7) implies that 
PX is positive and PT  is negative. Immediately after the hiring decision, the productivity in the 

job PX exceeds the outside option by at least the interest payments on the specific investment, ρ. 
If not, the firm would be able to increase its profits by postponing the investment. At the 
moment of separation, PT is below unity. When the productivity is just slightly below the outside 
option, it is better to retain the worker since separation decisions are irreversible. The worker 
and the firm can only benefit from the opportunity that productivity might pick up later on as 
long as they have not separated, for otherwise they would have to incur the cost of specific 
investment again. 

 The ������ �	
� ���
� �	
	����

�� �� σ, ρ, and I. Consider the identification of these 

parameters, assuming exogenous information on ρ to be available; 10 % per year seems to be a 
reasonable value. The distribution of job tenures is determined by two (composite) parameters, 

see Section 2.2: π and ∆. These parameters can therefore be estimated from tenure data. The first 

of the pair of equations (7) provides an implicit relationship between the composite parameter ∆ 
and the underlying structural parameters, in particular the level of investment, I. Hence, till so 
far, the model is identified up to a single parameter, the standard deviation of shocks per unit of 

time, σ. The advantage of the assumptions on risk neutrality, no hold-up, and efficient 
separation, is that we can separate the wage process completely from the investment and 
separation decisions. At the same time, wage data do not add to the identification. All additional 
information in these data would be needed for the identification of an additional parameter, the 
bargaining power of the worker, determining the sharing of the surplus between the worker and 
the firm, see Section 2.4. Hence, we have to look for an alternative identification strategy. 
 �����	
	����
� ��
�������������
�����������
����������������	
���	�����
��������
���������
job-specific training, H, to the total of specific investments, I. Time spent on specific training is 
only one of the components of job specific investments. There are other components, for 
example the time of experienced workers spent on the training of their colleagues, and hiring 
cost. All these components contribute to total investment, I. However, the interesting feature of 
the time spent on training is that our model generates its marginal price. The cost of a marginal 
time unit of training is equal to PX. This cost exceeds the opportunity cost of untrained workers 
(PX > 1), since intramarginal specific investments have been made, which raise the productivity 
of the worker above her outside market option. Workers and/or firms set marginal cost equal to 
the marginal revenues of specific training. Since I is equal to the expected discounted value of a 
job, we have: dI/dH = PX. Variation in the actual amount of on job specific training can be 

related to the observed tenure distribution, which allows us to estimate d∆/dH. I is a (non-linear) 

function of ∆, denoted I(∆), see equation (7). Hence: 
 

I’(∆) d∆/dH = PX (8) 
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Expressions for PX and I’(∆) can be obtained from equation (7). Given the availability of 

estimates of d∆/dH, this equation can be solved numerically for its only unknown parameter, σ. 
 
 

3 The Empirical Implementation 
 
3.1 Specification and Likelihood 
 
A full structural estimation of the model would require us to specify the likelihood directly in 

terms of the three structural parameters to be estimated, π, σ, and I.  We pursue a simpler, semi-

structural approach, where we specify the likelihood in terms of (composite) parameters ∆, π, 

and d∆/dH, and then use the equations (7) and (8) to recover the structural parameters. We apply 

the following specification for ∆ and π: 
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where xij denotes the characteristics of job j for worker i. Since our estimation is based on a 

panel for workers, random worker effects are included in both ∆ij and πij. We refrain from 
including random job effects, because we observe each job only once, so its identification would 

rely strongly on the functional forms.9 Since ∆ > 0 for all jobs, we impose the constraint u∆i > -δi 

where δi ≡ minj[xijβ∆].10 We assume that u∆i and uπi are independent and normally distributed. 
Hence, the log likelihood reads: 
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where dij ≡ 1 if a job is uncensored and dij ≡ 0 otherwise and where ji is the number of jobs of 
individual i. We programmed both first and second derivatives of the likelihood. Convergence 
was quick, requiring only a few iterations. The same estimates were achieved for different 
starting values.  
 

3.2 The Data 
 
The data were taken from the National Longitudinal Surveys of Youth (NLSY), provided by the 
U.S. Center of Human Resource Research. We apply 14 waves in the period 1979-1992. All 
respondents were interviewed in 1979 and were then aged 14 through 22. We selected full-time 

                                                 
9 See Van der Ende (1997) for estimation results including a random job effect. 
10 The alternative would be to use an exponential specification for ∆: ∆ = exp (xβ∆+ uδi)  However, the disadvantage of this 
specification is that the additive structure ∆t= xβ∆+t xβπ is lost. 
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jobs of white males since the start of the career. We discarded jobs with missing occupations. 
The career of the respondent is said to have started at the beginning of the first paid full-time job 
with a known occupation (occupation is missing for jobs lasting less than 8 weeks that were 
uncensored at the first interview in which the job is recorded). Furthermore, the respondent must 
have been working for at least 22 weeks and at least 440 hours in the next three consecutive 
years. A paid full-time job is any job for which at least 30 hours per week are recorded at a 
positive wage rate. We end up with a dataset of 8,339 jobs held by 2,352 workers. 
 The data are summarized in Table 1. Tenure increases with calendar time as long as the 
respondent reports himself associated with the same employer. When an individual is rehired by 
the previous employer without himself reporting still associated to this employer in the 
intermediate period, we reset tenure to zero.11 The NLSY has the advantage of low attrition and 
accurately measured tenures, in weeks. This is a crucial feature since aggregation over time 
tends to hide the hump shape in the hazard rate, which plays a central role in the model. We 
shall use a week as the unit of time when reporting our empirical results. All explanatory 
variables are measured at the start of a job except grade which is measured at the start of the 
career. We shall use deviations from their means over the selected jobs. Experience is the sum of 
working and non-working experience since the start of a career.12 It is defined as the calendar 
time since the start of the career, regardless of the employment status. Prior unemployment 
includes spells in which the respondent held only part-time or military jobs.  
 On-the-job-training is defined as the first non-governmental program that is attended 
parallel to a job. Later on-the-job training programs do not fit the assumptions of the random 
growth model, where all specific investments are decided upon at the start of the job. Happily, 
these programs are infrequent and little harm is done in excluding them from the analysis. The 
total hours of a program are the hours per week from the first record of the program, times the 
duration of the program in weeks.13 The last column gives the number of programs that survive 
the associated jobs by at least one and a half weeks. This would contradict our interpretation of 
these training programs as being job specific; 93% of the 1,089 training programs are completed 
before the end of the job for which they are started. We censor surviving training programs at 
the recorded end date of a job. Thirteen percent of the jobs take a training program. Table 2 
presents some statistics. 
 

                                                 
11 As pointed out by a referee, this causes some problems for the interpretation of the results in the case of rehiring since part 
of the specific investment do not have to be re-incurred in that case, compare Feldstein’s (1976) discussion on temporary lay-
offs. Hence our estimate of I is some mixture of the cost in the case of permanent separation and the much lower cost in the 
case of temporary lay-off. 
12 This excludes most of the holiday jobs.  
 
13 A complication is that the question regarding training programs in the NLSY has been changed half way the period of 
observation, see Parent (1999, 301). Before 1988, the question asked for training programs beyond military and government 
sponsored programs lasting longer than one month. This restriction to programs longer than a month was lifted afterwards. 
Like Parent (1999), we are therefore mixing data with and without a minimum duration requirement. 
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3.3 Estimation Results 
 
Table 3 gives the Maximum Likelihood estimates of (9). We included dummies for 30 

occupations (see Van der Ende (1997) for their classification) in the equation for ∆.  Recall from 

Section 2 that ∆ situates the peak of the job exit rates, and that in the limit exit rates depend on 

the normalized drift π only. Because highly specialized jobs, like that of a lawyer, typically start 

at the end of our young-worker survey, their effects on the drift π are weakly identified. Hence, 

we exclude the occupational effects of the drift. The occupation with the highest value of ∆ is 
medical specialists, and the lowest is that of agriculture workers, which squares with our 
intuition. For the drift, the standard deviation of the random worker effect is large relative to the 
systematic component. For the distance, the standard deviation relative to the intercept is much 
smaller. This implies that truncation implied by the minimum condition to avoid negative 
distances has a limited impact on the estimation results, see Section 3.1. 
 Since all explanatory variables are measured in deviation of their mean, the intercept can 

be interpreted as an ’average’ value for ∆. Loosely speaking, the estimated value of 6.6 for ∆ 
implies that the initial surplus job productivity over the outside option is equal to 6.6 times the 
standard deviation of a weekly shock, or equivalently, 0.9 times the standard deviation of a 

yearly shock (since √52 = 7.2). The peak in the hazard rate is somewhere between the job start 
and 29 weeks. The negative intercept of the drift provides strong evidence against a pure 
learning model, see the argument in Section 2.3. The size of the drift, -0.036, implies that, 
abstracting from the effect of random shocks, the initial surplus is dissipated in 6.6/0.036 = 183 
weeks = 3.5 years. The models of Aghion and Howitt (1992) or Caballero and Hammour (1994) 
allow an interesting interpretation of this negative drift. New technologies are embodied in the 
specific investments required for new jobs. The application of the latest technology therefore 
requires a switch to a newly created job. The negative drift could be interpreted as a depreciation 
rate indicating how fast a job is replaced by a new job with a new technology. It is tempting to 
interpret the effect of living in central city as evidence in favor of this explanation. Big cities, 
with their large and therefore highly specialized labor markets, probably allow a faster diffusion 
of new technologies than small communities. 
 Figure 3 and 4 plot the observed (solid lines) and predicted (dashed lines) sample job exit 
rates for the first three jobs of each worker (two thirds of all jobs in the sample) for the first year 
and for the whole 14-year period. The plots indicate a good overall prediction of the random 
growth model. Taking into account that (conditional on the explanatory variables) only two 
parameters are used to fit the distribution, this is strong evidence in favor of the random growth 
model. As discussed in Section 2.3, the pattern of exit rates of a zero-drift random growth model 

can only be generated by a pure learning model for extremely low values of δ. The learning 
model can never match the hazard rates of a random growth model with negative drift. Our 
finding of a negative drift is therefore evidence against pure learning model. However, the 
random growth model somewhat underpredicts the peak, as can be seen most clearly from figure 
3. Hence, a mix of both models might yield an even better description of the data. 
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 Table 4 presents the values for the level of specific investment I (in weeks) and the hiring 
and firing threshold BX and BT, calculated from equations (7) and (8). We use the estimated 

intercept values for ∆ and π, a value for ρ of 10 % per year, and a range of values of σ, from 
0.005 to 0.075 per week, or equivalently, 4-60 % per year. For this sample of young workers at 
the beginning of their career, the value of specific investments ranges from the wage equivalent 

of a couple of days to four weeks of work, depending on the value of σ. The hiring threshold 
exceeds the firing threshold by a range varying from 3 % to 100 %.   

 The value of σ can be established by the methodology outlined in Section 2.5, using the 

estimated dummies for the training programs as a proxy for d∆/dH. The dummies for the 
training programs are all positive and significant, suggesting that all categories of programs are 
at least partly job specific. Parent (1999) reports a similar result. However, the identification 
strategy outlined in Subsection 2.5 requires that a program is fully specific, since only then we 
can calculate the value of the additional specific investment that is embodied in the training 

program and relate that to the estimated effect on ∆. Parent (1999: 302) argues that seminars are 
the most fruitful candidate for this purpose. The estimations results suggest this intuition to be 

correct, since seminars have the lowest hours per course and nevertheless the largest effect on ∆. 
We focus therefore on this category in the subsequent argument.  
 There is one important caveat. The dummy for seminars might be a proxy for job 
heterogeneity. Though the inclusion of 30 occupational dummies offers a partial remedy for this 
problem, some unobserved job heterogeneity will persist. The standard deviation of the effect of 

unobserved worker characteristics on ∆ shows that the impact of unobserved heterogeneity 
might well be substantial: the difference between the occupation with the lowest and the highest 

∆ is about twice the standard deviation of these unobserved characteristics. We do not have a 
proper instrument to account for this endogeneity bias. The estimated coefficient is therefore 

likely to be an upperbound of d∆/dH. Using the median hours for a seminar, 24 hours or 0.6 

week, an estimated upper bound for d∆/dH is 6.19/0.6 = 10.3. Hence, an estimated lower bound 

for σ is 0.005 per week or 4 % per year. Topel and Ward (1992, Table VI) estimate the yearly 
standard deviation of innovations in wt to be 13% per year or 0.018 per week. When workers’ 

share in the surplus β is equal to 0.30 (see e.g. Holmlund and Zetterberg (1991), Abowd and 
Lemieux (1993)), this yields a standard deviation for pt of 0.018/0.30 = 0.06 per week or 43% 
per year.  
 Table 5 presents some calculations of the tenure profile in wages unconditional on the 
separation date of the employment relation. We applied the benchmark parameter estimates for 

∆, π, and ρ, and we set σ at its upperbound, to calculate the expected surplus σ∆t conditional on 

T>t and the implied tenure profile βσ(∆t-∆), using equation (8). The calculations show that there 
is a rapid increase in the first 5 years. Later on, the profile flattens. We get close to the tenure 
profile that are obtained from simple OLS regressions on cross-section CPS data (numbers taken 
from Teulings and Hartog (1998: 37): 12 percent after 4 years, 18 percent after 8 years. It is 
encouraging that this simple structure can explain the tenure profile in wages. 
 



 18

 

4 From Individual Matches to a Model of Firm Level Employment 
 

4.1 The General Model 
 
Hitherto, the literature on individual matches has not been well connected to that on firm level 
employment. An important advantage of the random growth model is that it can be easily 
embedded in Bentolila and Bertola’s (1990) model of the evolution of firm level employment 
when there is uncertainty about future labor demand. This requires only one additional 
assumption, which moreover has an interesting economic interpretation. In the model of 
Bentolila and Bertola (1990), a profit-maximizing firm faces a demand curve with constant 

elasticity η>1:  

qt = -η(pt 
* + zt) 

where qt and pt
*  are log output and log price respectively, and where the log market index zt is a 

Brownian with drift. Without loss of generality, productivity per worker is normalized to unity, 
so that output is equal to employment. Consider the case where firms make all specific 

investments and reap their full surplus (β = 0). In the model of Bentolila and Bertola, firms pay 
hiring and firing costs proportional to the number of workers they hire and fire respectively. 
Since our model does not have firing cost (though their introduction would be simple), we set 
firing cost to zero. The hiring costs per worker are identified as the specific investment I. 
 Bentolila and Bertola show that under these assumptions the firm hires workers when pt

* 
reaches an upper bound p+ > 0 and fires workers when pt

* reaches a lower bound p- < 0. Our 
claim is that the model of Bentolila and Bertola yields the same pattern of job durations of 
individual workers as the model in Section 2, if we supplement their model with a particular rule 
for the order in which workers are laid off. Firms have to fire the workers first that are hired last 
(Last-In-First-Out). A simple way to model this is to attribute to every worker a seniority index 
q, which is conveniently defined as the log employment level qt at the moment that the worker is 
hired. If the firm wants to fire workers it is obliged to fire the workers with the highest seniority 
index, which are by construction the workers which are hired last. Kuhn (1988) and Kuhn and 
Roberts (1989) offer a rationalization for this type of agreement, which will be discussed in 
Section 4.2. 
 The situation is depicted in the graph form in Figure 5. The horizontal lines at p+ and p- 
represent the hiring and firing thresholds. Suppose that at time s, employment is equal to q* and 
output prices are equal to p+. Hence, the firm is at its hiring threshold. A further upward shift in 
product demand due to an increase of zs will lead to an increase in employment. A downward 
shift will have no immediate effect on employment because the output price ends up between the 
hiring and firing threshold. Whatever, the future evolution of zt, worker q* will be fired at the 
first moment t, t>s, that zt= zs + p- - p+, that is, the first moment that the random walk has 
traveled down the distance p+ - p-. This is exactly the same process as described in Section 2. 

The distance p+ - p- is equivalent to σ∆ in Section 2. 
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 The analogy can even be extended to the nature of the optimization process itself. 
Consider the log marginal value product of the q-th worker conditional on the state of demand, 
zt, denoted mr(q,zt). This log marginal value can be calculated by considering the case that the 
firm does not hire any workers beyond the seniority index q. Then, log total revenue for all 

workers up to q would be equal to η-1/η  q + zt and hence the log marginal revenue of worker q 
equals:14 

mr(q,zt) = -1/η q + zt + ln(η-1/η).  

Since zt follows a random walk, the log marginal revenue also follows a random walk. When 
this log marginal revenue is set equal to pt, the optimal hiring and firing thresholds of the firm 
are exactly equal to those derived in Section 2. In fact, every worker is attributed her marginal 
product of labor as if no further workers were hired. The additional revenues that are collected 
by hiring extra workers are attributed to these extra workers. In this way, the hiring and firing 
decision of a worker indexed q can be decoupled from the hiring and firing decisions of workers 
with a higher or a lower seniority rank. As long as the rank-order of hiring and firing is 
preserved, the only relevant information for the hiring and firing decision of a particular worker 
is the marginal productivity given her seniority index (that is: ignoring the output of all workers 
with a higher seniority index). 
 When hiring and firing cost in the model of Bentolila and Bertola (1990) converges to 
zero the interval between the upper bound p+ and lower bound p- converges to zero, too. Then, 

pt
* is a constant and hence qt = -η zt. Log employment follows a random walk, which is known 

as Gibrat’s law. This law offers a quite accurate description for the evolution of firm size, 
provided that it is above a certain minimum threshold, see Jovanovic (1982) and the references 
cited there. The model for individual job durations set out in Section 2 is therefore closely 
related to this empirical law. This equivalence suggests a simple test of the relation between 
individual employment relations and the evolution of firm level employment predicted by this 
model. The evolution of log employment of the firm serve as explanatory variable for the 
separation process. The separation rates for individual matches should be negatively related to 
the evolution of the firm’s employment level. 
 

4.2 Hold Up and LIFO 
 
The LIFO lay-off rule provides a device for decoupling the hiring and separation decisions of 
different workers within the same company. This decoupling gets practical importance, as soon 

as workers pay for some share β of the specific investments I, 0 < β < 1. Workers are 

compensated for these investments by awarding them a share β of the surplus of log productivity 
above their outside option, mr(q,zt): 
 

                                                 
14 mr(q,zt)  is below the log market price at output level q by a constant term ln(η-1/η), since it takes account of the 
negative effect of hiring an additional worker on the price obtained for the output of the intramarginal workers. 
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w(q,zt)= β mr(q,zt) (12) 
 
where we use the linear Taylor expansion that is also applied in equation (4). Since mr(q,zt) 
plays the same role as pt, this set up relates the wage setting in this firm level model to the 
discussion on tenure profiles in Section 2.4. The expected discounted value of the tenure profile 
is equal to the worker’s share in specific investment. However, the actual return depends on the 
evolution of firm’s demand curve, that is, on future realizations of zt. The implication is that 
workers who differ by their degree of seniority q, but who are otherwise homogeneous, receive 
different wages. The problem with this set up is that senior worker’s wages are vulnerable to the 
firm highering new workers, since these are perfects substitutes for incumbents. The firm could 
negotiate a lower wage today to these new hires by promising them parts of the returns on 
specific investments that would otherwise go to incumbents. This threat of the firm introduces a 
hold-up problem. Workers invest less because they know that they will not be able to 
appropriate their full expected share in future surpluses. One possible strategy for incumbents is 
to oppose any further hiring, because this endangers their claims on the surplus. This is the 
extreme insider-outsider theory. The drawback of this strategy is that gains of trade remain 
unexploited. A more efficient solution therefore is to protect the claims of incumbents by a LIFO 
lay-off rule, which prevents the firm to replace expensive incumbents by cheap new hires. A 
LIFO lay-off rule can therefore be viewed as a device to deal with the hold-up problem in firms 
with otherwise homogeneous workers who bear part of the cost of specific investments and 
therefore share in subsequent surpluses.15 
 This model of wage setting has direct empirical implications. The firm sets employment qt 

as such that mr(qt,zt)=σ∆, or: 
 

qt  = η[zt + ln(η-1/η) - σ∆]. 
 

 Hence, exp[q-qt] = exp[ησ∆-ηmr(qt,zt)] is a rank index of the seniority of a worker q 
within the firm’s seniority hierarchy. The index takes value 0 for the most senior worker and 
value 1 for the least senior worker. It then follows immediately that wages are a function of this 
seniority rank index, compare equation (12). So, if this model is correct, the tenure variable 
showing up in a cross section log earnings regression is in fact a proxy for a tenure rank index. 
With proper data on this seniority index exp[q-qt], the prevalence of this index above tenure as 
an explanatory variable in a wage regression could be tested. 
 
 

                                                 
15 A similar argument can be found in Kuhn (1988), who considers a world where first workers set wages and then the firm sets 
employment. 
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5 Concluding Remark 
 
In this paper, we present evidence for the relevance of the random growth model of the job 
tenure distribution. The hump shaped pattern of separations rates predicted by the model fits the 
pattern observed empirically closely. In particular, where the learning model predicts separation 
rates to converge to zero, the random growth model generates the fat tail in separations observed 
empirically. The evidence on the impact of shocks suggest that separations are driven by the 
accumulated history of shocks running from the start of the job up till the moment of separation, 
contrary to what is predicted by search model, where only the last shock matters. The results 
provide therefore evidence in favor of the random growth model.  
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Appendix: Derivation of the Investment Equation 
 
The derivation follows Dixit and Pindyck (1993), Section 7.1. It starts from Bellman equations (6) in the text: 
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where: 
 
V ≡ V(Bt), 
J ≡ J(Bt), 
 
and where V’ and J’ are the first and V' and J' the second derivatives of V and J. We leave out the subscript t of 
B for the sake of convenience. These are two second order differential equations. A particular solution to the 
second equation is: 
 
ρ J = B/ρp – 1/ρ 

 

where for shorthand, .2/1 2σπσρρ −−=p The characteristic roots of the homogeneous part of both 

differential equations read: 
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For our application it is often more convenient to work with the parameter α = σβ. Hence: 
 

ρππα 22
2,1 +±−=  

 
The solution to the Bellman equations can now be written as: 
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The first term in both equations is the option values. The option value of a vacancy is increasing in B for a 
vacancy (the option increases in value when the prospect of filling becomes closer) and converges to zero for 
low values of B. The option value of a job is decreasing in B (separation becomes more realistic when 
productivity goes down) and converges to zero for high values of B. Hence, we apply the positive and negative 
root of β in both equations respectively. The value equivalence conditions (V = J for separation; V = J – I for 
hiring) and the smooth pasting conditions (V’ = J’, both for separation and hiring) read: 
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Usually this system is solved for A1, A2, BT, and BX. In our case, we want to have a solution for I, given our 
estimate of ∆. Since e∆ = [BX /BT]σ ≡ D, we use this relation to substitute for BT and solve the system for the 
remaining unknowns. This procedure yields the system of equation (7) in subsection 2.3. 
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Table 1 Means of selected variables 

Variable Mean 

% jobs observed to end 73.6 

tenure (in weeks) 100.3 

grade/10 1.28 

local unemployment rate (in %) 8.7 

experience at job start/100 (in weeks) 2.10 

unemployment spell prior to job start/100  (in weeks) .15 

spouse present .34 

central city .12 

goverment job .07 

union .14 

 
Table 2 Job training in 8,339 jobs  

type Observations Hours 
Known 

Median 
Hours 

Mean 
Hours 

Survives 
Job Exit 

 

on-job-training 

 159  115  107  400   12 

vocational/technical  112   64  144  782   23 

business college   23   18   35  149    5 

corres. course  405  328   44  171   14 

seminars  299  262   24   63    4 

other   91   75   80  313   15 

total 1,089  862   40  226   73 
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Table 3 ML estimates of (9)  

Parameter π t-value ∆ t-value 

intercept -.036 14.23  6.642 55.28 

grade/10  .039  5.54 -1.118  3.56 

unemployment (%)  .008  1.85 - 3.33  2.03 

experience/100  .010  7.69  .018  0.48 

prior unempl./100 -.015  3.81 -.491  3.93 

spouse present  .017  4.66  .229  1.63 

central city -.015  2.83  .136  0.69 

government job  .032  5.17 -.851  3.62 

union  .031  7.01 -.067  0.39 

dummies: 

on job training 

voc/technical 

business college 

corresponding course 

seminar 

other programs 

26 occupation dummies 

 

  - 

  - 

  - 

  - 

  - 

  - 

  no 

 

  - 

  - 

  - 

  - 

  - 

  - 

  - 

 

5.014 

4.726 

3.917 

4.925 

6.194 

2.985 

yes 

 

 7.69 

 8.63 

 2.72 

13.37 

13.63 

 4.54 

 - 

sdev. worker chars.  .045 16.10 1.897 34.13 
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Table 3 (cont’d) with occupational effects. Skilled craft workers are the reference group 
Occupation Distance |t-value| Nr. Jobs 
    
early jobs    
waiter  0.014  0.03     72 
unskilled craft -0.258 -0.99   300 
food, household  0.139  0.61   451 
nurse aid, maid  0.400  1.61   359 
communication 
worker 

 0.320  0.55     60 

agriculture worker -0.297 -1.25   334 
    
middle class jobs   5,174 
sales worker 0.584  2.47    513 
medium skilled craft   1,495 
guard, packer 0.388  0.97    142 
medical assistant 1.880  1.70      27 
low skilled craft 0.564  0.98 1,093 
restaurant manager        79 
secretary 0.708  0.76      30 
teacher 
nonsecondary 

1.549  2.83    105 

clerk  1.291  4.89    450 
skilled craft   1,335 
technician 1.151  2.67    162 
    
specialized jobs    
specialized craft 0.871  1.64    106 
protective services 1.908  2.14      53 
manager and related 1.249  3.41    241 
sales representative 2.226  3.33      92 
medical specialist, 
pilot 

1.453  1.19      25 

medical skilled 3.566  2.64      28 
manager n.e.c. 1.980  5.63    370 
computer operator 1.933  2.23      51 
public servant, 
scientist 

2.393  5.94    228 

leisure service 1.392  1.15      24 
specialist, lawyer 2.509  5.70    192 
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Table 4  Standard deviation of shocks, investment, 

(both in weeks), and separation tresholds 
π=-0.036, ∆ = 6.66 
σ I BT B dI/d∆ ∂∆/∂H 
0.005 0.235 0.985 1.018 0.106 9.649 
0.010 0.471 0.970 1.036 0.211 4.902 
0.015 0.707 0.956 1.055 0.318 3.320 
0.020 0.943 0.941 1.074 0.425 2.529 
0.025 1.181 0.927 1.093 0.532 2.056 
0.030 1.418 0.912 1.112 0.639 1.740 
0.035 1.656 0.898 1.132 0.747 1.515 
0.040 1.895 0.884 1.152 0.855 1.347 
0.045 2.134 0.871 1.172 0.964 1.216 
0.050 2.373 0.857 1.192 1.072 1.111 
0.055 2.612 0.843 1.212 1.181 1.026 
0.060 2.852 0.830 1.233 1.291 0.955 
0.065 3.092 0.817 1.254 1.400 0.896 
0.070 3.333 0.803 1.275 1.510 0.845 
0.075 3.573 0.790 1.297 1.620 0.801 

  
 

Table 5     Tenure profile for σ = 0.060, π = -0.036, ∆ = 
6.66 

years σ∆t 0.30 σ(∆t-∆) 
0 0.400   0.000 
1 month 0.388 - 0.002 
3 months 0.403   0.002 
1 1.022   0.188 
2 1.322   0.278 
3 1.523   0.338 
5 1.795   0.420 
10 2.175   0.534 
15 2.389   0.598 
20 2.531   0.641 
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Figure 1: The reflection principle 
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Figure 2: A comparison of the learning and random growth model (∆random growth = 4, ∆learning / δ  
= 3.8, δ = 0.01) 
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Figure 3: Weekly job exit percentage for the first year 

Figure 4: Monthly job exit percentage for the first fourteen years  

 
Figure 5: The relation between the individual and the firm level 
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