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Abstract

With panel data important issues can be resolved that can not be addressed with

cross{sectional data. A major drawback is that panel data su�er from more severe

missing data problems. Adding a sample consisting of new units randomly drawn from

the original population as replacements for units who have dropped out of the panel, a

so{called refreshment sample, can be helpful in mitigating the e�ects of attrition, both

by allowing for estimation of richer models and by making estimation of conventional

models more precise. In this paper we develop a family of models that incorporate

refreshment samples, and we demonstrate in an application to a Dutch data set on

travel behaviour that such models can lead to substantially di�erent results than models

that assume that the missing data process is ignorable or conventional econometric

models for panel data with attrition.
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1. Introduction

In economics and other �elds, researchers often wish to consider statistical models that

allow for more complex relationships than can be inferred using only cross-sectional data.

Panel, or longitudinal, data, in which the same units are observed repeatedly at di�erent

points in time, can often provide the richer data needed for such models (Chamberlain, 1984;

Hsiao, 1986; Baltagi, 1995). Although panel data allow researchers to identify more complex

models than cross-sectional data, missing data problems can be more severe in panels. In

particular, even units who respond in initial waves of the panel may drop out of the sample

in subsequent waves, so that the subsample with complete data for all waves of the panel can

be less representative of the population than the original sample (e.g., Hausman and Wise,

1979; Ridder, 1990; Verbeek and Nijman, 1992; Abowd, Crepon, Kramarz, and Trognon,

1995).

Sometimes, in the hope of mitigating the e�ects of attrition without losing the fundamen-

tal advantages of panel data over cross{sections, panel data sets are augmented by replacing

units who have dropped out with new units randomly sampled from the original population.

Following Ridder (1992), who used these replacement units to test some models for attrition,

we call such additional samples refreshment samples. In this paper we explore the bene�ts

of refreshment samples for inference in the presence of attrition. The two themes of the

paper are, �rst, that refreshment samples can improve inference under conventional models

by providing additional sample information, and second, that refreshment samples allow for

estimation of more general models of attrition without requiring auxiliary assumptions on

distributions of the response variables. Thus, refreshment samples are potentially a relatively

inexpensive way to improve the quality of longitudinal surveys.

In the following section we lay out the structure of the data and the inferential problem.

In Section 3 we describe two conventional models for attrition in panel data. The �rst model,

based on the missing at random assumption (MAR, Rubin, 1976; Little and Rubin, 1987),

allows the probability of attrition to depend on lagged but not on contemporaneous variables.
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This case is sometimes also referred to as selection on observables (Mo�tt, Fitzgerald, and

Gottschalk, 1997). The second model (denoted by HW in the remainder of the paper, given

its origin in a model developed by Hausman and Wise (1979)), allows the probability of

attrition to depend on contemporaneous, but not lagged, variables. It is also referred to

as selection on unobservables (Mo�tt, Fitzgerald, and Gottschalk, 1997) because attrition

partly depends on variables that are not observed if the unit drops out. In Sections 4 and

5 we present the main theoretical contributions. We develop a model for attrition that

includes the MAR and HW models as special cases. This Additive Nonignorable (AN)

model is identi�ed with no testable implications given the availability of a panel data set

and a refreshment sample. We �rst discuss in Section 4 the identi�cation issues in a simple

two{period context with a single binary variable in both periods, and generalize the model

to allow for multi{valued variables as well as time{invariant covariates in Section 5.

In Section 6 we apply the ideas presented in this paper to a panel data set on travel

behavior in the Netherlands, the Dutch Transportation Panel (DTP). This data set is based

on a survey of Dutch households concerning their use of various modes of transportation. For

a number of years households were asked to keep a detailed travel diary for an entire week

each year. For every trip taken by a household member detailed information was gathered

including destination, time, and mode of transportation. Attrition was severe, and because

the considerable e�ort required to respond to the survey was directly related to the value of

one of the variables (total number of trips taken by household members), it is plausible that

among those who responded in the �rst wave the willingness to cooperate in the second wave

depended on the value of these variables in either �rst or second period. Because MAR rules

out dependence on second period variables, and the HW model rules out dependence on �rst

period variables, this makes for a potentially interesting comparison of the performance of

the MAR and HW models. In this application we implement the models by imputing the

missing data according to the various missing data models, and compare the results both

in terms of estimates of the relation of the change in the number of trips to the change
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in income as well as in terms of estimates of the attrition process itself. Imputation has

the advantage over joint estimation of the model for attrition and the substantive model of

interest that it frees the researcher from having to adopt the estimation procedures to allow

for missing data. Given the complex nature of modern models for panel data (e.g., Honore,

1992; Kyriazidou, 1997), this can be a substantial bene�t.

2. The Sampling Framework

In this section we set up the general sampling framework and discuss the identi�cation

problem. In the �rst period we draw a random sample of size Np from a �xed population.

For each unit i, for i = 1; : : : ; Np, we observe an outcome variable Zi1. For a subset of

this sample we observe in the second period a second variable Zi2; the remaining units have

dropped out of the panel and all of their Zi2 are missing. We refer to the �rst subsample,

of size Ncp, as the \complete panel" subsample, the second subsample, of size Nip, as the

\incomplete panel" subsample, and the two combined as the \panel", with Np = Ncp +Nip.

In addition to the panel data set we draw in the second period a new random sample from the

original population, the \refreshment" subsample, of size Nr. For these units we observe Zi2

but not Zi1. Finally, for all N = Ncp +Nip +Nr units we observe a vector of time{invariant

covariates denoted by Xi.

We formalize the data{generating process as follows. Each unit in the population is

randomly assigned a three{valued indicator Ai. If assigned Ai = 2, unit i is designated to

be part of the panel and will be approached in both periods. If assigned Ai = 1, unit i is

designated to be part of the refreshment sample and will be approached only in the second

period. Finally, if assigned Ai = 0 the unit will not be approached at all. We assume that all

units respond the �rst time they are approached: if assigned Ai = 2, unit i will respond in

the �rst period and Zi1 and Xi will be recorded, and if assigned Ai = 1, unit i will respond

in the second period and Zi2 and Xi will be recorded. Not all units, however, respond the

second time they are approached. In particular, not all units assigned Ai = 2 will respond in
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the second period. Let Wi be an indicator denoting the willingness to respond repeatedly;

Wi = 1 implies that unit i, if approached in the second period after already having responded

in the �rst period, will respond, and Zi2 will be recorded, and Wi = 0 implies that unit i, if

approached in the second period after already having responded in the �rst period, will not

respond, and Zi2 will not be recorded. The willingness to respond Wi is observed if and only

if the researcher attempts to get a second response from unit i, that is we observe Wi only

if Ai = 2. We can use the design variable, Ai, and the willingness to respond, Wi, to de�ne

two missing data indicators Di1 and Di2. When Di1 = 1 we observe Zi1 and when Di1 = 0

we do not observe Zi1. Similarly, when Di2 = 1 we observe Zi2 and when Di2 = 0 we do not

observe Zi2:

Di1 = 1Ai=2; and Di2 = 1fAi = 1g+ 1fAi = 2g �Wi:

The two missing data indicators are always observed. Table 1 illustrates the missing data

pattern. Note that the missing data pattern is not monotone in the terminology of Little

and Rubin (1987); for some units Zi1 is missing but Zi2 is observed whereas for others Zi2

is missing but Zi1 is observed. The missing data pattern resembles that studied in the

literature on estimation of cell frequencies in contingency tables with known marginals (e.g.,

Little and Wu, 1991). The main di�erences are that we do now assume exact knowledge of

the marginal distributions, and we allow for continuous as well as multinomimal variables.

Table 1: Missing Data Pattern: Observed (�) or Missing ({), or Actual Values
(0, 1, or 2)

Missing Data Indicators Design Variable Individual Characteristics
Di1 Di2 Ai Wi Zi1 Zi2 Xi

0 0 0 { { { {
0 1 1 { { � �
1 1 2 1 � � �
1 0 2 0 � { �
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The design variable Ai is under control of the surveyor, and by assumption it satis�es

the following independence condition:1

Ai ? Wi; Zi1; Zi2; Xi: (1)

In the remainder of this section we make some comments on the sampling framework and

provide some motivation for the focus of the paper.

First consider the willingness to respond repeatedly Wi, or its complement, the attrition

indicator 1�Wi. It is interpreted as an individual characteristic. It has the unusual feature

that it cannot be directly measured. It can only be revealed by actions of the surveyor:

by approaching a person in the �rst period, that is by assigning unit i the value Ai = 2,

this willingness to respond gets revealed in the second period. It is also important to stress

again that there is no intrinsic interest in its distribution. The substantive interest is in the

joint distribution of (Zi1; Zi2; Xi), or possibly the conditional distribution of (Zi1; Zi2) given

Xi. The distribution of the willingness to respond is of concern solely because its properties

might a�ect our ability to recover the distributions of interest.

A second issue is that of conventional non{response problems. We assume throughout

the analysis that we always oberve Zi1 if we assign Ai = 2 to unit i, and similarly we always

observe Zi2 if we assign Ai = 1 to unit i. There might, however, be non{response of the

standard cross{section type present, where we know nothing about units other than that they

did not respond, or where we know some variables but not others for some units. Ridder

(1992) discusses these issues for the particular data set we use in this paper. We ignore such

issues here to focus on the speci�c panel{data problem of attrition of units who are initially

prepared to respond but choose not to do so in subsequent waves of the panel.

1In fact this independence condition is stronger than necessary. In practice we are primarily interested
in the conditional distribution of (Zi1; Zi2) given Xi rather than the joint distribution of (Zi1; Zi2; Xi), and
for features of this distribution it su�ces that

Ai ? Wi; Zi1; Zi2 j Xi;

combined with positive probabilities for all values of Ai conditional on Xi.
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A third issue is the focus on the speci�cation of the attrition probability

Pr(Wi = 1jZi1; Zi2; Xi):

To justify this focus, consider the identi�cation of the joint distribution of (Zi1; Zi2; Xi). By

de�nition,

f(Zi1; Zi2; Xi) =
f(Zi1; Zi2; XijWi = 1) � Pr(Wi = 1)

Pr(Wi = 1jZi1; Zi2; Xi)
: (2)

Because Ai ? Wi; Zi1; Zi2; Xi, the two factors in the numerator of the righthand side can

be rewritten as

f(Zi1; Zi2; XijWi = 1) = f(Zi1; Zi2; XijWi = 1; Ai = 2) = f(Zi1; Zi2; XijDi1 = 1; Di2 = 1);

and

Pr(Wi = 1) = Pr(Wi = 1jAi = 1) = Pr(Di2 = 1jDi1 = 1);

both of which can be estimated directly from the panel data set. Identi�cation of the attrition

probability Pr(Wi = 1jZi1; Zi2; Xi) therefore ensures identi�cation of the joint distribution

of (Zi1; Zi2; Xi).

A fourth comment concerns inference given a model for attrition. Given knowledge of

the conditional probability Pr(Wi = 1jZi1; Zi2; Xi) inference can proceed in di�erent ways.

One can use the inverse of this conditional probability to weight the complete panel, that is,

the observations with Ai = 2 and Wi = 1, and use weighted versions of the complete data

estimation techniques (e.g., Hansen, Hurwitz and Madow, 1966; Imbens and Hellerstein,

1994; Nevo, 1995). Alternatively one can use this conditional probability to impute the

missing values and use complete data estimation techniques on the imputed data sets (Rubin,

1987, 1996). See Brownstone and Valetta (1995) for a recent economic application. In the

application in Section 6 we use the second of these approaches. A major reason is that

the theoretical models we develop in Sections 4 and 5 are conveniently implemented using
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the Data Augmentation (DA) algorithm proposed by Tanner and Wong (1987), which as a

by{product generates imputed data sets that allow for standard complete data estimation.2

3. Models for Panel Data with Attrition

In this section we review two models that have been proposed in the literature to address

the problem of attrition in panel data. In terms of the notation de�ned in the previous

section, we only have the subsample with Ai = 2. In Section 4.1 we shall see that these models

employ assumptions that, although to some extent unavoidable in the context for which they

were designed, can substantially be relaxed in the presence of refreshment samples. In the

application in Section 6 we shall evaluate the appropriateness of these assumptions for the

particular data set analyzed.

3.1 Missing at Random (MAR)

The �rst model makes the assumption that Zi2 is missing at random (MAR) in the panel,

Wi ? Zi2

���� Zi1; Xi (MAR); (3)

implying that if all the parameters of the missing data process are distinct from those of the

data distribution, and the probability of Wi = 1 is greater than zero, then the missing data

process is ignorable (Rubin, 1976; Little and Rubin, 1987).

The special case arising when

Wi ? Zi1; Zi2; Xi (MCAR);

is referred to as missing completely at random (MCAR). In that case no bias results from

limiting the analysis to the complete panel with Di1 = Di2 = 1.

2The imputation approach is particularly convenient for our application because it simultaneously allows
us to deal with the fact that one of the variables, income, is only observed to lie in one of four intervals. This
creates complications even in the absence of attrition if we wish to regress the level of income on another
variable. Here we impute the level of income as part of the general imputation procedure.
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3.2 The Hausman{Wise (HW) model for Attrition

The second model for panel data with attrition we consider is a generalization of a

model developed by Hausman and Wise (1979), and is related to models developed for cross-

sectional surveys by Heckman (1979). Hausman and Wise allow the probability of attrition

in the second period to depend on the contemporaneous, that is second period, variables Zi2

but assume that the �rst period variables do not a�ect this probability:

Wi ? Zi1

���� Zi2; Xi (HW): (4)

The original formulation of the Hausman{Wise model (Hausman and Wise, 1991) also re-

stricts the joint distribution of Zi1 and Zi2 and assumes normality of some of the variables,

but these restrictions can partly be relaxed and do not concern us here. The appeal of these

models is that they can reect optimal behavior of the respondent whose e�ort in respond-

ing is related to the anticipated value of Zi2. An implication is that the distribution of Zi2

given (Zi1; Xi) for those with Wi = 0 di�ers in a systematic way from the distribution for

those with Wi = 1. Again the MCAR case is a special case of this attrition model. In a

conventional panel survey with no refreshment samples, neither MAR or HW are testable

without auxiliary assumptions.

4. A Simple Example with Binary Variables

In this section we assume that Zi1 and Zi2 are binary variables and suppress the condi-

tioning on time{invariant covariates Xi. Denote the conditional probability Pr(Zi2 = 1jZi1 =

z;Wi = w) by qzw, and the probability Pr(Zi1 = z;Wi = w) by rzw. In large samples we

can learn the value of rzw for z; w 2 f0; 1g because the subsample with Ai = 2 is a random

sample from the population, and for this subsample we always observe Zi1 and Wi. Simi-

larly we can learn in large samples the values of qz1 for z = 0; 1, because Ai ? (Wi; Zi1; Zi2)

implies that the subsample with Ai = 2, Wi = 1 and Zi1 = z is a random sample from the

subpopulation with Wi = 1 and Zi1 = z, and for this subsample we always observe Zi2. The
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data with Ai = 2, however, contain no information on qz0 because we never observe Zi2 if

Wi = 0 and Ai = 2.

The subsample with Ai = 1 allows us to deduce in large samples the marginal distribution

of Zi2. Since

Pr(Zi2 = 1) =
X
z;w

qzw � rzw;

knowledge of marginal distribution of Zi2 implies a single linear restriction on the two re-

maining parameters q10 and q00 in terms of the directly estimable parameters q01, q11 and r00,

r01, r10, and r11. The panel and refreshment sample combined do therefore not enable us to

estimate the values of q00 and q10 uniquely from the population distribution of the observed

data, although they do imply a linear restriction on these two parameters.

4.1 Testable Implications of the MAR and HW Models in the Presence of

Refreshment Samples

The MAR and HW models do not require the refreshment sample for estimation of q00

and q10. The independence assumptions (3) and (4) each imply two restrictions on the eight

parameters rzw and qzw that are su�cient for identication of q00 and q10. Speci�cally, MAR

implies

q00 = q01;

and

q10 = q11:

Under the HW assumption the relation is more complex, but it can be shown to imply

q00 =
r10 � r01 � (1� q01)� r11 � r00 � (1� q11)

r00 � r11 � q11 � (1� q01)=q01 � r11 � r00 � (1� q11)
;

and

q10 =
q00 � r00 � q11 � r11
q01 � r01 � r10

:
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Under either of these two models, therefore, we can estimate all eight parameters from

the panel alone. In each case these estimates imply a marginal distribution for Zi2. This

distribution can be compared to the distribution of Zi2 in the refreshment sample to test the

attrition model that generated it.

To illustrate these issues we use in this section a subset of the data set that will be

analysed in more detail in Section 5. We de�ne a binary variable indicating whether the

total number of trips for a household during the survey week was less than or equal to

twenty{�ve.

Tables 2 summarizes the sample information for this variable and Table 3 presents esti-

mates of the six parameters that are directly estimable from the panel data alone as well as

estimates for q00 and q10 under the MAR and HW assumptions.

Table 2: Summary Statistics Dutch Transportation Panel: Zit is indicator for
number of trips in the period t less than or equal to 25, and Wi is indicator
for willingness to respond in the second period.

Subsample Zi1 Zi2 Wi No of obs

Complete Panel 0 0 1 832
0 1 1 66
1 0 1 53
1 1 1 80

Incomplete Panel 0 { 0 518
1 { 0 215

Refreshment Sample { 0 { 520
{ 1 { 136

Assuming MAR, the panel subsample with Ai = 2 leads to the estimates q̂00 = q̂01 =

0:074, and q̂10 = q̂11 = 0:602, which in turn implies that the marginal probability of the

number of trips in the second period exceeding twenty{�ve is r̂00 � q̂00 + r̂01 � q̂01 + r̂10 �
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Table 3: Estimates based on the complete panel subsample

Directly Estimable Parameters Model{based Estimates
MAR HW

Wi = 0 Wi = 1 qz1 qz0 qz0

Zi1 = 0 r̂00 = 0:294 r̂01 = 0:509 q̂01 = 0:074 q̂00 = 0:074 q̂00 = 0:306

Zi1 = 1 r̂10 = 0:122 r̂11 = 0:075 q̂11 = 0:602 q̂10 = 0:602 q̂10 = 0:894

q̂10 + r̂11 � q̂11 = 0:178. This di�ers from the marginal probability of the number of trips

in the second period exceeding twenty{�ve implied by the refreshment sample, which is

136=(136+520) = 0:207. A likelihood ratio test, however, with a nominal X 2(1) distribution,

gives a test{statistic of 2.2, shows that this is not statistically signi�cant at conventional

levels.

Assuming HW and again ignoring sampling error, the two proportions that cannot di-

rectly be estimated from the data are

q̂00 =
r̂10 � r̂01 � (1� q̂01)� r̂11 � r̂00 � (1� q̂11)

r̂00 � r̂11 � q̂11 � (1� q̂01)=q̂01 � r̂11 � r̂00 � (1� q̂11)
= 0:306;

q̂10 =
q̂00 � r̂00 � q̂11 � r̂11
q̂01 � r̂01 � r̂10

= 0:894;

leading to an estimate for the marginal probability of the number of trips in the second period

being less than or equal to twenty{�ve of 0.282, substantially di�erent from the refreshment

sample estimate of 0.207. A likelihood ratio test gives 7.8, with a nominal X 2(1), statistically

signi�cant at at the 0.05 level.

4.2 The Additive Nonignorable (AN) Model

The above discussion demonstrates that MAR and HW models have testable implications

if refreshment samples are available, suggesting that more general models may be identi�ed.

We therefore proceed to develop a model that generalizes MAR and HW in a way that has
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no testable implications. Suppose we model, with no essential loss of generality3 given the

binary nature of Zi1 and Zi2, the probability of response as

Pr(Wi = 1jZi1 = z1; Zi2 = z2) = g(�0 + �1 � z1 + �2 � z2 + �3 � z1 � z2); (5)

for some known, increasing g(�) satisfying lima!�1 g(a) = 0, lima!1 g(a) = 1. With Zi1

and Zi2 binary this saturates the model, implying that the choice of g(�) is irrelevant, and

the model places essentially no restrictions on the data{generating process. Assuming MAR

(HW) in this context amounts to assuming �2 = �3 = 0 (�1 = �3 = 0), and in each case the

choice of g(�) is irrelevant.

Without restrictions on � the model in (5) is saturated. The discussion in the introduction

to Section 4 therefore implies that this model is not identi�ed, and we cannot estimate all

four parameters �1, �2, �3, and �4 consistently from a random sample of (Di1 � Zi1; Di2 �

Zi2; Di1; Di2) from the population. Figure 1 illustrates this issue in (q00; q10) space for the

data from Table 2. All values of (q00; q10) between zero and one are consistent with the

panel data. For a given g(�), every point (q00; q10), combined with the data in Table 2

corresponds to a unique set of values for (�0; �1; �2; �3) in (5). The \�" indicates the

MAR point (q00; q10) = (0:074; 0:602), where �2 = �3 = 0. The \+" indicates the HW

point (q00; q10) = (0:306; 0:894) where �1 = �3 = 0. Finally, the solid line indicates the set

of (q00; q10) that are consistent with Pr(Zi2 = 1) = 0:207 given the values of the directly

estimable parameters.

Figure 1 illustrates the main issues of the paper. The most general model, not restricting

the �'s, corresponds to the entire (q00; q10) space. Given point estimates of the directly es-

timable parameters, a model, speci�ed in terms of restrictions on the conditional probability

Pr(Wi = 1jZi1 = z1; Zi2 = z2), corresponds to a point or set of points in (q00; q10) space.

For example the MAR model that speci�es (Pr(Wi = 1j; Zi1 = z; Zi2 = 1) = Pr(Wi =

1jZi1 = z; Zi2 = 0), or, equivalently, �2 = �3 = 0 in (5), corresponds to the point marked

3Other than that we require the attrition probability to be strictly between zero and one.

12



by \�". Our approach can now be described as follows. We wish to develop models that

satisfy two conditions. First, the model should always be consistent with the data, which

in terms of this �gure means that the intersection of the set of (q00; q10) consistent with the

model and the set of points on the solid line (i.e., the set of points that corresponds to the

marginal distribution for Zi2 estimated from the refreshment sample) is nonempty for any

set of observed values of q̂zw and r̂zw. Second, the model should be identi�ed. That is, this

intersection should contain only a single point. The models imposing MAR or HW a priori

fail the �rst condition because they are not always consistent with the data, and the general

unrestricted model fails the second because it is not identi�ed.

The alternative family of models we suggest has the form

Pr(Wi = 1jZi1 = z1; Zi2 = z2) = g(�0 + �1 � z1 + �2 � z2); (6)

for unrestricted values of the unknown parameters �0, �1, and �2. This model rules out an

interaction term between Zi1 and Zi2, but allows for non{ignorable models by allowing �2 to

di�er from zero. To reect the additivity of the index in the g(�) function in �rst and second

period variables we refer to this as the additive non{ignorable (AN) model. Note that both

the MAR and HW models are special cases of this model.

In Figure 2 we illustrate, for the case of a logistic g(a) = exp(a)=(1 + exp(a)), the set

of points consistent with both the model and the directly estimable qzw and rz1 (the solid

curve). Note that there is a single point of intersection between this set and the set of points

consistent with the marginal distribution of Zi2 (solid line). Also note that the set of points

consistent with the model includes both the MAR and HW points. The latter is trivial

because the MAR (HW) point corresponds to �2 = 0 (�1 = 0) in the model. Both points

are true in general, irrespective of the choice of g(�) and the population distributions, as will

be shown in the following theorem.

Theorem 1 For any quadruple q01; q11 2 (0; 1), any quadruple rzw 2 (0; 1) with
P

zw rzw = 1,

and any continuous and increasing g(�) with lima!�1 g(a) = 0 and lima!1 g(a) = 1, there
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is a unique quintuple (�0; �1; �2; q̂00; q̂10) with q̂00; q̂10 2 (0; 1) such that the following �ve

conditions are satis�ed:

g(�0) = (1� q01)r01=((1� q01)r01 + (1� q̂00)r00); (7)

g(�0 + �1) = (1� q11)r11=((1� q11)r11 + (1� q̂10)r10); (8)

g(�0 + �2) = q01r01=(q01r01 + q̂00r00); (9)

g(�0 + �1 + �2) = q11r11=(q11r11 + q̂10r10); (10)

and

q̂00r00 + q̂10r10 + q01r01 + q11r11 = q00r00 + q10r10 + q01r01 + q11r11: (11)

Proof: See Appendix A.

An important implication of our approach is that the solutions q̂10 and q̂00 depend on the

choice of g(�) function. Every g(�) function corresponds in Figure 2 to a curve approaching

(0; 0), going through both the MAR and HW points, and approaching (1; 1). Nevertheless

the exact point of intersection with the set of points corresponding to the restriction from

the marginal distribution of Zi2 will in general depend on the choice of g(�). This di�ers

qualitatively from both the MAR and HW models where the functional form of the selection

probability is immaterial. For example, if the probability of attrition does not depend on

Zi2, g(�) cancels from the restrictions in equations (7)-(10).The question arises how sensitive

the results are to alternative choices of g(�). We therefore estimate the same model using a

normal distribution function, or g(a) = �(a) =
R a
�1(1=

q
(2�)) exp(�z2=2)dz. The dashed

curve in Figure 2 illustrates the resulting set of points consistent with the panel data and

the probit version of the AN model. It is clear that there is very little di�erence between the

logit and the probit model. This is not surprising given that both approach the points (0; 0)

and (1; 1), as well as go through the MAR and HW points. The di�erence between the two
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models around the intersection with the set of points consistent with the refreshment sample

is so small that in Figure 3 we enlarge the area in the rectangle around this intersection in

Figure 2.

4.3 Estimates in the Binary Case

Now let us return to the binary data example and consider estimation of the joint distri-

bution of (Zi1; Zi2) using the four di�erent models and di�erent combinations of data. For

ease of exposition we focus on a single feature of this distribution

Pr(Zi1 = 0; Zi2 = 1) = r00q00 + r01q01; (12)

The rows in Table 4 correspond to the di�erent models for attrition. The �rst row is based

on the MCAR assumption. The second row is based on the MAR assumption. The third

row presents estimates based on the HW model, and the next two rows are based on the AN

model, using the logistic and normal distribution function for g(�). The di�erent columns

correspond to di�erent data sets. The �rst column presents estimates based on the complete

panel data set alone (observations with Ai = 2 and Wi = 1). Only the MCAR model is

identi�ed in that case, so only estimates for this model are reported. The next column

presents estimates based on the panel data alone (all observations with Ai = 2). Now the

HW and MAR models are identi�ed as well, so estimates are reported for the �rst three

models. Finally, the last column reports estimates based on all observations. In this case all

models are identi�ed (MCAR, MAR, and HW are in fact overidenti�ed), and estimates are

reported for all �ve models, MCAR, MAR, HW, and the logit and probit versions of AN.

In the last row we also report nonparametric bounds on the probability of Pr(Zi1 =

0; Zi2 = 1), in the spirit of work by Manski (1995) and Horowitz and Manski (1997). These

bounds demonstrate the identifying power of the various parts of the data set. In the �rst

set of bounds on pr(Zi1 = 0; Zi2 = 1) = r00q00+ r01q01 we assume that we have knowledge of

the complete panel subsample and the frequency of attrition. This allows us to estimate r01

and q01. Nothing is known about q00 (other than that it is between zero and one) and r00 is
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only known to lie in the interval (0; r̂00 + r̂10) = (0; 0:416). In the second set of bounds we

add the incomplete panel subsample. This allows us to estimate r00 as 0.294 but still nothing

is known about q00. In the last set of bounds we add the refreshment sample. This narrows

down the interval for q00 from (0; 1) to (0:007; 0:422). In each case the bounds narrow with

the additional information.

Table 4: Maximum Likelihood Estimates of Pr(Zi1 = 0; Zi2 = 1)

Model g(�) Complete Panel Panel Panel and Refreshment Sample

(Ai = 2; Wi = 1) (Ai = 2) (Ai = 1; 2)

MCAR 0.051 0.079 0.070

MAR 0.079 0.075

HW 0.043 0.048

AN logit 0.073
AN probit 0.073

Bounds (0.038, 0.454) (0.038, 0.332) (0.040, 0.162)

An important feature of Table 4 is that whatever the model, MCAR, MAR, HW or AN,

the di�erences generally decrease in magnitude the more data are used. Consider for example

the di�erences between the HW and MAR estimates of Pr(Zi1 = 0; Zi2 = 1) based on panel

data alone: 0.043 and 0.079 respectively. The estimates are considerably closer when we

also use the refreshment sample: 0.048 and 0.075, and both are closer to the AN estimates

of 0.073. The exact di�erence between the probit and logit version of the AN model are

extremely small: 0.07341 for the logit version, and 0.07339 for the probit version. In the

binary case the estimates based on the MAR and HW models do not depend on the choice

of g(�).

16



5. Identification with Multi{valued and Time{invariant Variables

In this section we generalize the identi�cation result in Section 4.3 to allow for multi{

valued and time{invariant variables.

Theorem 2 Let f(z1; z2; x) be the joint probability function of (Zi1; Zi2; Xi), and let p(z1; z2; x)

be the conditional probability that Wi = 1 given (Zi1; Zi2; Xi), and let 0 < p(z1; z2; x) <

1 for all (z1; z2; x) in the support of (Zi1; Zi2; Xi). Let f(z1k; z2k)gKk=1 be the support of

(Zi1; Zi2). Finally, let g(�) be a continuous, increasing function with lima!�1 g(a) = 0,

and lima!1 g(a) = 1.

Then there is a unique set of functions f̂(z1; z2; x), k0(x), k1(z; x) and k2(z; x) such that

for some (z1; z2) in the support of (Zi1; Zi2):

(i), k1(z1; x) = 0, k2(z2; x) = 0,

(ii),
P

z2
f̂(z1; z2; x) =

P
z2
f(z1; z2; x),

(iii),
P

z1
f̂(z1; z2; x) =

P
z1
f(z1; z2; x),

(iv),

f̂(z1; z2; x) = f(z1; z2; x) �
g(k0(x) + k1(z1; x) + k2(z2; x))

p(z1; z2; x)
:

Proof: see Appendix A

The theorem implies that given any joint distribution of (Zi1; Zi2; Xi), and given any

attrition probability p(z1; z2; x), we can �nd a joint distribution of (Zi1; Zi2; Xi) with the

additive nonignorable attrition model that is \observationally equivalent". That is, take a

distribution f(z1; z2; x), and an attrition probability p(z1; z2; x). Then we can �nd another

distribution f̂(z1; z2; x) and another attrition probability function p̂(z1; z2; x) that leads to the

same directly estimable distributions. This means the implied joint distribution of (Zi1; Xi)

is the same:

X
z2

f̂(z1; z2; x) =
X
z2

f(z1; z2; x):
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In addition the joint distribution of (Zi2; Xi) is the same:

X
z1

f̂(z1; z2; x) =
X
z1

f(z1; z2; x):

Finally, the conditional distribution given Wi = 1 is the same:

f̂(z1; z2; x) � p̂(z1; z2; x)P
z1;z2;x

f̂(z1; z2; x) � p̂(z1; z2; x)
=

f(z1; z2; x) � p(z1; z2; x)P
z1;z2;x

f(z1; z2; x) � p(z1; z2; x)
:

At this point there are clearly many such distributions f̂(�) and attrition probabilities p̂(�),

including the distribution that generated the data. The theorem implies, however, that

we can �nd a solution that imposes a particular structure on p̂(�), namely that it can be

written as additive in z1 and z2: p̂(z1; z2; x) = g(k0(x) + k1(z1; x) + k2(z2; x)) for the given

choice of g(�). Because we can do this irrespective of the original distribution f(z1; z2; x)

and the attrition probability p(z1; z2; x), the theorem implies that the model has no testable

implications, unlike the MAR and HW models.

In addition the theorem implies that this solution is unique, or that the model is identi�ed.

Note that condition (i) is a normalization that is required because of the inclusion of

a constant in the additive nonignorable model. The fact that the functions k1 and k2 are

unrestricted, makes it impossible to identify the distribution function g(�). It is well-known

that any probability model for a binary dependent variable can be expressed as a logit by

choosing an appropriate functional form for the dependence on the explanatory variables.

The same is true in the AN model. Restricting these functions imposes restrictions on g(�).

6. Travel Behaviour in The Netherlands

We apply the models discussed in Sections 3 through 5 to a data set on travel behavior

in the Netherlands. First we describe the data. Then we specify a fully parametric model.

Given the parametric model we impute the missing data. Finally we repeatedly estimate the

substantive model on the complete data sets and average the estimates to get the reported

estimates.
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Although the identi�cation results in the previous section are nonparametric in the

sense that no distributional assumptions are made concerning the conditional distribution

of (Zi1; Zi2) given Xi, and no assumptions are made regarding the functional form of k0(x),

k1(x; z) and k2(x; z), we shall make make such assumptions here. The reason is that with a

�nite sample, estimates without such smoothing assumptions would be likely to have poor

sampling properties. Since we are only using the parametric model to impute missing val-

ues, and since the nonparametric identi�cation result of the previous section ensures that the

imputation is not being solely driven by the parametric form, we do not believe that much

is lost in practice. In a large enough sample the parametric restrictions could be tested by

classical methods, or nonparametric imputation could be carried out.

6.1 The Data

The DTP collected information regarding travel behavior for six years. The households

in the �rst wave were interviewed in March 1984, just before an increase in the price of

public transportation, and the last wave was interviewed in March 1989. Households were

approached twice a year, in the spring and in the fall. The spring waves involved face-to-face

interviews, and the fall waves were postal surveys. We use data from the spring waves of 84

and 85, and, except for this discussion of the data, we refer to these waves as the �rst and

second wave.4 Of the sample of 6128 households that were selected for the �rst wave, 2886

(47%) agreed to participate in the panel. In the sequel we ignore potential biases induced by

initial nonresponse. Of these households, 2185 were approached for an interview, and 1764

(81%) of these provided the required information. The main purpose of the survey was to

collect detailed information on household travel demand. Every household member over 11

years of age was asked to keep a travel diary, in which he/she reported all trips during a

particular week. A trip starts when a household member leaves the home, and it ends upon

4The households in the �rst wave were obtained by a strati�ed sample in 20 municipalities of varying
sizes. The municipalities were selected on the basis of the number of inhabitants and the availability of
di�erent types of public transportation. The sample was strati�ed by household type (combination of age of
head and household composition), and net household income.
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return. In the sequel we concentrate on the total number of trips made by all household

members in the survey week.

The DTP has been plagued by heavy attrition. Only 38% of the original sample partici-

pated in all seven waves of the panel. The attrition after the �rst wave was 41%. It is not

unusual that the attrition rate is the highest in the second wave of a panel study. However,

in the DTP the design of the second (fall) wave increased the attrition after the �rst wave.

In the fall wave of 1984, which was a postal survey, household members were asked to keep

a travel diary. A substantial fraction (21%) of the households did respond to this request

and were dropped from the panel. In later fall waves a travel diary was not asked for. If

we correct for this additional attrition, the attrition rate in wave 3 is about 20%, which is

about the same as the attrition observed after the �rst wave in the refreshment samples. In

the third (spring 85) wave a refreshment sample of 656 households was added to the panel

survey5

In this paper we only use the �rst two spring waves. Table 5 gives the some summary

statistics for the subsamples de�ned by the value of the design variable Ai, the willingness

to participate in the second period, Wi and by period. Included are the mean and standard

deviation of the number of trips, the fraction in each of the four income categories (less than

17,000 guilders, between 17,000 and 24,000 guilders, between 24,000 and 38,000 guilders,

and more than 38,000 guilders), and the fraction living in a central city. The �rst row gives

the summary statistics for the �rst wave for those individuals who stayed in the sample for

both waves. The second row gives the summary statistics for the �rst wave for individuals

who dropped out of the sample after the �rst wave. The third row gives t{statistics for the

di�erence in means between the two subsamples, corresponding to the MCAR null hypothesis

that the willingness to respond Wi is independent of the number of trips in both periods,

the indicators for the income categories and the city indicator.

The average number of trips in the periods 1 and 2, computed from the unbalanced

5Again we ignore the initial nonresponse in the refreshment sample.
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panel only, is 55.0 and 54.9, respectively, an indication that travel demand has not changed.

This is con�rmed by the refreshment sample, as Ridder (1992) shows that the decrease in

the refreshment sample average is due to di�erences in the sampling fractions in the strata.

However, in the balanced panel there is a (statistically signi�cant) decrease in the average

number of trips from 61.8 to 54.9. Moreover, the households that stay in the panel make on

average (signi�cantly) more trips than households that drop out after the �rst wave. Hence,

the probability of attrition is negatively correlated with the time average of the number of

trips and positively correlated with an increase after the �rst wave.

The fourth row gives the statistics for the individuals who stayed in the panel in both

periods, and the �fth row gives the results for the refreshment sample. For the last group

we do not know the value of Wi. The last row reports t{statistics for the di�erence in means

in the two subsamples. Here the implicit MCAR null hypothesis is that both the design

variable Ai and the willingness to respond Wi are independent of all the other variables

in the model. Both sets of t{statistics clearly demonstrate that the data are not missing

completely at random, and therefore that using only the complete panel with Di1 = Di2 = 1

may be very misleading. These tests do not reect on the adequacy of the MAR and HW

assumptions.

The two key variables, number of trips and income, are both characterized by a high

degree of persistence. The correlation between �rst and second period values of the number

of trips for the subsample who stays in the panel in both periods is 0.79. The fraction of

individuals in this subsample who stays in the same income category is 0.72.

6.2 The Model

We make the following modelling assumptions, using T1i and T2i to denote the number of

trips per household for the �rst and second period, Y1i and Y2i to denote household income

for the �rst and second period, and Ci to denote whether the household lives in a city.

Conditional on living in a city, the joint distribution of the logarithm of household income

in both periods and the logarithm of the number of trips in both periods (adding one for
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Table 5: Summary Statistics by Period

Period Ai Wi Sample Number Earn1 Earn2 Earn3 Earn4 City
Size of Trips � 17; 000 � 24; 000 � 38; 000

mean (s.d.) < 17; 000 < 24; 000 < 38; 000

1 0 1 1031 61.8 (34.9) 0.14 0.21 0.35 0.29 0.07
1 0 0 733 45.5 (33.2) 0.25 0.23 0.28 0.24 0.14

t{test for di�. of means 9.9 14.0 2.4 7.7 5.4 14.3

2 0 1 1031 54.9 (30.8) 0.11 0.20 0.38 0.30 0.07
2 1 { 656 51.8 (32.9) 0.15 0.25 0.35 0.25 0.27

t{test for di�. of means 1.9 6.9 5.6 2.6 5.1 25.1

each household to avoid problems with the less than one percent of the total number of

observations with zero trips in the survey week), is assumed to be multivariate normal:

0
BBB@

ln(T1i + 1)
lnY1i

ln(T2i + 1)
lnY2i

1
CCCA
������; �;�; Ci � N (�0 + �1 � Ci;�) :

We also assume that, conditional on �rst and second period income and number of trips, the

probability of attrition has a logistic form:

Pr(Wi = 1jT1i; Y1i; T2i; Y2i; Ci; �; �;�)

=
exp(�0 + �1 � ln(T1i + 1) + �2 � lnY1i + �3 � ln(T2i + 1) + �4 � lnY2i + �5 � Ci)

1 + exp(�0 + �1 � ln(T1i + 1) + �2 � lnY1i + �3 � ln(T2i + 1) + �4 � lnY2i + �5 � Ci)
:

To create imputed values for the missing data, as well as to obtain draws from the

posterior distribution of the parameters of the model, we use Markov Chain Monte Carlo

(MCMC) methods (Geman and Geman, 1984; Gelfand, Hills, Racine{Poon, and Smith, 1990;

Gelman and Rubin, 1992; Tanner, 1993) and in particular the DA algorithm developed by

Tanner and Wong (1987). Recent economic applications include Albert and Chib (1993),
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Lancaster (1995), Geweke and Keane (1997), and Chamberlain and Hirano (1997). The

speci�cs for the algorithm used here are discussed in Appendix B.

Given the imputed data sets we estimate the quantities of interest, e.g., regression coe�-

cients de�ned in terms of the complete data sets. The approximate variances of the estimates

of the regression coe�cients are obtained by adding the average complete data variance and

the variance of the estimates over the imputed data sets. See Rubin (1987) for details.

6.3 The Results

We estimate eight versions of the model. The versions di�er by the missing data model,

MCAR, MAR, HW or AN, and by the data set used, complete panel, panel or panel and

refreshment sample. Given a speci�c model for the missing data process we create a number

of imputed data sets. The primary interest here is in estimates of the regression coe�cients

in the regression of the change in log of the number of trips on the change in the log of

earnings:

ln(T2i + 1)� ln(T1i + 1) = �0 + �1 � (lnY2i � lnY1i) + "i:

We focus on the estimate of �1, the income elasticity of the number of trips.

For comparison the regression coe�cient on the �rst period logarithm of earnings in the

regression of the number of trips on the �rst period logarithm of number of trips using the

complete data subsample with Ai = 2, Wi = 1, using the MCAR model to impute the actual

level of earnings, is 0.63 with a standard error of 0.13.

Table 7 gives the posterior means and standard deviations for the parameters of the

probability of the willingness to respond.

6. Conclusion

Panel data sets can provide a much richer set of variables than cross{sections, but they

often are subject to more severe missing data problems. Adding a sample consisting of new

units randomly drawn from the original sample as replacements for units who have dropped
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Table 6: Estimates of Income Elasticity of Travel

Model Complete Panel Panel Panel and Refreshment Sample
est. s.e. est. s.e. est. s.e.

MCAR 0.130 (0.064) 0.139 (0.073) 0.136 (0.073)

MAR 0.135 (0.073) 0.139 (0.073)

HW 0.120 (0.070) 0.134 (0.066)

AN 0.213 (0.145)

out of the panel, a so{called refreshment sample, can be helpful in mitigating the e�ects

of attrition, both by allowing for estimation of richer models and by making estimation

of conventional models more precise. In this paper we have developed a family of models

to incorporate the presence of refreshment samples and demonstrate in an application to a

Dutch data set on travel behaviour that such models can lead to substantially di�erent results

than models assuming the missing data process is ignorable or conventional econometric

models for panel data with attrition.
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Table 7: Posterior Means and Standard Deviations of Parameters of Will-
ingness to Respond

model data ln(Ti1 + 1) ln(Yi1) ln(Ti2 + 1) ln(Yi2) Ci

mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

MAR panel 0.70 (0.08) 0.03 (0.11) 0 - 0 - -0.39 (0.14)
MAR all 0.70 (0.08) 0.04 (0.11) 0 - 0 - -0.39 (0.14)

HW panel 0 - 0 - 1.30 (0.16) -0.15 (0.21) -0.31 (0.16)
HW all 0 - 0 - 0.85 (0.14) 0.06 (0.18) -0.38 (0.15)

AN all 3.20 (0.37) 0.15 (0.59) -3.48 (0.50) 0.23 (0.79) -0.49 (0.19)

Appendix A: Proofs

Proof of Theorem 1

We can rewrite equations (7){(10) as

�0 = g�1
�
(1� q01)r01=((1� q01)r01 + (1� q̂00)r00)

�
; (13)

�0 + �1 = g�1
�
(1� q11)r11=((1� q11)r11 + (1� q̂10)r10)

�
; (14)

�0 + �2 = g�1
�
q01r01=(q01r01 + q̂00r00)

�
; (15)

�0 + �1 + �2 = g�1
�
q11r11=(q11r11 + q̂10r10)

�
: (16)

Eliminating �0, �1 and �2 leaves the restriction h(q̂00; q̂10) = 0 where

h(q10; q00) = g�1
�

q11r11
q11r11 + q10r10

�
+ g�1

�
(1� q01)r01

(1� q01)r01 + (1� q00)r00

�
(17)

�g�1
�

q01r01
q01r01 + q00r00

�
� g�1

�
(1� q11)r11

(1� q11)r11 + (1� q10)r10

�
:
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Because of continuity of h(�; �), and because h(�; �) is increasing in q00 and decreasing in q10,

this restriction de�nes an implicit function �q10(q00) with the following properties:

@�q10
@a

(a) > 0; lim
a#0

�q10(a) = 0; and lim
a"0

�q10(a) = 1:

Now consider the restriction (11). It de�nes a function

~q10(a) =
q00r00 + q10r10 � ar00

r10
;

with the properties

@~q10
@a

(a) < 0; ~q10(0) > 0; and ~q10(1) < 1:

Hence there is a unique value q̂00) solving

�q10(a) = ~q10(a);

and q̂10 = �q10(q̂00). 2.

The proof for Theorem 2 consists of three parts. First we prove two lemmas. The �rst

lemma states that the solution f̂(z1; z2; x) can be characterized as the solution to a di�erent

problem. The second lemma states that the solution to the second problem is unique. Then

we put these two results together. The discrete points of the support of the joint distribution

of (Zi1; Zi2) are organized in a sequence f(z1k; z2k)gKk=1. For a number of elements in this

sequence z1k = z1, or z2k = z2 for that matter.

Lemma 1 Let f(z1; z2) be the joint probability function of (Zi1; Zi2), let p(z1; z2) be the

conditional probability that Wi = 1 given (Zi1; Zi2), and let 0 < p(z1; z2) < 1 for all (z1; z2) in

the support of (Zi1; Zi2). Let g(�) be a continuous, increasing function with lima!�1 g(a) = 0,

and lima!1 g(a) = 1. Let f(z1k; z2k)g
K
k=1 be the support of (Zi1; Zi2), and let

q = Pr(Wi = 1) =
KX
k=1

f(z1k; z2k) � p(z1k; z2k);

�z1� = Pr(Zi1 = z1) =
X
z2

f(z1; z2);
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��z2 = Pr(Zi2 = z2) =
X
z1

f(z1; z2);

and

�kj1 = Pr(Zi1 = z1k; Zi2 = z2kjWi = 1) = f(z1k; z2k) � p(z1k; z2k)=q:

Then if there is a set of functions f̂(z1; z2), k1(z) and k2(z) and a constant k0 such that

for some (z1; z2) in the support of (Zi1; Zi2):

(i), k1(z1) = 0, k2(z2) = 0,

(ii),
P

z2
f̂(z1; z2) =

P
z2
f(z1; z2),

(iii),
P

z1
f̂(z1; z2) =

P
z1
f(z1; z2),

(iv),

f̂(z1; z2) = f(z1; z2) �
p(z1; z2)

g(k0 + k1(z1) + k2(z2))
;

then

pk = f̂(z1k; z2k)

satis�es the �rst order conditions for a solution to the constrained maximization problem

max
p1;:::;pK j�kj1�q<pk�1

KX
k=1

�kj1 � h(pk=�kj1); subject to
KX
k=1

pk � 1fz1k = z1g � �z1�; (18)

KX
k=1

pk � 1fz2k = z2g � ��z2; and
KX
k=1

pk = 1;

where,

h(a) =

(
�
R 2q
a g�1(q=s)ds q < a < 2qR a

2q g
�1(q=s)ds 2q � a;

)

and h(a) not de�ned for a � q.

Proof of Lemma 1:

The argument consists of showing that pk = f̂(z1k; z2k) solves the �rst order conditions for
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a solution to the maximization program, with the following Lagrange multipliers. For the

restriction

X
k

pk � 1fz1k = z1g � �z1�;

the Lagrange multiplier is �z1. The number of restrictions is equal to the number of points

of support of Zi1, K1, minus 1. The omitted value is denoted by z1. For the restriction

X
k

pk � 1fz2k = z2g � ��z2 ;

the Lagrange multiplier is z2 . The number of restrictions equals the number of points of

support of Zi2, K2, minus 1, with the omitted value denoted by z2. For the adding up

restriction the Lagrange multiplier is �.

The �rst order condition for pk is:

h0(pk=�kj1)� � �
X
z1

�z1 � 1fz1k = z1g �
X
z2

z2 � 1fz2k = z1g = 0:

By assumption the derivative of h0(�) is invertible, with the inverse equal to q=g(�), so that

the solution for pk is

pk = �kj1 � (h
0)�1

�
� +

X
z1

�z1 � 1fz1k = z1g+
X
z2

z2 � 1fz2k = z2g
�

= �kj1 �
q

g
�
� +

P
z1 �z1 � 1fz1k = z1g+

P
z2 z2 � 1fz2k = z2g

�

= �kj1 �
q

g(k0 + k1(z1k) + k2(z2k))
:

with k1, k2, and k0 de�ned as k1(z1k) =
P

z1
�z1 � 1fz1k = z1g, k2(z2k) =

P
z2
z2 � 1fz2k = z2g,

and k0 = �.

If we substitute this solution in the restrictions, we obtain a system of K1 + K2 � 1

equations in the same number of unknowns: k0 and the values of the functions k1, k2 on the

support of Zi1, Zi2, except z1, z2

�z1: �
KX
k=1

q�kj1
g(k0 + k1(z1) + k2(z2k))

1fz1k = z1g = 0
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�:z2 �
KX
k=1

q�kj1
g(k0 + k1(z1k) + k2(z2))

1fz2k = z2g = 0

1�
KX
k=1

q�kj1
g(k0 + k1(z1k) + k2(z2k))

= 0

Because 0 < p(z1; z2) < 1, the variables in this system are bounded. If we let k1(z1), k2(z2),

k0 increase, then the left-hand sides of the equations become nonnegative for a �nite value

of these variables, and irrespective of the values taken by the other (bounded) variables.

If we let these variables decrease, then the left-hand sides become nonpositive, again for a

�nite value and irrespective of the values taken by the other (bounded) variables. Because

the left-hand sides are continuous functions and there exists a bounded set such that these

functions are nonnegative and nonpositive on the boundaries, we can invoke a �xed point

theorem to show that the system of equations indeed has a (bounded) solution. Substitution

of this solution in the equation for pk gives the desired result. 2.

Lemma 2 Let fz1k; z2kgKk=1 be the support of a pair of discrete random variables with proba-

bility 0 < �k < 1 for k = 1; : : : ; K, and let p(z1; z2) be a function such that 0 < p(z1k; z2k) < 1

for all k = 1; : : : ; K with q =
P

k p(z1k; z2k) � �k. Let �z1� =
P

k �k � 1fz1k = z1g, and

��z2 =
P

k �k � 1fz2k = z2g. Furthermore, let �kj1 = �k � p(z1k; z2k)=q. Finally let h(�) be any

function de�ned on (q;1) such that the inverse of the derivative of h(�) is equal to q=g(a), for

some increasing and continuous function g(a) with lima!�1 g(a) = 0, and lima!1 g(a) = 1.

Then the optimization program

max
p1;:::;pK jq�kj1

< pk � 1
KX
i=1

�kj1 � h(pk=�kj1); subject to
X
j

pj � 1f�j = xg � �z1�; (19)

X
j

pj � 1fj = yg � ��z2; and
X

pk = 1;

for all z1 in the support of Zi1, and for all z2 in the support of Zi2, has a unique solution.
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Proof of Lemma 2:

First consider the function h(�). Its second derivative is negative. In addition, lima#q h
0(a) =

1, and lima!1 h0(a) = �1. Hence h(�) is bounded from above by some number �h.

Hence we are maximizing a concave function over a convex set. If the set over which

the function is maximized were compact, this would guarantee the existence of a unique

solution. However, the restriction pk > q�kj1 implies the set is not compact. There are two

possibilities. If the limit a # qh(a) = h > �1, we can extend the de�nition of h(�) and

maximize the function over a compact set. If the limit a # q diverges, we can restrict the set

of pk to those such that the objective function is greater than c� ", where c is the value at

pk = �kj1. This set will then be compact and the corresponding solution will be unique and

in the interior. 2

Proof of Theorem 2:

For a given value for x, we can apply Lemma's 1 and 2 to prove the existence and

uniqueness of f̂(z1; z2; x), k0(x), k1(z1; x) and k2(z2; x). 2.

Appendix B: MCMC Algorithms

Although the speci�c details of the MCMC simulations discussed below depend on the

particular models used for the conditional distribution of (T1i; Y1i; T2i; Y2i) given Ci, and the

conditional probability Pr(Wi = 1jT1i; Y1i; T2i; Y2i; Ci), for most conventional models MCMC

methods will be easy to implement. In our implementation, the chains consist of six steps,

the �rst four dealing with imputing the missing data given current parameter values, and

the last two drawing from the posterior distributions of the parameters given imputed and

observed data.

First, given initial values of the parameters, we impute the missing values for T2i and

Y2i for units with Ai = 0 and Wi = 0, conditioning on T1i, Y1i, Ci and Wi = 0. We

implement this by drawing from the conditional distribution of ln(T2i + 1) and lnY2i given

T1i, Y1i and Ci, which is bivariate normal, and rejecting draws with probability equal to
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Pr(Wi = 1jT1i; Y1i; T
imputed
2i ; Y imputed

2i ; Ci).

Second, we imputed values for T1i and Y1i for units with Ai = 1. The conditional

distribution of ln(T1i+1) and lnY1i given T2i, Y2i, Ci and the parameters is bivariate normal

and straightforward to draw from.

In third step we draw, for units with Ai = 1, given parameters, T2i, Y2i, Ci and given the

previously imputed values T imputed
1i and Y imputed

1i , the attrition indicator Wi using a binomial

distribution.

In the fourth step we impute earnings Y1i for units with Di1 = 1 and Y2i for units

with Di2 = 1 given the observed indicators for the four ranges, the observed or imputed

willingness to respond Wi, the other variables and the parameters. Two methods were

used to impute the continuous earnings variable. In one method unrestricted normally

distributed random variables are drawn without conditioning on the observed range or on

Wi. These draws are then rejected if they are outside the appropriate range, and also

rejected with a probability depending on the value of Wi. This simple method can be

computationally very burdensome and lead to many rejected draws. A second method was

therefore used if the �rst one did not lead to an acceptable draw with 30 attempts. In

the second method a piecewise linear approximation to the normal distribution inside the

appropriate range was used with the draws rejected at an appropriate rate to generate draws

from the appropriate truncated normal distribution, whose draws were then rejected with

some probability depending on the value of Wi. See Gelman, Carlin, Rubin, Stern (1995)

who call this method \trapezoidal approximation followed by rejection sampling", Ripley

(1987), and Hammersley and Handscomb, (1964).

In the �fth step we draw from the posterior distribution of � and � given observed

and imputed data. Given standard prior distributions these posterior distributions are

straightforward to draw from. We use an improper, at, prior distribution on all elements

of � = (�00; �
0
1)
0 and an improper prior distribution on � proportional to j�j�2.

Finally, in the sixth step, we draw from the posterior distribution of � given observed
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and imputed data, using the Metropolis{Hastings algorithm (Metropolis, Rosenbluth, Rosen-

bluth, Teller and Teller, 1953; Hastings, 1970). We assume prior independence of the com-

ponents of �, using normal prior distributions centered around zero with standard deviations

equal to the square root of the average square of the corresponding variables. This leads to

a prior standard deviation for �1 of 1, for �2 of 4, for �3 of 3, for �4 of 4, for �5 of 3, and

for �6 of 0.3.

We �rst ran one long chain, and used this to draw overdispersed starting values for a

number of independent chains. We then used the Gelman{Rubin (1992) criteria to moni-

tor convergence of the chains. The �rst long chain used zero starting values for the slope

coe�cients because maximum likelihood estimates are di�cult to obtain.
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