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Abstract

This paper describes a search model with a continuum of worker and job types,
free entry, and transferable utility. We apply a second order Taylor expansion to
characterize the equilibrium, derive the "cost of search" and show that it is decreas-
ing in the substitutability of worker types. This cost of search is then decomposed
into three components: unemployment, vacancy costs and mismatch. Our contact
technology rules out congestion effects between different worker types and there-
fore exhibits increasing returns to scale. One third of those increasing returns in
contacts are shown to be absorbed by firms and workers being more choosy. The
resulting equilibrium is not efficient. Unemployment benefits can reduce the loss
by serving as a search subsidy. Numerical simulations of the model show that our
Taylor expansions are quite accurate.
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1 Introduction

Two related strands have coexisted in the theoretical labor literature with relatively little

interaction. On the one hand, there are the search and matching models, e.g. Diamond

(1982a), Mortensen (1982), and Pissarides (2000). On the other hand, there is a literature

that studies the problem of assigning heterogeneous workers to heterogeneous jobs, see for

example Tinbergen (1956), Rosen (1974), Sattinger (1975), and Teulings (1995). Since

heterogeneity of demand and supply is one of the main reasons for search, the integration

of both strands is a natural way to go.

Recently, there have been some attempts to construct search models with ex ante

heterogeneous agents and transferable utility, see e.g. Sattinger (1995), Marimon and

Zilibotti (1999) and Shimer and Smith (2000, 2001a). However, the equilibrium of the

latter can only be characterized by numerical simulation1 while the first two papers achieve

an analytical solution by making very specific assumptions. This state of affairs makes

this literature rather esotheric, with limited applicability to empirical and policy analyses.

The present paper offers a methodology to measure the distortions in models with two

sided heterogeneity and search frictions in a similar way as Harberger triangles quantify

price distortions. Irrespective of the underlying shapes of the demand and supply curves,

Harberger triangles provide second-order approximations to these losses. Similarly, we

apply a Taylor expansion that yields rules of thumb for the size of search frictions that

apply independently of functional forms. In both approaches, the elasticities of demand

for various worker types play a crucial role in the calculation of these effects: the smaller

the substitutability between workers types, the larger the cost of suboptimal assignment.

For the search part of the paper, Pissarides (1990) and Shimer and Smith (2000)

are our benchmark. Like in Pissarides, utility is transferable, wages are set by Nash

bargaining and a free entry condition determines the supply of vacancies. As in Shimer

and Smith (2000) we have ex ante heterogeneous workers, and make a distinction between

the mechanical contact process and the endogenous matching decision where a contact

results in a match if the value of the match exceeds the sum of outside options, i.e.

continued search.
1This can not easily be solved by applying particular functional forms because of the corner problem,

see section 3.1. Marimon and Zilibotti (1999) avoid this problem by assuming that workers and jobs type
lie on the same circle.
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For the assignment problem, we apply the continuous-type comparative advantage

framework of Teulings (1995, 2002). In this structure, worker types are characterized

by a single index, referred to as the skill level. Likewise, jobs are characterized by their

complexity level. Both indices are continuous. Better skilled workers have a comparative

advantage in more complex jobs. The comparative advantage structure provides a com-

pletely natural reason for search because each worker type has its own ”best” job type,

where her comparative advantages are best utilized. In contrast, models with universally

”good” jobs would not survive a free entry condition for vacancies because only ”good”

jobs would be created and other jobs would disappear.2

Compared to the complexity of search models, the Walrasian assignment model is

simple. First order conditions, reflecting the point of tangency between cost and revenue

functions, provide a solid structure to the market equilibrium. The first small step the

researcher sets outside this Walrasian Utopia brings him into deep trouble. When there

are search frictions, equilibrium is no longer reflected by this point of tangency. The cost

function falls below the revenue function, and the value of search is now equal to the area

enveloped by both functions. Instead of a single condition on the first derivatives of these

functions, the evaluation of the integral requires all higher order derivatives to be taken

into account now.

This interpretation alludes to a straightforward idea. Perhaps we can gain insight in a

world with search frictions if we would add only the second order term to the Walrasian

equilibrium. It is this idea that is investigated in the present paper. Our approach is

not just a mathematical device. It has a number of important economic implications.

First, taking the limit to the most efficient search technology eliminates higher order

effects and makes the model converge to the Walrasian equilibrium. Second, elasticities

of substitution are governed by the second derivative of cost functions. The same second

derivative governs our second order Taylor expansion. Intuitively, the less easily firms

can substitute between worker types, the more important will be a precise assignment

of workers to jobs. Therefore, for a given contact technology, it takes more time to find

a suitable partner when factors of production are less substitutable. Our analysis based

on Taylor expansions provides a formal characterization of the relationship between the

2A typical example of this type of model is Shimer and Smith’s (2001a) analysis of the constrained
efficiency of a decentralized search process. In their analysis, bad types can expropriate good types since
they have a comparative advantage in search. This expropriation causes the inefficiency.
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degree of substitutability of worker types and the size of search frictions.

An important difference between our model and that of Shimer and Smith (2000)

is that we include commodity markets for the output of each job type. When jobs are

heterogeneous, so is their output, and hence prices differ over the output of each job type.

When we assume these outputs to be perfect substitutes in consumption (or any other

application), then output is effectively homogeneous. However, we show that, strictly

speaking, our Taylor expansions do not apply in that case because then the equilibrium

vacancy distribution is degenerate. Vacancies are opened in a small number of job types

only. Under imperfect substitution, changes in commodity prices will offset this tendency

of vacancies to cluster at particular values of the complexity index. Some imperfection in

the substitutability of the output of various job types is therefore crucial for the existence

of a well behaved, continuous equilibrium.

We are able to derive a simple, intuitive characterization of the cost of search for a

particular worker type, defined as the surplus of value added in the optimal assignment

relative to the reservation wage of that worker type. This cost of search depends on the

scale of the market, the replacement rate, the cost of vacancies, and on the elasticity

of substitution between worker types. Quite remarkably, the elasticity of the cost of

search with respect to those factors does not depend on a specific functional form of

the production function. It is fully determined by the order of the first non-vanishing

terms in the Taylor expansions of the three crucial equations of the model. Interestingly,

the implied elasticity of one minus the replacement rate is roughly consistent with the

empirical evidence of Meyer (1990). We also show that the unemployment and vacancy

rates are linearly related to the cost of search. Finally, we decompose the cost of search

into three components: the cost of unemployment, the cost of maintaining vacancies and

the productivity loss due to sub-optimal assignment. When search surpluses are shared

equally between workers and firms (the bargaining power of the workers being 1/2), each

of the three components accounts for one third of the cost. Again, the one third due

to sub-optimal assignment follows immediately from a second order Taylor expansion of

log value added in various job types. These results demonstrate the value of our Taylor

expansion methodology.

A potential risk in our approach is that the ignored higher order terms are so large

that we do not learn anything from the first non-vanishing terms. Therefore, we confront
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our approximations with the numerical solution of the model. Our approximations do

surprisingly well for search frictions that generate reasonable values of unemployment.

We expect that these relations provide a useful starting point for empirical research

and policy analysis, some of which we do in follow up papers. In terms of the empirical

implications, the magnitude of the cost of search can be estimated from simple cross

section data on wages by comparing dense areas like cities with non dense areas. By

viewing cities as large scale areas that specialize in search intensive activities, the model

offers an explanation for why people cluster in cities, despite the higher cost of living

(Teulings and Gautier, 2002). A related prediction is that search frictions are larger in

the tails of the skill distribution. Another implication of the model is that in a world with

frictions, wages are concave in worker skill and job complexity. In Gautier and Teulings

(2002), we explore this idea to derive the cost of frictions by including higher order terms

of worker and job characteristics in a standard wage equation.

The paper is organized as follows. Section 2 presents the model. We start with the

characterization of the equilibrium of the assignment of workers to jobs in the Walrasian

benchmark. This benchmark will be the starting point of our Taylor expansions in Section

3. Next we introduce search frictions. Section 3 starts with some groundwork, needed for

the characterization of the search equilibrium. We proof existence and differentiability.

The latter is necessary for the application of Taylor expansions. Then, we discuss the use

of second order Taylor expansions to evaluate the integrals over the matching sets. Finally,

we discuss the applied matching technology in somewhat greater detail. Our technology

implies increasing returns to scale while most research points in the direction of constant

returns. We offer some arguments why constant returns are theoretically problematic in

a random search environment and how our assumption can be squared with the empirical

evidence. Section 4 applies the results of section 3 to analyze efficiency and optimal

unemployment insurance issues and makes a precise decomposition of the cost of search.

In Section 5, we confront our Taylor expansions with numerical solutions of the model.

The simulations are specified such that we can closely track empirical estimates of all key

parameters. Our approximations of the equilibrium are precise for realistic values of the

unemployment rate. Finally, Section 6 concludes.
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2 Structure of the economy

2.1 Assignment in the Walrasian benchmark

The most natural point to apply a Taylor expansion of a search equilibrium is the Wal-

rasian equilibrium. We therefore start with a discussion of this Walrasian benchmark.

Since most concepts carry over to the model with frictions, this discussion makes this

model easier to understand. The discussion is limited to the essentials, see Teulings

(1995, 2002) for details.

Workers and jobs are characterized by a single index, referred to as the skill level s

and the job-complexity level c respectively. Both indices vary continuously, so that there

exists an infinitum of worker and job types:

s ∈ [s−, s+]

c ∈ [c−, c+], c− > 0

In the Walrasian benchmark, firms can open jobs of a particular c-type at zero cost. There

is free entry of firms, which drives profits down to zero. Apart from this, there are no

other factors of production in the economy. Workers supply a fixed amount of labor and

receive no utility of leisure. Their utility depends only on the consumption of a single

composite commodity (to be discussed below). Let F (s, c) be the productivity of worker

type s in job type c. We make four assumptions on F (s, c) :

1. F (s, c) is twice differentiable;

2. Fs(s, c) > 0: absolute advantage of better skilled workers in any job type c;

3. F (s, c) is log supermodular: better skilled workers have a comparative advantage in

more complex jobs. Log supermodularity is a necessary condition for comparative

advance;3

3Consider the case of supermodularity instead of log supermodularity F (s, c) = sc. The profit of a
firm of type c is then equal to P (c) cs−R (s), where R (s) is the reservation wage of a type s worker. In
a Walrasian world, actual wages are equal to reservation wages. Firms choose the c-type that maximizes
P (c) c. There are two cases to consider, either, P (c) c has a maximum or not. In the first case, firms
open vacancies of that c-type only and other c-type commodities are not produced in equilibrium. Hence,
there is no assignment problem. In the second case, all job types are equally profitable: P (c) c = A
(some constant independent of c). Then, the value of c is irrelevant for the firm. Firms’ profits are equal
to As−R(s). Hence, the profit function does not depend on c and the assignment of worker types to job
types is irrelevant. This result breaks down by imposing log supermodularity.
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4. logF (s, c) is multiplicatively separable in s and c.

The first three assumptions are crucial for our results but the last one is added just

for convenience. It does not drive the main conclusions of our analysis, but allows for a

more transparent presentation. The following functional form is the simplest one that is

consistent with those assumptions:

f(s, c) ≡ sc (1)

(throughout the paper, lower cases denote the log of the corresponding upper cases).

Since we have not yet defined the units of measurement of s and c, this specification

encompasses any function that is multiplicatively separable in s and c.4

The output of a c-type job is traded at commodity markets with commodity prices

P (c), which are determined endogenously. The equilibrium assignment s (c) maximizes

the firms profits on a job of type c. Applying the zero profit condition: P (c) es(c)c −
R [s (c)] = 0, the first order condition for the optimal assignment can be written as:

r0 [s(c)] = c > c− > 0 (2)

r” (s) > 0

r00[s(c)]s0(c) = 1

The first line establishes formally that wages are an increasing function of s. It has a

simple interpretation: r0 (s) measures the relative ”price” of an additional unit of the skill

index; c measures the relative productivity gain of an additional unit of the skill index in

a job of type c. In equilibrium, both are equal. The second order condition (line 2) tells

us that the (log) cost of hiring a worker with an additional unit of skill is increasing while

the log returns are constant. The first line of (2) applies identically for all c. Hence, its

first derivative must also apply (line 3). In combination with the second order condition,

it follows that s0(c) > 0. This is what one would expect under comparative advantage:

better skilled workers end up in more complex jobs.

4Alternatively, suppose f (s, c) = s̄ (s) c̄ (c), where s̄ (.) and c̄ (.) are differentiable and strictly increas-
ing. Then, we can just as well use f̄ (s̄, c̄) = s̄c̄. Some commentators suggested that this specification
implies increasing returns to scale. However, s and c are just indices that can be transformed at will and
do not allow a scale interpretation. E.g. nothing would be changed by specifiying f (s, c) =

√
sc. Note

that the restriction c− > 0 guarantees that Fs (s, c) > 0, as has been previously assumed.
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Since the zero profit condition also applies identically for all c, its first derivative must

also apply. Hence (the effect via s(c) drops out by the envelope theorem):

−p0(c) = s(c) (3)

−p00(c) = s0(c) = 1/r00[s(c) > 0]

Hence p00 (c) < 0. Since s (c) is strictly increasing, it has a well defined inverse function,

denoted c (s). Just as s(c) is the profit maximizing s type for a c type job, c(s) is the wage

maximizing c type for an s type worker. The equilibrium assignment of worker to job types

in the Walrasian equilibrium can therefore be expressed as a one-to-one correspondence

between s and c.5

The c-type commodities are combined into the composite consumption good by a CES

technology (with the standard Cobb Douglas extension for the special case η = 1):

exp

·
η − 1
η

yo
¸
=

Z c+

c−
exp

·
η + 1

η
q(c) +

η − 1
η

y(c)

¸
dc (4)

where yo denotes log aggregate output of the composite consumption good, η ∈ [0,∞]
is the elasticity of substitution and q(c) is a twice differentiable function of weights of each

type c in consumption with q” (c) < 0, q0(c−) = −s−, q0(c+) = −s+, R c+
c− exp

£
(η + 1) q (c)

¤
=

1 (exogenous functions will be underlined throughout the paper). We take the price of the

consumption good as the numeraire. From (4) we can derive the demand for commodity

type c:

y(c)− yo − q(c) = −η[p(c)− q(c)] (5)

Two cases deserve special attention. In the case of perfect substitution (η = ∞), prices
are effectively exogenous since p(c) = q(c). The assumption q” (c) < 0 is consistent with

the result that p” (c) < 0 for all commodities to be produced. Since p0 (c) = −s (c), the
assumptions q0(c−) = −s−, q0(c+) = −s+ imply that all commodity types are produced
and that there is a c (s) for each s. In the case of a Leontieff technology (η = 0), the

distribution of output per job type is exogenous y(c)− yo = q(c).

5Contrary to for example Shimer and Smith (2001a), there is no such thing as a universally ”good” or
”bad” job in this model. For each worker type s there exists one perfect match c(s) that maximizes the
joint surplus of the worker and the firm by making optimal use of her comparative advantages. Any other
assignment, whether it is to a more or to a less complex job, would yield a lower value added P (c) esc.
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Finally, let L be the size of the labor force and let l (s) be the density function of s;

l (s) is twice differentiable. Then, equilibrium on commodity markets requires:

y (c)− yo = lnL+ ln l [s (c)] + s (c) c+ ln s0 (c) (6)

The left hand side measures product demand for type c, the right hand side measures

product supply, both in logs. The latter is equal to total supply plus the log density of

s(c) plus log productivity of type s(c) in job type c plus the log Jacobian ln ds/dc = ln s0(c).

The differentiability of the distribution of labor supply, l (s), and commodity demand,

q (c), guarantees that s (c) is differentiable. We can now define the Walrasian equilibrium:

Definition The Walrasian equilibrium is defined as a quintet

{r (s) , p (c) , s (c) , y (c) , yo} that solves the equations (2)-(6) and the boundary conditions
s (c−) = s− and s (c+) = s+.

A crucial variable for our second order Taylor expansions is the second derivative of

the reservation wage function. Since r00 [s(c)] = 1/s0(c), or equivalently r00 [s] = c0 (s), it

is a measure for job heterogeneity. The higher r00(s), the more variation there exists in

job complexity per unit of s. Hence, r00(s) is the main determinant of the elasticities of

substitution and complementarity between skill types (Teulings, 2002). The higher r00(s)

is, the more heterogeneous jobs are and the less easily substitutable workers are. Basically,

when r00(s) is high, a worker’s productivity at his second best job drops relatively sharply

compared to his first best job.

The empirical implications of the model are invariant to a linear transformation of s,

since we have not yet defined the units of measurement of c. Any linear transformation

of s can be absorbed by an opposite transformation of c and a redefinition of commodity

prices p(c). Since r00 (s) is affected by a linear transformation of s, it is unsuitable as

a summary statistic for the degree of substitutability of worker types. Teulings (2002)

therefore introduces the complexity dispersion parameter : γ (s) ≡ r00(s)/r0(s)2. As can be

checked easily, this parameter is invariant to a linear transformation of s.6 It will also

show up in the expression for the magnitude of search frictions.

6Consider the linear transformation s+ = σ0 + σ1s. For the calculation of γ (s+) =

r” [s+ (s)] /r0 [s+ (s)]2, the parameter σ0 drops out by differentiation and the parameter σ1 cancels in
the numerator and denominator.
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2.2 Adding search frictions

Search frictions force workers and firms to be less choosy than in a Walrasian world

because it may take a long time span of non-production till the optimal matching partner

is found. The matching set of worker type s is no longer a single point c (s), but will be

a larger subset of the domain of c, and mutatis mutandis the same for a firm of type c.

As a consequence, some workers will be unemployed and some firms will have vacancies.

All other assumptions are maintained. In particular, the commodity market does not

exhibit search frictions. First, we introduce some additional notation. Let h(s) denote the

density of unemployed workers of type s per unit of labor supply L. Hence, u (s) ≡ h(s)
l(s)

is the unemployment rate for workers of type s and the aggregate unemployment rate

satisfies u ≡ R s+
s− h(s)ds. We denote the density of vacancies of type c per unit of labor

supply by g(c). The total number of vacancies per unit of labor supply follows then from

v ≡ R c+
c− g(c)dc while the total number of vacancies is Lv.

Maintaining a vacancy is costly. This cost is independent of the job type and equal

to K > 0 units of the composite consumption good per period of time. Think of those

costs as advertisement costs. A free entry condition for vacancies drives the asset value of

a vacancy to zero in equilibrium. Let B ≥ 0 denote unemployment benefits or the value
of leisure, although the former interpretation is not fully consistent with the model, since

we ignore the funding of these benefits. Nevertheless, we will loosely refer to the ratio of

B to reservation wages as the replacement rate.

Search frictions enter the model by a simple linear contact rate λi→j for worker (job)

type i to run into job (worker) type j:

λs→c ≡ λ∗Lg (c) (7)

λc→s ≡ λ∗Lh(s)

where λ∗ is a technology parameter which measures the efficiency of the matching process.

For notational convenience we define λ ≡ λ∗L. We can interpret λ then as the relevant

scale of the labor market. Matches are destroyed at an exogenous rate δ. Further, we

assume both workers and firms to be risk neutral.

Since we allow for bargaining over the match surplus, any match with a value that

exceeds the sum of the outside options of worker and firm is acceptable. Let R(s) be the

reservation wage for type s and let mc(s) and ms (c) be the subsets of c and s for which
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this condition is satisfied. These subsets are determined by the condition that the match

surplus is positive:

P (c)F (s, c)−R (s) > 0⇐⇒ c ∈ mc(s)⇔ s ∈ ms(c) (8)

or equivalently, in logs: x(s, c) > 0, where the log match surplus x(s, c) ≡ p(c)+sc−r(s);
x(s, c) has the neat interpretation of being the relative surplus of value added above the

reservation wage. From these definitions, the value of search for a worker and an employer

respectively, can be expressed as:

R(s) = B +
λ

ρ+ δ

Z
mc(s)

g(c) [W (s, c)−R(s)] dc (9)

K ≥ λ

ρ+ δ

Z
ms(c)

h(s) [P (c)F (s, c)−W (s, c)] ds (10)

where W (s, c) is the wage of a worker of type s who is employed at a job type c, and ρ is

the discount rate. K can never be smaller than the right hand side of equation (10) due

to the free entry condition. If equation (10) holds with equality, vacancies of a particular

type c are opened. If not, no vacancies are opened and that particular commodity is

not produced in equilibrium. This can happen in two cases only. First, no vacancies are

opened for all c-types. This is the trivial equilibrium, where all workers are permanently

unemployed and collect the value of leisure B. We rule out this case by assumption7.

Second, no vacancies might be opened for some c-types. This can happen only when

η = ∞. For any other value of η, P (c) will go to infinity when the number of vacancies
g (c) goes to zero, so that either all c-types are produced or none. Wages are set by a

simple Nash bargaining rule over the match surplus. Hence:

W (s, c) = βP (c)F (s, c) + (1− β)R(s) (11)

where 0 < β < 1, denotes the workers’ bargaining power. Substituting (11) in (9) and

(10) yields:

R(s) = B +
βλ

ρ+ δ

Z
mc(s)

g(c) [P (c)F (s, c)−R(s)] dc (12)

K ≥ (1− β)λ

ρ+ δ

Z
ms(c)

h(s) [P (c)F (s, c)−R(s)] ds (13)

7A sufficient condition for a non-trivial equilibrium can be found in the working paper version of this
paper (TI 00-038/3).
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Since we consider a stationary economy, the number of workers finding a job must equal

the number loosing their job:

δ [l(s)− h(s)] = λh(s)

Z
mc(s)

g(c) dc (14)

Physical output per job type can be derived from the inflow of new workers of type s times

their productivity in job type c times the expected duration of the employment relation

1/δ:
Y (c)

L
=

λ

δ
g(c)

Z
ms(c)

h(s)F (s, c) ds (15)

Definition A steady state search equilibrium is defined as an octet

{r(s), h (s) , p(c), g (c) , y (c) ,mc(s),ms(c), y
0} solving the equations (4), (5),(8) and (12)-

(15).

Equations (12)-(15) reveal the difficulty in the characterization of the equilibrium.

These equations require the calculation of integrals of which both the integrand and

the integration boundaries are endogenous. It is precisely this complexity which has

prohibited progress in this type of models. Therefore, we attack this problem in the next

section by using second order Taylor expansions. Before we can do so, we have to establish

existence and differentiability of the functions that characterize equilibrium.

3 Analysis of the equilibrium

3.1 General characteristics

Proposition 1 An equilibrium exists for the search model of Section 2.1 and 2.2 with

B = 0 and η = 1.

The proof can be found in Appendix 1. We have been able to construct an existence

proof only for the Cobb Douglas case, η = 1. The proof proceeds along the same lines

as in Shimer and Smith (2001), with a number of non-trivial extensions to deal with the

endogeneity of the supply of jobs for each c type in our model. While l (s) provides a

natural upperbound for u (s), and hence h (s), no such upperbound is available for g (c),

as is required for the application of the Schauder fixed point theorem, see Stokey and

Lucas (1989). The advantage of the Cobb Douglas technology is that value shares for

each c-type are constant. This feature enables us to provide an upper bound for R (s) ,∀s
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and a lower bound for P (c) ,∀c. An important step in the proof is that we are able to
derive a strictly positive lower bound for u (s) ,∀s. Unemployment for a particular skill
type can never be below that lower bound, since then there are too few job seekers to

make the opening of vacancies profitable, even when all reservation wages are equal to

zero.

Next, we establish a number of characteristics of the equilibrium that are crucial for

our Taylor expansions to apply. First, the concepts of c (s) and s (c) applied in Section

2.1 for the analysis of the Walrasian equilibrium are generalized to the analysis of search

equilibria:

c(s) ≡ ec| {x(s,ec) > x(s, c),∀c} (16)

s(c) ≡ es| {x(es, c) > x(s, c),∀s}

Hence, c (s) is the (set of) value(s) c that maximizes x (s, c) for a particular s, and mutatis

mutandis the same for s (c). In the Walrasian equilibrium, the zero profit condition is

equivalent to x [s (c) , c] = 0. For any other worker types, x (s, c) < 0, so that s (c)

is unique. A similar argument applies to c (s). The subsequent proposition establishes

(among other things) that a number of characteristics of c (s) and s (c) that apply in the

Walrasian equilibrium carry over to search equilibria:

Proposition 2 Consider the search model discussed in Section 2.1 and 2.2 with η ∈
[0,∞). The equilibrium satisfies the following conditions:

1. x (s, c) is strictly concave in both its arguments,

2. mc(s) and ms(c) are strictly convex and c (s) and s (c) are unique,

3. r(s), p(c), and x(s, c) are differentiable everywhere and twice differentiable almost

everywhere, with r0(s) > 0, r00(s) > 0, p00(c) < 0,

4. let c−(s) be the lower bound ofmc(s) and let c+(s) be the upper bound; then, whenever

there is an interior solution, c− (s) is differentiable with c−
0
(s) > 0, and the same

holds for c+ (s),

5. h (s) and g (c) are differentiable.

12



The proof of the proposition can be found in Appendix 2. We are able to proof

directly from the Bellman equations for the worker and the firm that r (s) is convex and

p (c) is concave. This implies that the surplus function x (s, c) is concave in both its

arguments. The proof is much simpler than a similar derivation in Shimer and Smith

(2000), basically because we impose a priori the sufficient condition for concavity of the

matching set (log supermodularity of F (s, c)). From this result, all other results follow

more or less automatically. Only the proof that the upper and lower bound of the matching

sets in the s, c space are upward sloping requires a special treatment of the extreme cases

(s−, c−) and (s+, c+), analogous to Shimer and Smith (2000).

Part 3 of the proposition states that the characteristics of the Walrasian equilibrium,

r0 (s) > 0, r00(s)̇ > 0, and p00(c) < 0, carry over to the search equilibrium.8 The conditions

on the second derivatives imply that c (s) and s (c) are unique, since x (s, c) has only

a single maximum in each of its arguments. Obviously, x [s (c) , c] > 0 for all c since

vacancies of all c-types exist, and mutatis mutandis the same is true for x [s, c (s)].

Part 3 also implies that xc [s, c(s)] = 0 and xs [s(c), c] = 0 for any interior value of c (s)

and s (c) since x(s, c) is differentiable. Hence, the following relations generalize from the

Walrasian equilibrium to search equilibria, compare equations (2) and (3): −p0 [c(s)] = s,

−p00 [c(s)] c0(s) = 1, r0 [s(c)] = c, and r00 [s(c)] s0(c) = 1. Contrary to the Walrasian equi-

librium, however, c (s) is not necessarily the inverse of s (c). Define the inverse function

of s(c): s [d(s)] ≡ s.9 The following result provides an intuition for why s(c) is in general

not the inverse of c(s).

Corollary 1 Condition for c(s) being equal to d(s)

d(s) = c(s)⇔ d x [s, c(s)]

ds
= 0 (17)

This result follows directly from the definition of c(s), xc [s, c(s)] = 0. Hence, equation

(17) applies if xs [s, c(s)] = 0. By the definition of s(c), this is the case when s =

s [c(s)], or equivalently, when d(s) = c(s). In the Walrasian equilibrium, d x [s, c(s)] /ds

is indeed zero, since x [s, c (s)] = 0 for all s due to the zero profit condition. In the search

equilibrium, x [s, c (s)] might very well differ between worker types.

8r0 (s) is non-differentiable only at the points where either c− (s) or c+ (s) switches from an interior
to a boundary solution. Since both functions are upward sloping (see Part 3) and since c− (s+) < c+ and
c+ (s−) > c−, this happens only once for both functions. A similar argument applies for the p0 (c).

9By the definition of d (s), r0(s) = d(s) and r00(s) = d0(s).
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Part 4 shows that an equilibrium exhibits positive assortative matching, the upper and

lower bounds of the matching sets are upward sloping, so that ”on average” better skilled

workers are matched to more complex jobs. Moreover, these upper and lower bounds are

differentiable.10

The situation is depicted graphically in Figure 1-3. Figure 1 shows x (s, c) which

reaches a maximum when the job is occupied by a type s(c) worker. In the Walrasian

case, all type c jobs are matched with type s(c) workers because the loci of value added

and reservation wages are tangent only there. In the search equilibrium, all s for which

x (s, c) > 0 belong to the matching set ms (c). Figure 2 shows the same picture for a given

worker type, s. Here, c (s) maximizes x (s, c) and all c for which x (s, c) > 0 belong to

her matching set mc (s). Figure 3 shows the functions s(c), c(s), c−(s) and c+(s) in the

s, c-space. Obviously, the maxima s(c) and c(s) are in between the upper and the lower

bound.11

Corollary 2 Proposition 2 does not apply for η =∞.

The intuition for Corollary 2 is that the proof of Proposition 2 requires the application

of equation (5) to establish the continuity of y (c). However, for η =∞, this equation is
reduced to p (c) = q (c) and hence y (c) drops out. This potential discontinuity carries over

to g (c). There is economic intuition for this result. Consider equation (13). If vacancies

for all c-types have to be opened, this equation must hold with equality for all c-types.

Consider type c̄. Suppose that initially c̄ is the only type of job that is opened in some

small neighborhood [c̄−∆, c̄+∆]. For all other c types in this neighborhood, equation

(13) is satisfied with equality at best (since otherwise, some firm would have opened

vacancies of that other c type, pushing up reservation wages and driving vacancies of type

c̄ out of the market by the mechanism discussed below). Consider an employer who is

considering to open a vacancy c̄ + h, h being small. The matching set for this vacancy

will almost completely overlap with that of type c̄. Since no other vacancies than type

c̄ are open, reservation wages for the skill types s ∈ ms (c̄) are fully determined by the

10A referee wondered why our result are so much different from Burdett and Coles (1997), who find
a strict segmentation of the market, implying the non-differentiability of the boundary functions. This
difference is due to the fact that they assume non-transferable utility while we assume transferable utility.
11Note that for any interior solution, c− (s) is the inverse of s+ (c) and c+ (s) is the inverse of s− (c),

since they all solve the equation x (s, c) = 0.
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equivalent of equation (12):

R (s) = B +
βλ

ρ+ δ
G [P (c̄)F (s, c̄)−R (s)]

whereG is the number of vacancies of type c̄ (note that g (c) is degenerate in this example).

Hence, the only variable that is left to let equation (13) be satisfied with equality for type

c̄+ h is P (c̄+ h). That works for a finite η, but not for η =∞, since then P (c) is fully

determined by q (c). Hence, it is only by coincidence that equation (13) is satisfied with

equality for type c̄ + h in that case. In our numerical simulations, we find indeed this

clustering of vacancies at a small number of c-types. The only stable equilibrium seems

to be a complete segmentation of the market, where only a limited number of c types are

produced in equilibrium, c1, c2, c3, .., with consecutive but non-overlapping matching sets,

s+ (c1) = s− (c2) , s+ (c2) = s− (c3) , .... Proposition 2 shows that even a slight imperfection

in the substitutability between commodity types (a finite η) resolves the issue, since then

g (c) is continuous. This result shows the importance of modelling commodity markets

explicitly.12

Corollary 3 Convergence to the Walrasian equilibrium:

lim
λ→∞

r (s)|λ = rW (s)

lim
λ→∞

p (c)|λ = pW (s)

where the suffix W denotes the values applying in the Walrasian equilibrium

This can be seen by considering equation (13). For λ→∞, the integralR
h (s) [P (c)F (s, c)−R (s)] ds must vanish. Since by definition, s (c) ∈ ms (c), this

implies that either h [s (c)] or P (c)F [s (c) , c] − R [s (c)] must vanish. In fact, both do.

Hence, lim
λ→∞

P (c)F [s (c) , c]−R [s (c)] = 0, or equivalently, lim
λ→∞

s (c) c+p (c)−r [s (c)] = 0,
for all c. This is the zero profit condition for the Walrasian equilibrium. Since equation

(13) applies with equality and identically for all c for a finite η, its first derivative also

applies:

0 =

Z
ms(c)

h (s)P (c)F (s, c) [p0 (c) + s] ds

12Clustering will never occur in the Walrasian equilibrium. The intuition is that in that case, matching
sets are defined by a one-to-one correspondence s (c). Hence, there is a reservation wage r [s (c)] for each
c that can be used to let the zero profit condition be satisfied. In a search equilibrium, matching sets of
neighboring c types overlap, invalidating this one-to-one correspondence.
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Since lim
λ→∞

s (c) c+ p (c)− r [s (c)] = 0, the matching set ms (c) converges to the single

point s (c). Hence, p0(c) = −s(c) and equation (3) applies. Differentiating the zero profit
condition with respect to c and using (3) yields equation (2).

3.2 Using Taylor expansions for the integrals

Since the calculation of the integrals in equation (12) and (13) requires the evaluation

of x(s, c) around its maximum, it is a straightforward idea to approximate this function

by a parabola, that is, by a second order expansion. The validity of this approximation

requires this maximum x [s, c(s)] to be small. Since x [s, c (s)] equals zero in the Walrasian

case, our approximation applies close to the competitive equilibrium, that is, for λ→∞.
The following proposition provides approximations of the integrals in these equations:

Proposition 3 Consider the search model discussed in Section 2.1 and 2.2 with η ∈
[0,∞). The following approximations hold:

1. for any s with interior solutions to c+ (s) and c− (s):½Z
mc(s)

g(c)

·
P (c)F (s, c)

R (s)
− 1
¸
dc

¾2
=

32

9
g [c(s)]2 c0(s) {x∗ (s) + o [x∗ (s)]}3½Z

mc(s)

g (c) dc

¾2
= 8g [c(s)]2 c0(s) {x∗ (s) + o [x∗ (s)]}

where x∗ (s) ≡ x [s, c (s)];

2. for any c with interior solutions to s+ (c) and s− (c):½Z
ms[c]

h(s)R (s)

·
P (c)F (s, c)

R (s)
− 1
¸
ds

¾2
=
32

9
h [s (c)]2R [s (c)]2 s0(c) {xo (c) + o [xo (c)]}3

where xo (c) ≡ x [s (c) , c].

The full proof of the proposition can be found in Appendix 3. We provide simple

intuitions for the main steps of the proof by means of Figure 2. We concentrate on the

first equation of Part 1, the equation in Part 2 can be derived by a similar argument.

In the first step, we apply an approximation of the integrand: g (c)
h
P (c)F (s,c)

R(s)
− 1
i
=

g (c)
£
ex(s,c) − 1¤ ∼= g (c)x (s, c). This approximation applies, like all our approximations,
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for small x (s, c). In the second step, we approximate the domain of integration. We find

the two roots of the equation x (s, c) = 0 by a second order Taylor expansion of x (s, c)

around its maximum x∗ (s). By construction, xc [s, c (s)] = 0. Hence, x [s, c(s)± z] −
x∗ (s) ∼= 1

2
xcc [s, c (s)] z

2. Define ∆ as x [s, c(s) +∆] = 0. Then, ∆ ≡ c+(s) − c(s) ∼=
c(s)− c−(s) ∼=

p−2x∗ (s) /xcc [s, c (s)].
In the third step, the integral

R ∆

−∆ g [c (s) + z]x [s, c (s) + z] dz is approximated by

g [c (s)]
R ∆

−∆ x [s, c (s) + z] dz. This step is crucial, as it allows us to ignore variation in g (c)

and focus completely on the variation in x (s, c). This step is allowed by a combination

of two arguments related to a Taylor expansion of g (c) around c (s). First, the first order

effect drops out since the two effects on the right and the left cancel exactly. Second,

the magnitude of the second order effect g” [c (s)] /g [c (s)] is small compared to that of

xcc [s, c (s)] /x
∗ (s) since x [s, c (s)±∆] ∼= 0.

In the final step, we integrate
R ∆

−∆ x [s, c (s) + z] dz by approximating x[·] by a parabola.
The surface of the rectangle 2(A+B) in Figure 2 equals 2∆x∗(s) = 2

p
2c0(s)x∗(s)3, where

we apply xcc [s, c(s)] = p00 [c(s)] = −c0(s)−1. Two thirds of this surface is below the

parabola. This step has an interesting extension, which will play an important role in

the analysis of the efficiency of search equilibria in Section 4. When a type s worker is

employed, the average surplus of her value added relative to her reservation wage can be

approximated by 2
3
x∗(s). By a complementary argument, the average loss of her value

added relative to the maximum value added is 1
3
x∗(s).

Most steps in the proof of Proposition 3 require the differentiability of various functions

which has been proven in Proposition 2. Since this proof excludes the case η = ∞, see
Corollary 2, we have to exclude that case here again.

Proposition 3 is only applicable for the values of s for which c+ (s), c− (s), s+ [d (s)],

and s− [d (s)] have interior solutions. If they do not have interior solutions, x (s, c) does

not have to be zero at the boundaries of the integration interval. As shown in Figure 3,

this happens in the North-East and the South-West corner of the s, c space. We refer to

this problem as the corner problem. The smaller search frictions, the tighter the band

of the matching sets around c (s), and hence the smaller the subset of the domain of s

for which this problem applies. In the limiting case of a search equilibrium close to the

Walrasian optimum, we can ignore the corner problem. Moreover, the relative importance

of these corners is small if the skill distribution is unimodal with little probability mass
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in the tails (i.e. the normal distribution).

3.3 The search equilibrium

The relations derived in Proposition 3 can be used to obtain a Taylor expansion for

equations (12), (13), and (14) that applies for small search frictions, that is, the limit of

λ→∞:

Proposition 4 Consider the search model discussed in Section 2.1 and 2.2 with η ∈
[0,∞). Then, for any s with interior solutions to c+ (s) and c− (s):

x∗(s) =

·
1

2
Q2B∗ (s)2K∗ (s)2 l(s)−2c0(s)

¸1/5
+ o [x∗ (s)] (18)

ρ+ δ

δ
u (s) =

2

3
βB∗ (s)−1 {x∗(s) + o [x∗ (s)]} (19)

ρ+ δ

δ
v (s) =

2

3
(1− β)K∗(s)−1 {x∗(s) + o [x∗ (s)]} (20)

where Q ≡ 9
8

(ρ+δ)2

δβ(1−β)λ , B
∗(s) ≡ 1− B

R(s)
, K∗(s) ≡ K

R(s)
, v (s) ≡ g[c(s)]c

0
(s)

l(s)

The proof of this proposition is delegated to Appendix 4. Apart from the substitution

of the integrals in Proposition 3 and some rearrangement, two further steps are made in

the derivation of these relations. First, we apply the standard approximation that the

unemployment rate is small relative to unity: u(s)
1−u(s)

∼= u (s), or equivalently: h(s)
l(s)−h(s)

∼=
h(s)
l(s)
. By equation (19), u (s) is proportional to O [x∗ (s)]. Hence, this approximation can

be done at zero loss of approximation order, since the term o [x∗ (s)] had to be included

for the approximation error in the integral anyway, see Proposition 3. Second, contrary

to the Walrasian equilibrium, s(c) is not the inverse of c(s) in a search equilibrium, see

Corollary 1. We are able to bound the differences d0 (s)− c0 (s) and xo [d (s)]− x∗ (s)13 to

be of order o [x∗ (s)]. Again, these approximations can therefore be included at zero loss of

approximation order. The intuition for this result is simple. Recall that in the Walrasian

equilibrium s (c) is the inverse of c (s), and hence d (s) = c (s) . When search frictions are

small, the equilibrium is close to the Walrasian one and the difference between d (s) and

c (s) is also small. This step allows us to integrate Part 1 and Part 2 of Proposition 3.

13Which is equal to x [s, d (s)]− x [s, c (s)] by definition.
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Finally, note that B∗ (s), K∗ (s) and c0(s) depend on r(s) and are therefore endogenous.

One can approximate these functions by their Walrasian value by Corollary 3.

Proposition 4 provides a convenient characterization of a search equilibrium by simple

relations for x∗ (s), the rate of unemployment u (s), and the number of vacancies per unit

of labor supply of type s, v(s).14 x∗ (s) measures the relative difference between value

added of a type s worker when assigned to the optimal job and the reservation wage. In

a Walrasian equilibrium, this difference would be zero. Hence, we refer to x∗ (s) as the

cost of search. Proposition 4 shows unemployment and vacancies to be linearly related

to the cost of search. The intuition for these linear relations is that agents respond to an

increase in search frictions along two channels. First, they spend more time in the search

state which results in an increase in unemployment and vacancies. Second, they reduce

their reservation match quality, which yields an increase in the relative difference between

maximum value added and the reservation wage, x∗ (s).

We have written the relations for unemployment and vacancies in a way that makes

them easy to interpret. The factor ρ+δ
δ
accounts for the net discounted cost of unemploy-

ment (vacancies) for a job seeker (firm). Since a job seeker has to invest in an unemploy-

ment spell before being able to reap its benefits, this factor is greater than one. We use

these relations in the next section to decompose the cost of search into three components,

the cost of unemployment, the cost of maintaining vacancies, and the loss of output due

to suboptimal assignment.

x∗(s) depends on a composite parameter Q, reflecting a number of factors. First, the

cost of waiting for a better match relative to the expected duration of the match, (ρ+δ)
2

δ
,

enters positively, because agents accept a lower match quality when the cost of waiting

rises. Second, the distribution of bargaining power matters, due to hold up problems. The

higher β, the larger the worker’s expected return to search is and the greater therefore her

willingness to invest in search. This explains why the model breaks down if we attribute

the whole surplus either to the worker (β = 1) or to the firm (β = 0). In that case, the

other side has no incentives for search, so nobody will enter the market. It also explains

why the cost of search x∗ (s) are smallest for β = 1
2
. We return to this issue in Section

4.2. Finally, the size of the labor market, λ, enters negatively. This reflects the increasing

returns to scale (IRS) in the contact technology.

14The multiplication by c0 (s) in the definition of v (s) is the Jacobian, transforming the distribution of
vacancies per job type c to a distribution per worker type s.
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The cost of search depends positively on one minus the replacement rate B∗(s) and

the ratio of the cost of maintaining a vacancy relative to reservation wages K∗(s). These

effects reflect the notion that match quality falls when the cost of unemployment and

the cost of maintaining a vacancy go up. The distribution of labor supply l(s) enters

negatively. This effect is the same as the effect of λ and is again due to the IRS in the

contact technology. Whether one increases the size of a particular segment of the market

s, either by a general increase in supply, raising λ, or by a concentration of total supply in

that particular segment, raising l (s), is irrelevant.15 In both cases match quality goes up

by the returns to scale in contact technology. The only thing that matters is the product

of both factors, λl (s).16 For unimodal distributions, the density in both tails will be

lower. Then, by IRS, search frictions are larger in the tails, simply by the returns to scale

in contact technology.

Finally, the dispersion in job complexity per unit of the skill distribution, c
0
(s), in-

creases the cost of search. There is an alternative way to interpret this effect. As discussed

in Section 2.1, any linear transformation of the scale of measurement of s can be offset by

a compensating transformation in c and p (c) without changing the empirical implications

of the model. It is therefore more instructive to write x∗ (s) as a function of log wages

instead of s, since that yields an expression that does not depend on arbitrary choices of

units of measurement. Applying this transformation to equation (18) yields:

bx∗(r)5 = 81

128
Q2 bB∗ (r)2 bK∗ (r)2 f(r)−2bγ(r) (21)

where f(r) is the density function of log reservation wages r and where bx∗ [r (s)] ≡ x∗ (s),

and mutatis mutandis the same for B∗, K∗ and γ; γ (s) ≡ r” (s) /r0 (s)2 = c0 (s) /c (s)2 is

the complexity dispersion parameter discussed in Section 2.1.17 The complexity dispersion

15A referee wondered why the punctual value of the density function matters and not its value along
the whole matching set of a particular c (s) job-type. The reason is that we consider the limiting case
where x∗ (s) is small. Hence, matching sets are small, too. Then, by the differentiability of l (s), its
punctual value is a good approximation of its values over the matching set.
16An interesting question is what happens with the matching rate for type s workers when l(s) increases?

This depends on the value of η.When η →∞, an increase in l(s) will raise the supply of c(s) jobs. Hence,
the matching rate for type s workers will increase by a standard thick market argument. At the other
extreme, when η = 0, we have to account for general equilibrium effects. The increase in l(s) decreases
wages for those s-types. This widens their matching sets. However, this effect is insufficient to offset the
increased labor supply effect.
17The denominator of bγ(r) comes in as the Jacobian from a transformation of variable: l (s) =

f [r(s)] r0(s).
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parameter is inversely related to the elasticities of substitution between worker types.

Hence, the lower the substitutability between worker types, the higher the cost of search.

There is a simple intuition for this result. The more easy worker types can be substituted

between job types, the lower the productivity loss due to suboptimal matching is, and

hence, the wider matching sets are.18 Also, the expected unemployment duration falls

since workers become less choosy.

A remarkable conclusion from Proposition 4 is that the elasticities of the relations

discussed above do not depend on any of the model’s parameters. Most variables, like one

minus the replacement rate, relate to x∗ (s) by a 2
5
= 0.4 elasticity. This result does not

depend on the specific form of the production function F (s, c); the only requirements are

its log supermodularity and its differentiability. Then, the elasticity results follow solely

from the order of the first non-vanishing terms in the approximation of the integrals in

Proposition 3: an order 3 in the integral for the worker’s Bellman equation minus an

order 1 in the worker’s flow equilibrium equation plus an order 3 for the firm’s Bellman

equation. This underscores the usefulness of Taylor expansions.

This general rule applies also to the elasticity of unemployment with respect to one

minus the replacement rate. This elasticity is −0.6. Meyer (1990) finds an elasticity of
unemployment with respect to the benefit level of up to about minus one for the United

States. His source of variation is mainly structural variation in legislation between states.

Hence, we feel comfortable to interpret his estimate as reflecting the elasticity of equilib-

rium unemployment. This estimate is consistent with our model when the replacement

rate is 0.60. The model implies that the detrimental effect on unemployment goes up with

every percent further increase in B.

Proposition 4 provides a relation for x∗ (s) but not for reservation wages. When search

frictions do not have a general equilibrium effect on commodity prices, p (c)|λ = pW (c)

(and hence on the optimal assignment c(s)) then reservation wages follow immediately

from the definitional relation: r (s)|λ = rW (s) − x∗ (s): reservation wages are equal to

their value in the Walrasian equilibrium minus the cost of search. Hence, Proposition 4

would allow an approximation of r (s)|λ up to an order o [x
∗ (s)]. Regrettably, the identity

18In the limit, when worker types become perfect substitutes (γ → 0), the model converges to the
Pissarides (2000) model with IRS. The Taylor expansions do not work in that case because the corner
problem issues that we discussed at the end of the previous section can then no longer be ignored. We
need heterogeneity for the scale elasticity to reduce when moving from the contact to the matching rate.
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p (c)|λ = pW (c) applies only when η = ∞, since then commodity prices are effectively
exogenous: p (c) = q (c). For all other values of η, search frictions do have general

equilibrium effects on prices. An evaluation of these effects is outside the scope of this

paper, see Teulings and Gautier (2002) for an analysis.

Proposition 1 proofs existence, but not uniqueness. How should we interpret the

approximate characterization of the equilibrium in Proposition 3 and 4, if we cannot proof

its uniqueness? We offer a number of arguments. First, multiplicity might not be an issue.

In the homogeneous workers and firms version of this model, the equilibrium is unique.19

Obviously, heterogeneity complicates the issue. However, the absence of congestion effects

seems to reduce the likelihood of multiplicity, since the opening of a vacancy of one type

does not directly reduce the profitability of opening a vacancy of another type.20 Second,

the Taylor expansions in Proposition 3 apply generally. Third, multiplicity might be a

higher order phenomenon that either falls within the approximation term o [x∗ (s)] or

occurs only outside the domain where our approximations do a decent job. Finally, the

approximations in Proposition 4 track the numerical solutions presented in Section 5

closely. These simulations are only based on a limited subset of the parameter space, but

the least that we can say is that in that subset Proposition 4 works fine.

3.4 Congestion effects and IRS

A standard search model a la Pissarides (1990) is typically characterized by two types

of search externalities, congestion and thick market effects. The congestion effect reflects

the negative externality that a job seeker imposes on other job seekers by reducing their

chances to run into a vacancy. The thick market effect reflects the positive externality

that this same job seeker imposes on firms by increasing their chances to meet a job

seeker. In a model with heterogeneous types, where not every contact yields a match,

congestion effects have an unpleasant implication. A low skilled immigrant will find it

harder to find a hamburger job when a bunch of Harvard graduates enter the market,

simply because each additional job seeker reduces all other job seekers’ chance to meet

19Using the stripped down notation of the Appendix 1, a homogeneous model reads: R = χθv (P −R),

1 = ψu (P −R), 1− u = θuv, Y = θuvm. The solution for u reads: u = 1
2ψ

·
1− χ±

q
(1− χ)2 + 4ψχ

¸
,

which has a single positive root.
20For example, Shimer and Smith’s (2001b) result that there is no steady state equilibrium, but a limit

cycle seems to be contingent on the presence of congestion effects.
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a particular type of vacancy. We find this hard to believe.21 We therefore specified the

matching technology in equation (7) such that it exhibits no congestion effects. The only

technology that satisfies this requirement reads:

m = λ

Z s+

s−
h(s)ds

Z c+

c−
g(c) dc = λu v (22)

where m is the flow of contacts between workers and firms. The contact rate of a job

seeker, m/u = λv, is independent of the number of other job seekers on the market,

and mutatis mutandis the same for vacancies, which indeed rules out congestion effects.

The consistency of this technology with equation (7) is checked easily. The matching

elasticities with respect to u and v are both equal to one, hence their sum is two, which

is twice as large as in the constant returns to scale (CRS) specification of Pissarides

(2000). Hence, our specification implies IRS. It is worth noting that economists are in

good company when using this proportional contact technology. It is equivalent to the

standard model of the velocity of chemical reactions in gasses used in chemistry. In a

reaction involving two molecules, doubling pressure doubles the reaction speed. From

that perspective, the proportional contact technology seems quite natural. Most of the

empirical evidence finds CRS however, see Petrongolo and Pissarides (1999) for a survey.

How do we square our assumption of no congestion effects and IRS with this evidence?22

We offer three arguments.

First, the empirical research refers to the number of realized matches, while our tech-

nology refers to the number of contacts between workers and firms, or even better, po-

tential contacts. Not all contacts yield a match. Agents respond to the greater efficiency

of the contact process not only by reducing their search spells, but also by becoming

21Two referees pointed out an alternative approach: a model of directed search, where job seekers/firms
can select the pool from which to sample offers. Since low skilled immigrants and Harvard graduates
are likely to sample from different pools, their supply would not interact. However, this approach raises
the issue of how these pools are formed. Obviously, the heterogeneity of the search problem could be
completely resolved by introducing an infinite number of small, but homogeneous pools. With CRS in
contact technology, there is nothing to stop the economy from moving in that direction, since the scale is
irrelevant by definition. Again, IRS is needed so that agents come to face a trade off between homogeneity
and scale in the formation of pools. A formal analysis of this issue is a fruitful avenue for future research.
Shimer (2001) studies the effects of directed search in a different setting with universally best jobs. In
such a setting CRS can give non trivial equilibria.
22Not all the evidence rejects IRS. Yashiv (1996) finds IRS in the Israelian matching function and Shimer

(1999) gives demographical evidence for the US that supports the thick market externality arguments.
Burdett et al. (1994) argue that IRS are obscured by aggregation and frequency bias in the data.
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choosier (resulting in a better match quality). Hence, IRS in the contact technology does

not translate one-to-one into IRS in realized matches. This issue cannot be resolved by

using data on contacts, or referrals in the wording of Berman (1997), since when a Wall

Street stock broker sees a ”help wanted” sign in a Hamburger restaurant, he is unlikely

to report this event as a referral. This type of self selection explains why so few job offers

get rejected. Disappointing as it is, there is no direct way to establish the returns to scale

elasticity from any existing data set. An important goal of our analysis is to establish the

size of the effect of an increased contact rate on the match quality and on the number of

accepted matches, so that our assumptions can be tested indirectly. Proposition 4 allows

for the calculation of the returns to scale in the matching process. The elasticities of

the cost of search x∗ (s) and hence unemployment u(s) and vacancies v (s) with respect

to λ are equal to 0.4. Hence, a 1 % increase in total labor supply increases the total

number of vacancies and unemployed by (1-0.4)% = 0.6%. By the flow equilibrium and

the constancy of the separation rate δ, the number of matches varies proportionally to

λ (up to a factor 1 − u (s) = 1 − O [x∗ (s)]). A 0.6 % increase in both inputs in the

matching process yields therefore a 1 % increase in the number of matches. The returns

to scale elasticity can then be calculated to be equal to 1
0.6
= 1.66. Hence, one third of

the increasing returns in the contact technology are absorbed by a greater choosiness of

job seekers and firms.

Second, most existing estimates of returns to scale are based on cyclical variation

in the number of vacancies and unemployed, not on true variations in the scale of the

market. This cyclical variation is affected by all kinds of out-of-equilibrium processes,

which usually are not fully modelled. We suspect that this variation does therefore not

adequately reflect differences in the scale of a labor market, leading to a downwardly

biased estimate of the scale elasticity.

Finally, one has to consider: what is scale? Obviously, saying that scale matters is

not the same as saying that the US labor market with 200 million inhabitants is more

efficient than that of the Netherlands with only 15 million inhabitants. A more useful

way to analyze the effect of scale on the efficiency of the search process is to interpret it

as the density of the labor market, for example the number of people per square mile.

Then, a comparison between, for example, Manhattan and Wyoming, or equivalently,

metropoles and small villages, offers a much better testing ground for returns to scale
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than intertemporal variation or a comparison between countries.

It should be noted that our Taylor expansion methodology is also applicable in a model

including congestion effects. The only difference is that there are a number of additional

integrals that need to be evaluated by this methodology.

4 The analysis of the equilibrium

4.1 The constrained planner’s optimum

The decentralized search equilibrium is efficient if it generates the same net discounted

output as achieved by a social planner, taking search frictions as given. In a homogeneous

worker and job type CRS world, constrained efficiency can be achieved when the Hosios

(1990) condition is satisfied: the workers’ share of the match surplus is equal to his

marginal contribution to the matching process. The efficient outcome maximizes the

discounted value of aggregate output net of the cost of vacancies and the foregone value

of leisure for workers. In Appendix 5, we show that in a stationary equilibrium, optimality

requires that:

R̄ (s) = B +
λ

ρ+ δ

Z
mc(s)

g(c)
£
P̄ (c)F (s, c)− R̄ (s)

¤
dc (23)

K =
λ

ρ+ δ

Z
ms(c)

h̄(s)
£
P̄ (c)F (s, c)− R̄ (s)

¤
ds (24)

where R̄ (s) and P̄ (c) are respectively the shadow price for an unemployed worker and

a commodity of type c, h̄(s) and g(c) are unemployment and vacancies in the social

optimum, and ms(c) and mc(s) are the optimal matching sets defined by a condition

similar to (8). The only difference between (23) and (24) on the one hand and (12) and (13)

on the other hand is that β and 1−β are replaced by unity in the latter set of equations.

Only then, workers and firms receive the full rewards of their marginal contribution to

the matching process. There is a simple intuition for this result. In Pissarides’ constant

returns to scale world, a job seeker entering the labor market imposes a positive externality

on employers (since their contact rate goes up) and a negative externality on other job

seekers (since their contact rate goes down). In our increasing returns world, there is no

negative externality, since the contact rate for workers is independent of the number of

other job seekers that are wandering around. We should award workers the full surplus
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of the match to reward them for the positive externality they impose on employers and

mutatis mutandis the same argument applies for employers. Hence, there is insufficient

output to reward both sides by their marginal contribution to the contact process, as is

standard in an IRS world.

The straightforward question is then whether a market equilibrium is efficient if we

replace our assumption of IRS in matching technology by CRS and impose the Hosios

condition. Shimer and Smith (2001a) have analyzed this question in a slightly different

setup, where they treat workers and jobs symmetrically. In particular, they have a fixed

type distribution instead of our assumption of free entry on the vacancy side. They find

that good workers and jobs search too little and bad workers search too much. The reason

is that the match surplus is shared between both players, so that in a match of a bad

and a good worker, the bad worker appropriates part of the surplus that would go to

the good worker in a Walrasian world. Clearly, this mechanism depends on the presence

of congestion effects. Without congestion effects, good workers could simply ignore the

bad workers and wait for a good partner. With congestion effects, the large share of

bad workers in the pool of job seekers reduces the chance of a good worker to find a good

partner. The absence of congestion in our model explains why this problem does not show

up here. On top of that, the free entry condition applied in this paper might affect Shimer

and Smith’s conclusions. The distinction between good and bad jobs plays a crucial role

in their analysis. However, free entry implies that there are no good or bad jobs (all yield

zero profit in equilibrium).23 We leave this issue for future analysis.24

4.2 The composition of the efficiency loss

The welfare loss compared to the Walrasian equilibrium can be decomposed into three

components: the lost production due to unemployment, the cost of maintaining vacancies

and the cost of suboptimal assignment. The first component can be calculated from the

23Shimer and Smith analyzed the case of free entry with K differing between job types (not reported
in their paper). This heterogeneity is required in their model since otherwise firms would open ”good”
jobs only. With these assumptions, ”good” jobs should be subsidized for optimality. In our model, K
can be constant due to the logsupermodularity of F (s, c), so that there are no ”good” or ”bad” jobs.
24Davis (1995) studies a model where good jobs are more costly to create and produce more output.

Since firms pay the full creation cost, there are too little good jobs when workers get part of the surplus.
However, efficiency in the size of the vacancy pool requires the Hosios condition to be satisfied, which
attributes workers part of the surplus. This mechanism is absent in our analysis, since K is constant
across job types.
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unemployment rate u (s) for type s times the cost of unemployment relative to the reser-

vation wage B∗ (s) times a discount factor ρ+δ
δ
to account for the fact that the investment

in search precedes the flow of returns from the employment relation. Hence, by (19) this

component is equal to
ρ+ δ

δ
u(s)B∗(s) =

2

3
βx∗(s).

The second component can be calculated from the vacancy rate v (s) of type s, multiplied

by the relative cost of a vacancy, K∗(s), and the discount factor ρ+δ
δ
. By (20) this is equal

to,
ρ+ δ

δ
v(s)K∗(s) =

2

3
(1− β)x∗(s).

The cost of suboptimal assignment follows directly from the result discussed in Section

3.2 that the average loss relative to the optimal Walrasian allocation is 1/3x∗(s). Adding

up the three components yields the total cost:

LossWal ' 1

3
[2β + 2(1− β) + 1]x∗(s) = x∗(s) (25)

As expected, the total welfare loss is equal to the cost of search. All components vary

proportional to x∗ (s). The relative importance of unemployment and vacancies in the

cost of search are independent of B∗(s) and K∗ (s). The ratio between both cost types

is fully determined by the bargaining power parameter β. This is due to the fact that

firms keep investing in vacancies till the cost of keeping the vacancy open is equal to their

expected share in the future surpluses from an employment relation. Similarly, workers

adjust their reservation wages such that the share in the expected surplus from search

is equal to their reservation wage. When β = 1
2
, the decomposition takes an extremely

simple form: all three components account for one third of the efficiency loss.

4.3 Efficiency loss due to inadequate incentives

Alternatively, we can decompose the efficiency loss into a purely mechanical loss of search

frictions and a loss due to inadequate incentives. Only the latter component can be

eliminated by a social planner, see Section 4.1. The mechanical loss can be found by an

equivalent of Proposition 4 now using the equations (23) and (24) instead of the Bellman

equations (12) and (13). This procedure is equivalent to replacing the factor β(1− β) in

the denominator of Q by unity in equation (18). Hence, the mechanical cost of search are

a share β0.4(1 − β)0.4 of the total cost of search frictions, x∗ (s). The efficiency loss due
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to inadequate incentives can then be calculated as the difference between the full cost of

search and the mechanical loss:

LossSP '
£
1− β0.4(1− β)0.4

¤
x∗(s) (26)

This loss is minimized by setting β = 0.5, which mimics the conclusion of Section 3.3.

For β = 0.5, 1− β0.4(1− β)0.4 = 0.43. Hence, about half of the cost of search are due to

inadequate incentives. The inefficiency due to the lack of incentives for β = 0.5 can be

offset by quadrupling the size of the labor market (λ). In a similar vein, unemployment

and vacancies change by: β−0.6(1 − β)0.4, and β0.4(1 − β)−0.6, respectively. The ratio

of the social planners level of unemployment and the decentralized equilibrium level of

unemployment is β−0.6(1−β)0.4, which is 1.15 for β = 0.5. Social planner’s unemployment
is therefore higher than unemployment in the decentralized market equilibrium. There is

too low a reward for search activities.

Burdett (1979), Diamond (1981), and Marimon and Zilibotti (1999) have shown that

unemployment compensation can increase welfare, even when agents are risk neutral, by

decreasing mismatch. For an analysis of this issue, we have to account for the funding ofB.

Suppose we pay unemployment benefits from an insurance premium that is proportional

to earned wages. When we define B∗(s) relative to the net reservation wage, this will

have no further impact on the model, since the difference between the gross and the net

value of r(s) is a constant. However, our loss function, equation (25), has to take into

account that the cost of unemployment relative to the reservation wage is no longer equal

to B∗(s) but to unity since unemployment benefits need to be financed while the value of

leisure does not. Hence, the optimal unemployment benefit minimizes

1

3

£
2B∗ (s)−1 β + 3− 2β¤x∗(s) = Qo (s)

£
2B∗ (s)−1 β + 3− 2β¤B∗ (s)0.4

where all terms that do not depend on B∗ (s) are collected in Qo (s) in the second expres-

sion, see equation (18). Hence, the optimal unemployment benefit satisfies:

B∗(s) =
3β

3− 2β (27)

The optimal net replacement rate, B/R(s) = 1 − B∗(s) is therefore a negative function

of the bargaining power of workers. This fits the intuition. When workers have a strong

bargaining position, it does not make sense to give them an even better outside option. If
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a social planner could set both β and B∗(s) jointly, he would make workers as choosy as

possible by setting B(s) → R(s). At the same time he would stimulate vacancy supply

by rewarding the employers with almost the full share of the match surplus, hence β → 0.

However, the implementation of this scheme would require that the social planner is able

to manipulate the bargaining process and that he is able to set B independently for each

s type.

5 Simulations

5.1 Methodology

We check the quality of our approximations of x∗ (s) based on Proposition 4 and equation

(21) by comparing them with numerical simulations of the search equilibrium. As a

benchmark, we seek a specification of l (s) and q (c) that yields a realistic shape of the

wage distribution and that provides an analytical solution for the Walrasian equilibrium

(i.e. λ =∞). In particular, we consider an equilibrium where the complexity dispersion

parameter is constant along the domain of s: γ (s) = γ.We apply a logarithmic transform

of the skill and complexity indices s and c in the presentation of our results:

s∗ = − ln (−s) , s+ ≤ 0
c∗ = ln c

The advantage of these transformed indices is that in the Walrasian equilibrium, the

optimal assignment c∗ (s∗) and the log reservation wage function r (s∗) are linear. We use

a normal distribution with standard deviation σ for log wages. Due to the linear relation

between log wages and the transformed skill variable s∗, the latter is also distributed

normally in the Walrasian equilibrium. Appendix 6 discusses these issues in greater

detail.25

We use realistic values for all parameters, so that our simulations give a reasonable

impression of what our model would imply empirically. Teulings and Vieira (1998) review

25Our numerical simulations are based on a grid for s∗ and c∗ ranging from minus three till plus three
times their standard deviation. We divide the domain of both variables in 100 intervals per standard
deviation, yielding a matrix of 601× 601. We have three iteration loops. (1) calculate R(s) conditional
on p(c) and g(c), see (12), (2) calculate h(s) and y(c) conditional on p(c), g(c) and R(s), see (14) and
(15), (3) adjust g(c) to satisfy (13).
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the value for the complexity dispersion parameter implied by estimation results for the

Netherlands, Portugal, and the United States. They conclude that its value is in the range

2.5-5. We apply γ = 3 and γ = 5. Empirically, the standard deviation of log wages, σ,

is in the range of 0.30− 0.60 for most OECD countries. We apply a value of 0.60 in our
simulations. The values for the other parameter are δ = 0.15, β = 0.40, ρ = 0.10. For

B∗(s) and K∗(s), we apply their values in the search equilibrium for the evaluation of the

quality of the approximation using B = 0.09 and K = 0.50.26

Our simulations serve two goals. First, they give information on the accuracy of our

Taylor expansions for various levels of λ. We set η = 0 for this purpose. Second, the

simulations document the clustering of vacancies when η =∞ as discussed by Corollary

2 in Section 3.1.

5.2 The accuracy of the Taylor expansions for η = 0

Table 1 shows aggregate outcomes for different values of λ and γ. We reduce λ by a factor 4

in every simulation, starting from a high value of 2500. We present the standard deviation

of log reservations wages, the relative output loss compared to the Walrasian optimum27,

the unemployment rate and the number of vacancies per unit of labor supply. According

to Proposition 4, unemployment and vacancies should all increase linearly with x∗ (s∗).

Furthermore, each reduction of λ by a factor 4 should increase x∗ by a factor 40.4 = 1.74,

see equation (18). Table 1 provides strong support for these implications. Based on the

value of unemployment, λ = 156 is a reasonable value (u ∼= 5%). This implies that the

average worker has λv ∼= 15 contacts a year. The cost of search and unemployment are
smaller when γ = 3 than when γ = 5 for all values of λ. Finally, search frictions lead to a

substantial increase in wage dispersion, due to general equilibrium effects on task prices .

Table 2 gives the simulation results for values of s∗ with each column covering one

standard deviation of the skill distribution. We present the unemployment rate u (s∗), the

log reservation wage, the maximum surplus, and the forecasting errors in unemployment

26The value of δ corresponds to an average job duration of 7 years. The value of β squares with the
evidence by Abowd and Lemieux (1993). By a proper normalization, the mean wage equals unity in
the Walrasian equilibrium. Hence, a worker earning a wage twice the standard deviation of 0.60 below
the mean, faces a replacement rate of 0.09exp (−1.20) = 30 %. In a model including capital, K can be
viewed as the cost of the unused capital stock. For the mean wage of unity, K = 0.5 implies that capital
accounts for one third of value added ( 0.5

1+0.5).
27log output under Walras− log[output in the numerical equilibrium uB− vK]
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when applying the analytical approximations. The approximations are very accurate.

For small search frictions the model almost exactly mimics the simulation outcomes.

But also for large search frictions ( λ = 156), the error is less than 7%, even for the

extreme worker types.28 Our approximations work fine except when unemployment rates

are very high, which occurs for low values of λ and or for for low skill types (more

than 2 standard deviations from the mean). The high unemployment rate for low skilled

workers is due to the high replacement rate that these workers face: 1 − B∗(s). The

less precise approximation results can be traced back immediately to the fact that we

assume u(s)
1−u(s) ≈ u(s), which obviously does not work well for high unemployment levels,

say u(s) > 20%.

The pattern of x∗ (s∗) along the domain of s∗ is U-shaped. By the linear relation

between x∗ (s∗) and u (s∗), this pattern is repeated in the unemployment rate by type.

This phenomenon is due to equation (18), where three factors vary with s: B∗,K∗, and l.

In our simulations, the latter factor dominates. The skill density is the highest around the

mean and the lowest in the tails of the distribution. A low density translates in a large

x∗ (s∗) due to IRS. Hence, search frictions are largest in the tails of the distribution. These

frictions depress reservation wages in both tails of the skill distribution relative to the

Walrasian benchmark. Also, they raise the unemployment rate in the tails. The general

equilibrium effect offsets the effect on wages, at least for the high s∗ types. Again, our

approximations are very precise. For large search frictions ( λ = 156), our approximation

error is less than 2% for the median worker. As we move to the tails, the approximations

become less precise but for the worker types located at one s.d. from the mean, the error

is still only 7%.

Figures 4 and 5 plot the matching sets and c∗ (s∗) in the s∗, c∗-space for λ = 2500

and 39 and for η = 0. The Walrasian benchmark is represented by the diagonal. Those

Figures reveal that that larger search frictions lead to wider matching sets. Figure 6 plots

P (c) for the case λ = 2500 relative to its value in the Walrasian equilibrium. Prices are

above their Walrasian value in both corners, in particular for the upper tail. This reflects

the general equilibrium effects. Obviously, the substantial price increases in the upper

28For simulations with γ = 3 (available upon request), we obtained approximation errors of similar
order of magnitude. We find that in particular the low skilled workers benefit from better substititability
of worker types. This is due to general equilibrium effects in the reservation wage.
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tail pushes up reservation wages.29

5.3 Vacancy clustering for η =∞
Simulations for η = ∞ show that no well behaved equilibrium exists and that vacancies

cluster together, see Corollary 2 in Section 3.1. Figure 7 shows that when frictions are

small, λ = 2500, there is no evidence of clustering. The matching sets in Figure 7 are very

similar to those in Figure 4. However, when frictions become larger, λ = 39, we clearly

see waves appearing in the boundaries of the matching sets in Figure 8.

Figure 9 portrays the output for various job types c for λ = 2500 relative to that in the

Walrasian equilibrium. For a broad range of jobs in the middle of the distribution, their

ratio is close to unity. Only in the corners, clustering is clearly observable. For λ = 39,

see Figure 10, search frictions are so important that the process of clustering is clearly

manifest along the whole domain of c∗.

6 Final Remarks

The use of Taylor expansions for the characterization of the equilibrium in a search model

with two side heterogeneity has been shown to be fruitful. We obtained a precise ap-

proximation of the cost of search and made a decomposition of this cost into its three

components, unemployment, vacancies and the cost of misassignment. Perhaps, the most

striking result of this approach is that the elasticities of the cost of search with respect

to its explanatory variables hold for any log-super modular production function and are

independent of its precise form. This elasticity, which is 0.4 for most variables, is fully

determined by the order of the first non-vanishing term in the Taylor expansion. For

example, increasing the replacement rate by 1% leads to a 0.4% increase in the cost of

search. Furthermore, we have been able to relate formally the substitutability of worker

types to the cost of search: the worse the substitutability between types, the higher the

cost of search are.

The analytical expression for the cost of search in terms of observables generates many

testable predictions on unemployment, vacancies, and wages, both within a single economy

29We have also run simulations with different values of the exogenous values which gave similar good
approximations. Changing the values of β showed for example that the losses due to search are indeed
minimized for β = 0.5. We do not report them for space consideration.
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and between economies of various scale. For example, one implication is that wages are

concave in both worker and job type, where the degree of concavity can be related to the

substitutability between worker types and the magnitude of the cost of search. In Gautier

and Teulings (2002), we give empirical evidence for this concavity.

We have deliberately ruled out congestion effects in the model, for reasons discussed

in Section 3.4, although the implied IRS contact technology seems to contradict most of

empirical evidence. We have however shown that one third of the IRS is absorbed by

increased selectivity in the acceptance of matches by workers and firms. This points to

a more general mechanism similar to the standard problem of self selection in empirical

research. In equilibrium, IRS will be fully exploited. Activities which are most search

intensive because they either require scarce worker types or a large variety of worker

types, will be undertaken in dense areas with a comparative advantage in search. We

provide empirical evidence for that in Teulings and Gautier (2002). All those endogenous

responses tend to reduce observed returns to scale. However, the absence of congestion

effects is no prerequisite for the applicability of our Taylor expansion methodology. It

can be generalized easily to a model that allows for congestion effects. The analytical

characterization of the cost of search can help to derive empirical predictions that can

discriminate between models with and without congestion effects.
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A Appendices

A.1 Proof of Proposition 1

Simplification of the notation
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L can be normalized to unity without loss of generality. The model is written in a
simplified form for the sake of convenience:

R (s) = χθ

Z c+

c−
m (s, c) g(c) [P (c) esc −R (s)] dc, ∀s (28)

1 = ψ

Z s+

s−
m (s, c)h(s) [P (c) esc −R (s)] ds, ∀c (29)

l(s)− h(s) = θ h(s)

Z c+

c−
m (s, c) g(c) dc,∀s (30)

Y (c) = θg(c)

Z s+

s−
m (s, c)h(s)escds, ∀c (31)

P (c) = Q (c)2
µ
Y (c)

Y o

¶−1
,∀c (32)

Y o = exp

"Z c+

c−
Q (c)2 lnY (c) dc

#
(33)

where χ ≡ βδ
ρ+δ
, ψ ≡ (1−β)λ

(ρ+δ)K
, θ ≡ λ

δ
, whereQ (c) ≡ exp £q (c)¤ and wherem [s, c, R (s) , P (c)]

is an indicator function taking the value unity if P (c)F (s, c)− R (s) ≥ 0 and zero oth-
erwise. We omit the final two arguments of m (·) for the sake of convenience. Equation
(29) applies with equality since we impose the feasibility constraint and since η <∞.
Lemma 1: A lower bound for u (s): u (s) > u−, ∀s
Equation (29) implies:

P (c)

Z s+

s−
m (s, c)h(s)esc ds >

1

ψ

Then, equation (31) requires:

θ

ψ
g (c) < Y (c)P (c) ≤ Q+2

where Q+ ≡ sup £Q (c)¤. The last inequality follows from equation (32). Substitution in
equation (30) yields:

u (s) =

"
1 + θ

Z c+

c−
m (s, c) g(c) dc

#−1
>
h
1 + ψ

¡
c+ − c−

¢
Q+2

i−1
≡ u−

Q.E.D.
Definition of the mapping
Define: V (c) ≡ Q (c)−2 Y (c) = Y oP (c)−1. The equations (32) and (31) and the

definition of V (c) are used to eliminate P (c) , Y (c) , and g (c). The model can be rewritten
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as a mapping of [R,V, u, Y o] into itself:

TR (s) =
χ

1 + χḠR,V,Y o,u

Z c+

c−
ḡ (c)R,V,Y o,umax [Y

oesc, V (c)R (s)] dc,∀s

TV (c) =
ψ

1 + ψHu

Z s+

s−
l (s) u(s)max [Y oesc, V (c)R (s)] ds,∀c

Tu(s) = max


"
1 +

Z c+

c−
m (s, c) ḡ (c)R,V,u V (c) dc

#−1
, u−

 ,∀s

TY o = min

(
exp

"Z c+

c−
Q (c)2

£
2q (c) + lnV (c)

¤
dc

#
, Y o

W

)

where Y o
W is the output in the Walrasian case and where:

ḡ (c)R,V,Y o,u ≡
Q (c)2R s+

s− m (s, c) l (s)u(s)escds

ḠR,V,Y o,u ≡
Z c+

c−
ḡ (c)R,V,Y o,u dc

Hu ≡
Z s+

s−
l (s)u(s)ds

A search equilibrium is a fixed point of T for which Y o < Y o
W and u (s) > u−, ∀s. Since

Y o = Y o
W can only be attained when u (s) = 0, ∀s and since u (s) > u−, ∀s by Lemma 1,

a point for which Y o = Y o
W and u (s) = u− can never be a fixed point of this mapping.

Hence, any fixed point of T is a search equilibrium. Note that the specification of equation
(29) includes the trivial equilibrium with Y o = 0, since then V (c) = 0, satisfying TV (c) =
V (c). Hence, the existence proof does not invoke the feasibility constraint (48).
The proof proceeds in two steps. First, we apply a contraction mapping argument to

Tu (s), proving the existence of a unique equilibrium u (s)R,V,Y o conditional on R,V, Y o.
Second, we apply the Schauder fixed point theorem to proof existence of a fixed point for
T [R, V, Y o].
Step 1: Existence and uniqueness of uR,V,Y o

The subscripts R, V, Y o are omitted for notational convenience. We apply a log trans-
formation of the unemployment rate w (s) ≡ lnu (s). Then, we must proof existence and
uniqueness of a fixed point of the mapping:

Ww (s) = − ln [1 +Aw (s)]

37



where:

Aw (s) ≡ min

"Z c+

c−
m (s, c)Bw (c)

−1 dc,A+
#

Bw (c) ≡ V (c)

Q (c)2

Z s+

s−
m (s, c) l (s) u (s) escds

and where A+ ≡ 1−u−
u− . By construction, Ww (s) ≥ lnu−. Ww (s) is a contraction

mapping if sups |Ww1 −Ww2| < kΩ, with k < 1 and where Ω ≡ sups |w1 − w2|. We have:
|B1 −B2| ≤

¡
eΩ − 1¢B2 ⇒¯̄

B−11 −B−12
¯̄
=

¯̄̄̄
B1 −B2
B1B2

¯̄̄̄
≤ ¡eΩ − 1¢B−11 ⇒

|A1 −A2| ≤
¡
eΩ − 1¢A1 ⇒

|Ww1 −Ww2| =
¯̄̄̄
ln

µ
1 +A2
1 +A1

¶¯̄̄̄
≤ ln

µ
1 +

|A1 −A2|
1 +A1

¶
≤ A1
1 +A1

Ω

where Ai is short hand notation for Awi (s), and mutatis mutandis the same for Bi.We

have: sup
h

A1
1+A1

i
≤ A+

1+A+
< 1. Q.E.D.

Step 2: Existence of R,V, Y o using u = uR,V,Y o

Since the model is invariant to a linear transform of s, see Section 2.1, we can normalize
s+ to zero without loss of generality. Hence sups,c e

sc = exp (s+c+) = 1 and Y o
W ≤ 1. Let

R and V be families of Lipschitz functions on [s−, 0] and [c−, c+] respectively, such that
|R (s+ h)−R (s)| ≤ kRh, where kR ≡ c+Y o

W , and |V (c+ h)− V (c)| ≤ kPh, where
kP ≡ −s−Y o

W . Furthermore, let R, V, Y o ∈ [0, Y o
W ]. Hence, the domain of R,V, Y o

is non-empty, closed, bounded and convex. Clearly, since supsc e
sc = 1 and Y o

W ≤ 1,
TR, TV, TY o ∈ [0, Y o

W ]. The application of the Schauder fixed point theorem on the
mapping T : R,V, Y o → R, V, Y o requires the families R and V to be equicontinuous and
T itself to be continuous.
Equicontinuity of R and V

TR (s+ h)− TR (s) < sup
c

©
max

£
Y oe(s+h)c, V (c)R (s+ h)

¤−max [Y oesc, V (c)R (s)]
ª

≤ sup
c

©
max

£
Y oe(s+h)c

¡
ehc − 1¢ , V (c) {R (s+ h)−R (s)}¤ª

≤ max
h
Y o
W

³
1− e−hc

+
´
, R (s+ h)−R (s)

i
≤ kRh

A family of Lipschitz functions with the same modulus is equicontinuous. The same
argument applies to TV .
Continuity of T : R,V, Y o → R, V, Y o

The proof of the continuity of TR in R and TV in V is exactly similar to Shimer and
Smith (2000: 366). Since R and V enter symmetrically in TR (and the same in TV ),
these proofs are also similar, and mutatis mutandis the same for Y o. The proof of the
continuity of TY o in V is straightforward. Q.E.D.
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A.2 The proof of Proposition 2

Some notation and the continuity of R (s) ,P (c) and x (s, c)
Let the function r0 (s,m) be defined implicitly by:

R0 (s,m) ≡ B +
λβ

ρ+ δ

Z
m

g(c)
£
P (c)F (s, c)−R0 (s,m)

¤
dc (34)

where R0 (s,m) ≡ exp [r0 (s,m)]; p0 (c,m) is defined similarly. Hence:
r (s) = max

m
r0 (s,m) = r0 [s,mc (s)]

The continuity of R (s) and hence r (s) follows from the continuity of F (s, c) and the fact
that type s ± h can always mimic the matching mc (s) of type s. The same argument
applies to P (c). The differentiability of x (s, c) follows immediately. Q.E.D.
Lemma 1: r0s(s,m) > 0, r0ss(s,m) ≥ 0, p0cc(c,m) ≤ 0, with strict inequality if m is
not single valued.
Partially differentiating (34) with respect to s, dividing by R0 (s,m), and differentiat-

ing again yields:

r0s(s,m) =
λβ

ρ+ δ

Z
m

g(c)

·
c
P (c)F (s, c)

R0 (s,m)
− r0s(s,m)

¸
dc (35)

r0ss(s,m) =
λβ

ρ+ δ

Z
m

g(c)

½
c
£
c− r0s (s,m)

¤ P (c)F (s, c)
R0 (s,m)

− r0ss(s,m)

¾
dc

Since g (c) cP (c)F (s,c)
R0(s,m)

> 0, the first equation implies r0s(s,m) > 0. Rewriting the first
equation and substitution of equation (34) yields:

r0s(s,m)B =
λβ

ρ+ δ

Z
m

£
c− r0s(s,m)

¤
g(c)P (c)F (s, c)dc ≥ 0

Define the expectation E[.] and variance operator V[.] for c over the support m with the
density function g (c)P (c)F (s, c) /G, where G =

R
m
g (c)P (c)F (s, c) dc. By the last

equation:

E [c] =
µ
1 +

ρ+ δ

λβG
B

¶
r0s(s,m) ≥ r0s(s,m)

Hence: Z
m

c{c− r0s(s,m)}
g(c)P (c)F (s, c)

R0 (s,m)
dc

≥
Z
m

c{c− E [c]}g(c)P (c)F (s, c)
R0 (s,m)

dc =
G

R0 (s,m)
V [c] ≥ 0

Hence, by the second equation of (35), r0ss(s,m) ≥ 0. If m is not single valued, then strict
inequality applies, since V[c] > 0. The proof of p0cc (c,m) ≤ 0, with strict inequality if m
is not single valued, is straightforward. Q.E.D.
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Part 1: the strict convexity of mc (s) and ms (c) and the uniqueness of c (s) and
s (c)
The strict convexity of the matching sets is proven by the strict concavity of x (s, c)

in s. This requires:

x (s+ h, c)− 2x (s, c) + x (s− h, c) = − [r (s+ h)− 2r (s) + r (s− h)] < 0

Since r0 (s,m) ≤ r0 [s,mc (s)] = r (s):

r (s+ h)− 2r (s) + r (s− h) ≥ r0 [s+ h,mc (s)]− 2r0 [s,mc (s)] + r0 [s− h,mc (s)] ≥ 0

where the last inequality follows from Lemma 1, r0ss (s,m) ≥ 0. Equality requires r0ss (s,m) =
0. We show that r0ss (s,m) = 0 is inconsistent with mc (s) being single valued, which
contradicts Lemma 1. Since x [s, c (s)] maximizes x (s, c) and by the strict concavity of
x (s, c), x [s, c (s)]− x [s, c (s)− h] ≥ 0 and x [s, c (s) + h]− x [s, c (s)] ≤ 0 for any h > 0.
By assumption, x [s, c (s)] ≥ 0, since otherwise mc (s) = ∅. Hence, if x [s, c (s) + h] −
2x [s, c (s)]+x [s, c (s)− h] = 0, then x [s, c (s) + h] = x [s, c (s)] = x [s, c (s) + h] ≥ 0, and
therefore, c (s) + h ∈ mc (s) and c (s) − h ∈ mc (s). Hence, mc (s) is not single valued,
contradicting the condition for r0ss (s,m) = 0. x (s, c) is therefore strictly concave in s. A
similar argument establishes strict concavity in c.30 Hence, ms (c) and mc (s) are convex
and the maxima c (s) and s (c) are unique. Q.E.D.
Lemma 2: the continuity of c− (s) , c+ (s) , s− (c) and s+ (c)
For any interior solution of c− (s), x [s, c− (s)] = x [s− h, c− (s− h)] = 0. By the

continuity of r (s):

lim
h→0

x [s− h, c (s− h)] = lim
h→0

x
£
s, c− (s− h)

¤
= 0

We shall proof that the latter equality holds only if c− (s) is continuous. Since mc (s) is
not single valued, c− (s) < c (s). By the concavity of x (s, c) and the definition of c (s) as
its maximum, x (s, c)− x (s, c− h) > 0 for any c < c (s) and for any h > 0 and hence for
c = c− (s). A similar argument applies to c+ (s) , s− (c) and s+ (c). Q.E.D.
Lemma 3: the continuity of h (s) and g (c)
By the exogeneity of labor supply and by equation (14), h (s) is bounded: 0 < h (s) <

l (s). Hence,
R
ms(c)

h (s)F (s, c) ds is continuous by the continuity of s− (c) and s+ (c).
Moreover, this integral must be strictly positive for equation (13) to have a solution. By
equation (5) and the continuity of q (c) and p (c), y (c) is continuous. Hence, g (c) is
continuous by equation (15). The continuity of g (c) implies the continuity of h (s) by
equation (14) and the continuity of c− (s) and c+ (s). Q.E.D.
Part 2: the twice differentiability of r (s) and p (c), r0 (s) > 0, r” (s) > 0, p” (c) <
0, xss (s, c) < 0, xcc (s, c) < 0

30We use that Y (c) > 0 for a finite η, so that equation (13) holds with equality for all c.
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By Lemma 3, we can apply Leibniz rule to equation (12) and (13). Then, by Lemma
1 and since x [s, c− (s)] = x [s, c+ (s)] = 0 for any interior solution of c− (s) and c+ (s), we
have:

r0 (s) = r0s [s,mc (s)] > 0

Totally differentiating equation x [s, c− (s)] = 0 and since xc [s, c− (s)] 6= 0, see the argu-
ment in the proof of Lemma 3, shows that c− (s) is differentiable for any interior solution,

with c−
0
(s) = −xs[s,c−(s)]

xc[s,c−(s)] . The same applies to c+ (s). Hence, for interior solutions to
c− (s) and c+ (s):

r” (s) = r0ss [s,mc (s)]− 2
(
g
£
c+ (s)

¤ xs [s, c+ (s)]2
xc [s, c+ (s)]

− g
£
c− (s)

¤ xs [s, c− (s)]2
xc [s, c− (s)]

)
Since c+ (s) > c (s) and hence xc [s, c+ (s)] < 0 (and reverse for xc [s, c−(s)]), the term
in curly brackets is negative. Hence, by Lemma 1, r” (s) > 0 and hence xss (s, c) <
0. Whenever matching sets are bounded by the upper support for c, c+

0
(s) = 0, so

that the first term in curly brackets drops out. Mutatis mutandis the same applies to
the lower support of c. Hence, r0 (s) is not differentiable only at the transition points
between interior and exterior solutions. A symmetric argument establishes the twice
differentiability of p (c), with p” (c) < 0 and hence xcc (s, c) < 0. Q.E.D.
Part 3: c−0(s) > 0 and c+

0
(s) > 0 for any interior solution

Since s− (c) is the inverse of either c+ (s) or c− (s), and vice versa for s+ (c), it is suffi-
cient to prove that s−

0
(c) > 0 and s+

0
(c) > 0. Since s−

0
(c) = −xc [s−(c), c] /xs [s−(c), c],

we must prove that xc [s−(c), c] and xs [s
−(c), c] are of opposite sign. By the definition

of s (c), xs (s, c) > 0 for any s < s (c) and hence for s− (c); therefore we have to proof
xc [s

− (c) , c] < 0. By the definition of c (s), xc (s, c) < 0 for any c > c (s). We therefore
have to proof that for any interior s− (c):

c > c
£
s− (c)

¤
(36)

Since c0 (s) > 0, c (s) has a well defined inverse for any interior solution, which is defined
as t (c), with t0 (c) > 0. For any interior solution, inequality (36) can therefore be written
as:

t (c) > s− (c)

which holds if we can show that t (c) ∈ ms (c) for all c. The problem here is to rule
out cases as sketched in Figure 11 where either (s−, c−) or (s+, c+) are not an element
of the matching set because t (c) is not defined along the full support of c. We have:
xc [t (c) , c] = 0. Hence, we must proof that ∀c∃s ∈ ms (c) such that xc (s, c) = 0. Consider
equation (13). Since this equation applies identically, its first derivative with respect to c
must apply. Since xc (s, c) = s+ p0 (c):

0 =

Z
ms(c)

P (c)F (s, c)xc (s, c) ds

41



which provides the proof by the continuity of xc (s, c) in s.31 A similar argument proves
s+

0
(c) > 0. Q.E.D.

Part 4: the differentiability of h (s) and g (c)
Having established the differentiability of c+ (s) , c− (s) , s+ (c) and s− (c), we can re-

peat the argument in Lemma 3 to establish the differentiability of h (s) and g (s). Q.E.D.

A.3 The proof of Proposition 3

Part 1: the integrals in equation (12) and (14)
We have: Z

mc(s)

g(c)

·
P (c)F (s, c)

R (s)
− 1
¸
dc =

Z
mc(s)

g(c)
£
ex(s,c) − 1¤ dc

By Proposition 2, g (c) is differentiable, xc [s, c(s)] = 0, and xcc [s, c(s)] = p00 [c(s)] =
−1/c0(s). Define z ≡ c− c(s), ∆ (s) ≡ c+(s)− c(s), and ∆− (s) ≡ c−(s)− c(s). Then, by
a second order Taylor expansion of the integrand around c (s):Z

mc(s)

g(c)
£
ex(s,c) − 1¤ dc = g

Z ∆

∆−

·
1 +

g0

g
z + o (z)

¸ ·
E

µ
1− 1

2c0
z2 + o

¡
z2
¢¶− 1¸ dz

(37)
where E ≡ ex with x ≡ x [s, c(s)] and where g and g0 are evaluated at c(s) and where c0

denotes c0(s). The arguments of all functions are suppressed for convenience. By a second
order Taylor expansion of x (s, c) around c (s) (again, the first order term drops out) and
since x [s, c (s) +∆ (s)] = x [s, c (s) +∆− (s)] = 0:

x =
1

2c0
∆2 + o

¡
∆2
¢

(38)

∆2 = 2c0 [x+ o (x)]

and the same for ∆−. Hence:

∆2 + o
¡
∆2
¢
= ∆−

2

+ o
³
∆−

2
´
⇒ ∆−∆− = o(∆)

Substituting these results in equation (37) yields:

31Note that this argument applies only because K does not depend on c. Alternatively, when K would
depend on c, we can prove Part 4 for the case B = 0, starting from c− (s), applying the inverse of s (c),
and showing that this inverse is element of mc (s) by differentiating the Bellman equation for the worker.
WhenK depends on c and B > 0, we cannot rule out the case that (s−, c−) does not belong the matching
set. The interpretation is that low skilled workers have a comparative advantage in search.
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g

Z ∆

∆−

·
1 +

g0

g
z + o (z)

¸ ·
E

µ
1− 1

2c0
z2 + o

¡
z2
¢¶− 1¸ dz

= g

·
(E − 1) (z + o(z))− 1

2c0
E

µ
1

3
z3 + o

¡
z3
¢¶¸∆

z=∆−

=
1

2c0
g

·
2

3
z3
¸∆
z=−∆−

+ o
¡
∆3
¢
=
2

3c0
g∆3 + o

¡
∆3
¢

Squaring the final expression and applying (38) yields the first equation of Part 1. By a
similar argument: Z

mc(s)

g(c) dc = g

Z ∆

∆−

·
1 +

g0

g
z + o (z)

¸
dz

= g [z]∆z=−∆− + o (∆) = 2g∆+ o (∆)

Squaring the final expression and applying (38) yields the second equation. Q.E.D.
Part 2: the integral in equation (13)
The proof is exactly similar to that of the first equation of Part 1, integrating over s

instead of c, and replacing g (c) by the composite function [h (s)R (s)]. Q.E.D.

A.4 The proof of Proposition 4

Step 1: Substitution of the integrals of Proposition 3
We square the equations (12), (13), and (14), where equation (13) is evaluated at

c = d (s), so that s (c) = s [d (s)] = s and that s0 (c) = d0 [s(c)]−1. Substitution of the
expressions for the integrals from Proposition 3 and using the definitions of B∗ (s) and
K∗ (s) in Proposition 4 yields:

B∗ (s)2 =
32

9

µ
λβ

ρ+ δ

¶2
g [c(s)]2 c0 (s) {x∗ (s) + o [x∗ (s)]}3 (39)

[l(s)− h(s)]2 = 8

µ
λ

δ

¶2
h(s)2g [c(s)]2 c0 (s) {x∗ (s) + o [x∗ (s)]}

K∗ (s)3 =
32

9

µ
λ(1− β)

ρ+ δ

¶2
h(s)2d0 (s)−1

©
x+ (s) + o

£
x+ (s)

¤ª3
where x+ (s) ≡ xo [d (s)].
Step 2: x+ (s) = x∗ (s) + o

£
x∗

0
(s)
¤

Since x∗ (s) ≡ x [s, c (s)] and since xc [s, c (s)] = 0, x∗
0
(s) = xs [s, c (s)]. Since

xs [s, d (s)] = 0 and xsc (s, c) = 1, a Taylor expansion of xs (s, c) with respect to c in
c (s) yields:

x∗
0
(s) = xs [s, c (s)] = xsc [s, c (s)] [c (s)− d (s)] = c (s)− d (s) (40)
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ATaylor expansion of x (s, c) in c (s), using the definitions of x∗ (s) and x+ (s), xc [s, c (s)] =
0, and equation (40) yields:

x+ (s) = x∗ (s) +
1

2
xcc [s, c (s)] [c (s)− d (s)]2 + o

£
[c (s)− d (s)]2

¤
(41)

= x∗ (s) + o
h
x∗

0
(s)
i

Q.E.D.
Step 3: Simplification of the system (39)
We drop the argument s from all functions for the sake of convenience. From equation

(40): d0 = c0− x∗”. By the equations (39) and (41) and the definition of Q in Proposition
4 we have:

1

2

µ
QB∗K∗

l − h

¶2 ¡
c0 − x∗”

¢
= (x∗ + o [x∗])2

³
x∗ + o [x∗] + o

h
x∗

0
i´3

(42)

h

l − h
=

2

3

δβ

ρ+ δ
B∗−1 (x∗ + o [x∗])

g [c (s)]
p
c0 (c0 − x∗”)

l − h
=

2

3

δ (1− β)

ρ+ δ
K∗−1 (x∗ + o [x∗])

Note that the equations in (42) are differential equations in s.
Step 4: x∗0 (s) = O [x∗ (s)] solves equation (42)
Observe that λQ = 9

8
(ρ+δ)2

δβ(1−β) does not depend on λ. Hence:

lim
λ→∞

λ2x∗
5

=
1

2

µ
λQB∗K∗

l − h

¶2
c0

solves first the differential equation (42) for lim
λ→∞

, since differentiating this solution with

respect to s shows that x∗
0
= x∗” = O [x∗]. Q.E.D.

Step 5: l(s)− h (s) = l(s) {1 +O [x∗ (s)]}
Inspection of the second equation of (42) proofs this result directly. Q.E.D.

Proof of Proposition 4:
Substitution of Step 4 and 5 in equation (42) yields Proposition 4. Q.E.D.

A.5 The planner’s problem

Since the optimization problem is dynamic, all policy functions are extended with a time
index.32 A bar on top of a function denotes its value in the social planner’s optimum.
32Since matching sets are also time dependent, s ∈ ms (c, t) does not necessarily imply s ∈ ms (c, t+ h),

h > 0. For example, in Shimer and Smith (2001b) the optimal policy exhibits cycles, since the planner
periodically destroys a subset of matches to change the composition of the searching population. We
simplify the social planner’s problem by ruling out this type of separations a priori.
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Let m̄ (s, c, t) be an indicator function with m̄ (s, c, t) = 1⇔ s ∈ m̄s (c, t) and m̄ (s, c, t) =
0⇔ s /∈ m̄s (c, t). Define J (s, c, t) as the net discounted value of the future output of all
matches of worker type s and job type c which start at time t:

J (s, c, t) ≡ λm̄ (s, c, t) h̄(s, t)ḡ(c, t)P̃ (c, t)F (s, c)

P̃ (c, t) ≡
Z ∞

t

P̄ (c, τ)e−(ρ+δ)τdτ

The social objective function reads:

max

Z ∞

0

e−ρt
ÃZ s+

s−

Z c+

c−
J (s, c, t) dcds+B

Z s+

s−
h̄(s, t) ds−K

Z c+

c−
ḡ(c, t) dc

!
dt

subject to the dynamic constraint:

.

h̄(s, t) = δ
£
l(s)− h̄(s, t)

¤− λ h̄(s, t)

Z c+

c−
m̄ (s, c, t) ḡ(c, t) dc (43)

Assume that there exists a stationary optimum and restrict our attention to this opti-
mum.33 Hence, we can suppress the time dependence of variables in the notation and we
can simplify eP (c, t) = (ρ+ δ)−1 P̄ (c, t). The current value Hamiltonian with the current
value Lagrange multiplier eR (s) for the dynamic constraint (43) reads:

H =

Z s+

s−

Z c+

c−
J (s, c) dcds+B

Z s+

s−
h̄(s) ds−K

Z c+

c−
ḡ(c) dc

+

Z s+

s−
eR (s)(δ £l(s)− h̄(s)

¤− λ h̄(s)

Z c+

c−
m̄ (s, c) ḡ(c) dc

)
ds

First, consider the contribution of vacancies of type c. The objective function can be
written as the integral of Hc (c) over c plus a term that does not depend on ḡ (c), where
Hc (c) is defined as:

Hc (c) ≡
Z s+

s−
J (s, c)− λm̄ (s, c) h̄ (s) ḡ(c) eR (s) ds−Kḡ(c)

The first order condition for ḡ(c) is:

∂Hc (c)

∂ḡ(c)
= 0 (44)

33As demonstrated by Shimer and Smith (2001b), see the previous note, this assumption is by no means
innocuous. An optimal policy might be cyclical. This issue falls outside the scope of this paper.
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Next, consider the rules for optimal matching. The objective function can be written as
the integral of Hs (s) over s plus a term that does not depend on h̄ (s) and eR (s), where
Hs (s) is defined as:

Hs (s) ≡
Z c+

c−
J (s, c) dc+Bh̄ (s) + eR (s)(δ £l(s)− h̄(s)

¤− λ h̄(s)

Z c+

c−
m̄ (s, c) ḡ(c) dc

)

where h̄(s) is the state variable and m̄ (s, c) is the control variable. In the steady state,

where
·eR(s) = 0, the costate equation and the first order condition imply:

∂Hs (s)

∂h̄(s)
= ρ eR (s) (45)

m̄ (s, c) = {1 if F (s, c) eP (c) ≥ eR (s)
0 if F (s, c) eP (c) < eR (s)

Equation (23) and (24) follow from (44) and (45).

A.6 The respecification in terms of s∗ and c∗

We look for a specification of q (c) which satisfies the assumption of a constant complexity
dispersion parameter. It is convenient to start with the case η =∞, since then: pW (c) =
q (c). The following specification satisfies our requirement:

q(c) =
1

γ
ln (γc) (46)

where γ > 0 and c−> 0. Equation (46) applies identically, and hence its first derivative.
Then, using p0W [c (s)] = −s, we have p0W [c(s)] = 1

γ c(s)
= −s, or c(s) = − 1

γs
, for s+ < 0.

Integrating r0W (s) = cW (s) and applying the zero profit constraint pW (c)+sc−rW (s) = 0
yields the locus of log reservation wages in a Walrasian world:

rW (s) = −1
γ
ln (−s)

It is convenient to transform both s and c: s∗ ≡ − ln (−s) and c∗ ≡ ln c. This yields
linear relations for c∗W (s

∗) and rW (s
∗):

c∗W (s
∗) = s∗ − ln γ (47)

rW (s
∗) =

1

γ
s∗

For η 6=∞, q (c) can be derived straightforwardly from equation (5).

46



B Figures
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Figure 1: Walras versus search frictions for a job type c
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Figure 2: Taylor approximation of the surplus for a given worker type s
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Figure 3: The aggregate equilibrium

48



s

c

Figure 4: Matching sets for λ = 2500 and η = 0
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Figure 5: Matching Sets for λ = 39, η = 0
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Figure 6: Price relative to Walrasian equilibrium for λ = 2500 and η = 0.
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Figure 7: Matching sets for λ = 2500 and η =∞
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Figure 8: Matching Sets for λ = 39, η =∞
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Figure 9: Output relative to Walras for λ = 2500, η =∞
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Figure 10: Output relative to Walras for λ = 39, η =∞
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Figure 11: The case where t (c) is not defined along the full support of c.
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C Tables

Table 1: Aggregate outcomes for different values of λ and γ
γ λ 2, 500 625 156 39
5 stdev r 0.653 0.685 0.732 0.780

loss (in %) 5.6 9.6 16.8 28.9
u (in %) 1.6 3.0 5.7 11.2
g (in %) 3.8 6.4 10.6 16.5

3 stdev r 0.627 0.649 0.679 0.714
loss (in %) 4.9 8.8 15.1 26.0
u (in %) 1.4 2.5 4.7 9.2
g (in %) 3.5 5.8 9.6 15.2

Note: Simulations for η = 0, loss is output loss (in logs) due to search frictions
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Table 2: Simulation results for different worker skill groups, η = 0, γ = 5
λ s∗ -2 sd -1 sd mean +1 sd +2 sd
∞ r(s∗) −1.2 −0.6 0 0.6 1.2

2500 u(s∗) (in %) 5.3 1.9 1.1 1.0 1.4
r(s∗) −1.48 −0.77 −0.10 0.55 1.22

x(s∗) (in %) 18.4 9.0 6.1 5.8 8.5
error x(s∗) % −8.21 −3.86 0.30 −1.68 2.83
error u(s∗) % −1.17 0.16 0.65 0.41 0.58

625 u(s∗) (in %) 10.8 3.5 2.0 1.8 2.5
r(s∗) −1.64 −0.88 −0.18 0.51 1.21

x(s∗) (in %) 31.2 16.0 10.8 10.5 14.7
error x(s∗) % −12.21 −4.58 −0.82 1.15 2.07
error u(s∗) % −3.9 −1.2 −0.8 −1.1 −0.6

156 u(s∗) (in %) 23.0 6.9 3.7 3.3 4.3
r(s∗) −1.89 −1.08 −0.31 0.43 1.20

x(s∗) (in %) 52.2 28.6 19.6 18.6 26.1
error x(s∗) % −14.19 −7.27 −1.94 0.27 3.35
error u(s∗) % −6.31 2.15 2.34 3.88 4.44

39 u(s∗) (in %) 45.6 14.6 7.4 6.1 7.7
r(s∗) −2.14 −1.39 −0.55 0.28 1.15

x(s∗) (in %) 80.1 49.8 35.5 34.1 45.5
error x(s∗) % −14.65 −13.30 −5.65 −0.44 1.53
error u(s∗) % −30.44 0.73 3.18 3.83 4.14
Note: sd is standard deviation, skill distribution is normal.
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D Sufficient conditions for a non-trivial equilibrium
(not to be included in the paper)

When the value of leisure B and/or the cost of a vacancy K are too high, the matching
set of some of the worker types will be empty because the value of output does not exceed
the value of leisure or alternatively, their reservation wage is too high for firms to recover
their vacancy costs when matched with them. We present a sufficient condition for non-
empty matching sets for all worker types, for the case η <∞34. For a sufficient condition,
consider the case where the skill distribution is such that all worker types are of the lowest
skill type s−. This is the worst possible case due to the fact that high skilled workers have
an absolute advantage at all job types so that their value of search is more likely to exceed
B. Consider the limiting case for which equation (13) is satisfied with equality subject to
the constraints: R(s−) > B. and 0 ≤ h(s−) ≤ 1. This limiting case sets R(s−) = B and
h(s−) = 1. Hence,

K <
(1− β)λ

ρ+ δ

£
P (c)F (s−, c)−B

¤
which has to apply for all c. Hence, P (c)F (s−, c) has to be constant in the critical case,
say P (c)F (s−, c) = A. An expression for A can be derived from the cost function per
unit of output that goes with the production function (4). Hence, the sufficient condition
for all s types to have non-empty matching sets reads:

K <
(1− β)λ

ρ+ δ
[A−B] (48)

A1−η ≡
Z c+

c−
exp

£
(η + 1) q (c) + (η − 1) s−c¤ dc

34The condition for η =∞ follows from a simple generalization of the subsequent argument.
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