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Abstract

Motivated by the problem of setting prediction intervals in time series analysis,
this investigation is concerned with recovering a regression function m(X;) on the
basis of noisy observations taking at random design points X;. It is presumed that
the corresponding observations are corrupted by additive serially correlated noise
and that the noise is, in fact, induced by a general linear process. The main result
of this study is that, under some reasonable conditions, the nonparametric kernel
estimator of m(x) is asymptotically normally distributed. Using this result, we
construct confidence bands for m(x). Simulations will be conducted to assess the

performance of these bands in finite-sample situations.
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1 Introduction

Let (X1,Y7), (Xo,Y2), ..., (X,, Y,) be a strictly stationary bivariate random data sampled
either with stochastic design random variables X;, Xs,..., X,,. In the stochastic design
model, (X1,Y7),(Xs,Y2),...,(X,,Y,) are identically distributed as a bivariate random
variable (X, Y’) with values in IR x IR. We suppose that (X,Y") admits a density function

g(z,y). Then, we may define the functional parameters

fla) = / o(op)dy, zeRR,

p(z) = /yg(x,y)dy, z€R,

and

m(z) = ¢(x)/f(z), it f(z) >0 (1)

We will say that m(z) is the regression function of Y given X = z. The problem is to

construct an estimator of m based on the data (X;,Y;), 1 <t < n, such that
Here the noise process {u;} is defined by the stochastic difference equation

w=> M€y, t=0,%1,42,... (3)
i=0

where Ag=1, > 7 |\i| < 0o and {&,t > 1} is a sequence of independently and identically
distributed (i.i.d.) random variables such that E(e;)=0 and F(e?) = o? < oo. This
setup covers virtually all commonly used time series models including the well-known
autoregressive moving average (ARMA) models.

In classical parametric models, m belongs to a known parametrized class of functions.
If this class is not correctly specified, the parametric analyses may lead to misinterpreta-
tions of the underlying functional relationship. For complex relationships, nonparametric
approaches provide a more flexible alternative. A large class of nonparametric estimators

of m(x) is given by
M () =Y wn(2)Y5, (4)
=1
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where {w,,(z)},t =1,...,n, are weight sequences depending on the distance between the
argument z, the vector of regression observations Y; and on the number of observations.
A variety of weight functions exists such as kernel weights, splines, and orthogonal series
smoothing; see, e.g., Hardle (1990). For the kernel regression estimator, we use the so-
called Nadaraya-Watson estimator. As for the density, the method uses a convolution
kernel which regularizes the empirical measures. Let () be the Dirac delta function.

Consider the empirical measure

1 n
M= b
t=1

and its marginal distribution

1 n
Hn = n Z O(x0)-
t=1

A regularization of A\, and u, by convolution leads to natural estimators of f,, and ,:

1 - Z’—Xt
=YK () eem

and

1 — r— X,
= -_— Y
() nhn;m( . ) rET,

where K is a strictly positive density function and where {h,} is a smoothing parameter
which satisfies

lim A, = 0.

n—0o0

Consequently, the kernel estimator of m(z) is defined, for each z € R, as
mn(z) = on(z)/fn(2) ()
= ) wnl)Y;
=1

where

(@) = K (az ;nXt) /]zn;K (x ;an> .

Note that if K is not strictly positive, definition (4) must be completed; i.e. if f,(z) =0,

one may choose
n

1
ma(@) = 2> Y,
t=1



which is clearly more natural than the arbitrary m,(z) = 0 used by many authors.

The basic fixed-design stochastic sequence model is not new. In the case of indepen-
dent noise, it goes back to Priestley and Chao (1972), Gasser and Miiller (1979), Michels
(1992), Hurvich and Simonoff (1998) and others. When the errors are dependent, the
estimation problem generally becomes more difficult to handle. Chu and Marron (1991)
have considered the case where the noise process follows an ARM A process. However,
they were concerned with bandwidth estimation, not convergence of the regression esti-
mate. Truong (1991) obtained optimal rates of kernel estimators based on local averages.
Hérdle and Tuan (1986) and Truong (1991) studied the case where the noise process is a
general linear process. When the u;’s satisfy the strong mixing (or c-mixing) conditions,
a suitable normalized version of m,(x) has been shown to be asymptotically normal by
Roussas, Tran and loannides (1992). Further, Burman (1991) constructed a spline esti-
mate of the regression function and obtained its rate of convergence. Also, in the case
of fixed-design regression and serially correlated noise process, Tran, Roussas, Yakowitz
and Truong Van (1996) showed the asymptotic normality of m,,(z) — E(m,(x)). However,
within applied econometrics and time series analysis models with one or more random
input series X; are commonly used. Examples include transfer function noise models
and dynamic regression models. In the random-design case, Truong and Stone (1992)
and Tran (1993) obtained optimal rates of convergence of local average estimators under
a-mixing conditions. Roussas and Tran (1992) have established asymptotic normality of
recursive regression estimators under related conditions.

In this paper, we investigate the asymptotic behaviour of the estimator m,,(z) in the
case {X;} is a strictly stationary discrete-time stochastic process and the noise process
{u;} are serially correlated. The main result of this study is that, under some reasonable
conditions, m,(z) is asymptotically normally distributed. Using this result, we construct
a confidence band for m(z). Simulations will be conducted to assess the performance
of these bands in finite-sample situations. Owur results are applicable to a variety of
nonparametric functions classes under different correlation structures of the noise process.

The organization of this paper is as follows: in Section 2 we present the assumptions
and conditions under which the main theorem is true, followed by the statement of the

main result. The useful and relevant technical lemmas needed for proving the main result



are given in Section 3. Section 4 contains simulations results for two confidence bands
for m(x) for nonparametric regression with a random X; and serially correlated errors.

Finally, two empirical examples are given in Section 5.

2 Assumptions and statement of main result

The assumptions under which the result in this paper is derived are gathered together
below for easy reference. It will be usually indicated which of these assumptions are used

in the various steps of derivations.

Assumptions on the stochastic process:
(H1) B(Y? X, =.) <oo; |EB(Y2| X, =.)] <oo,Vt > 1
(H.2) The function m is bounded. Further the functions m and f are twice differentiable,
and the partial derivatives are bounded and continuous.
(H.3) The variables X; and u; are independent.
(H.4) 22750 [Nl < o0, D275 AF < o0.
(H.5) {et, > 1} is a sequence of i.i.d. random variables such that E(e;)=0 and
i) =

E(e

Assumption on the kernel:
(K.1) The function K is bounded such that y?K(y) — 0 when y — oo,
Jo K (y)dy < oo, and [20 y* K (y)dy < oo

Assumption on the bandwidth:

(M.1) nh,, — oo and nh> — 0 when n — oo.
We now proceed with the formulation of the main result of the paper.

Theorem 1. Let x € IR. Suppose assumptions (H.1)-(H.5), (K.1), and (M.1) hold.
Then

Vil {m(z) —m(@)} 4 N(0,1). (6)
\/0—2(21 o )7 S KA (y)dy




Let us mention an important consequence of the above theorem.

Corollary 1.  Let x € C' a compact set in IR. Suppose that assumptions (H.1)-(H.5),
(K.1), and (M.1) hold. In addition we assume that the following assumptions are satisfied
(C.1) K satisfies the Lipschitz condition; (C.2) nh,/Logn — oo; and (C.3) the € ’s are
i.i.d. N(0,1) distributed. Then
Vil (o)~ m(@)} o,
Ve [ K W)y

where sz =n"t >0 (Y — mu(Xy))2

N(0,1), (7)

3 Some intermediate results

In this section, some additional auxiliary results are derived, necessary to establish the

asymptotic normality of m,,. First we introduce some new notations. For ¢t = 1,...,n
we define
. 1 o—X U
Unile) = - K(Z0), = Vi (U Ur o))}
. 1 r— X, v
Vile) = K=y, = VhlV; Vo)),

and

Now, let

be a positive definite matrix.



Next we have to study the asymptotic normality of Z,(z), and to compute its asymptotic

variance-covariance matrix. So, we need the following lemma.

Lemma 1. Under (H.2), (K.1) and (M.1), for every continuity point x of f, v € C(f),
(a) lim, o E(U3,(2)) = f(z) [ K*(y)dy;
(8) Ty oo E(V2,(2)) = f(2) BORIX, = 2) [ K(g)dy;

(¢) limysoo E(Uns(2)Vai(2)) = f(z)m(z) [ K*(y)dy = o(x) [ K*(y)dy

Proof. The results (a), (b), and (c) follow directly using Bochner’s lemma; see, e.g.,
Roussas (1990, Proposition 2.1). []

The next result concerns the asymptotic normality of Z,(x).

Lemma 2. Letz € IR. Under (H.1)-(H.5), (K.1) and (M.1)
Zy(x) % N(0, A(x)),

where N(0, A(x)) denotes a bivariate normally distributed random variable with mean 0

and variance A(z).

Proof. The basic idea of the proof is to establish the conditions for the application of
the version of the Central Limit Theorem given by Liapounov (see, e.g., Loeve 1955,
p. 275), and the Cramér-Wold theorem (see, e.g., Rao, 1973). Let ¢ = (¢1,¢2)" be a
2 x 1 column vector where (cy,c;) € IR? such that ¢ + ¢ # 0. Fort = 1,...,n, let
on () = Var(dWhy(z)) and p} () = E(|¢Why(2)]?). Assume op(z) = >, 0p,(2)

and pj(z) = >, pb (). Using Lemma 1, we have

lim o2, () = Ef(x) / K2 (y)dy + Ef () E(Y?|X, = ) / K2(y)dy

n—oo

—|—20162f /K2
= dA(x)e. (8)

Now, using Bochner’s lemma and the assumptions (H.1) and (K.1) we get

E(|Uns (2)]) ~ bV f (2) / K3(y)dy
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and hence

E(|Una(2)) = O(h,'?).

n

Similarly, we have
E([Voi (2)) ~ b2 () E(Y2|X, = ) / K (y)dy.
Thus,

E(|Vaa(2)]’) = O(h,*?).

n

Consider now p2(x):

Pn(x) = nE(|dWr(2)])
< lealrE(Uni ) + leal*nE(|Vial)

+3lerGnE(|Una Vi l) + 3cilealnE(|U  Vaal).

The above two results and some elementary calculations give p2(z) = O(nhn Y %). Expres-
sion (8) implies that o3 (x) = O(n*?). Thus, using assumption (M.1), we obtain

3
i Pol®) g

= N1 =
woe o3(x) oo Vah,

0.

Thus, we established the conditions for the application of the version of the Central Limit

Theorem given by Liapounov. Then we can say that
¢ Zp(z) =n 12 Z Wyi(x)
t=1

converges in law to a normal distribution with mean 0 and variance ¢ A(z)c. The proof

of Lemma 2 is completed by using the Cramér-Wold theorem. []

Now, we have to prove that Z*(x) is asymptotically normally distributed. We begin by

proving the following lemma.

Lemma 3.  Let assumptions (H.2), (K.1) and (M.1) hold. Then for (z,y) € IR*, we

have

lim (nhy,) {E(U; () = f(2)} =0,
lim (nh,) 2 {E(V; (2)) = ¢(2)} = 0.

n—oo



Proof. By direct computation, it can be easily shown that

(nha) *{B(Uyy (2)) — f(2)} = O(nhj)"?
(nha) {E(V () — @(2)} = O(nh;)' /2.

The proof is completed by using (M.1). [

According to the above result and Lemma 2, we have the following lemma.
Lemma 4.  Suppose assumptions (H.1)-(H.5), (K.1) and (M.1) are satisfied. Then

Z*(z) =% N(0, A(z)).

Proof.
Zn(x) = Zn(x)+ (Z,(2) = Zn(z))
EU: —
— Z.(2) + \/n_hn ( nl(x)) f(z)
E(Vyi(z) — ¢(x)
The proof is completed by using Lemmas 2 and 3. []

We now prove Theorem 1 of this paper.

Proof of Theorem 1. The proof uses the Mann-Wald Theorem (see Rao (1973), p.
388). Let the function H : IR* — IR defined by H(y1,¥2) = y2/y1, with 1 # 0, and let

o= | 79 ama = [ @

o(z) on(z)

Using the notation introduced at the beginning of this section:

% Z?:l U;,t(x)

T = | "
EZt:l Vr:t(x)



Now, we can write

Zy(x) = (nhy)*(Ty(2) - 0(x)).

n

Hence
(nhn) " {mn(z) — m(z)} = (nhy)*{H(T,(x)) — H(0(x))}.

Using Lemma 4, we have v/nh,(T,,(x) — 0(x)) 2, N(0, A(x)) and applying Mann-Wald’s
theorem (or the 6-method), it follows that (nh,)Y?{m,(z) — m(x)} converges in law to

the normal distribution with mean 0 and variance V' (x) defined by
V(z) = D'(z)A(z)D(z),

where D(z) be the column vector of partial derivatives of H with respect to 6(z), i.e.
plz) 1Y
o = (-5 L)
@ 7@ T

= ﬁ( — m(z) 1>,.

Now, V(z) is given by
Vi) = {BOFIX: = a) = mw) ) [ K0y

Furthermore, we have

E(Y? X, = 2) —m*(z) = B{(m(X,) + w)*| X, = 2} — m*(x).
Since the variables X; and u; are independent and F(u;) = 0 V¢, we have

E(Y7| X, = z) — m*(2) = E(u}).
Then, with E(uf) = 0?(>.°, A7), we have
V(o) = 07 [ Ky

which completes the proof. []



Proof of Corollary 1. First, we have to prove that s> —- ¢23°°° A2, Obviously, s

n

can be written as follows

n n

spo= 0T Yy (Yi—m(X)P+nTt Yy (m(Xo) —ma(X,)))*

t=1 t=1

+2n" 12 (Y; - (m(X;) — ma(Xy)). (9)

Using Proposition 7.3.5 of Brockwell and Davis (1996) we get for the first term on the
right-hand side of (9)

nt Z(Y; —m(X;))? =n"? Z u? 2 o2 Z A2,
t=1 t=1 =0

Now, we show that the remaining two terms converge to 0 in probability. Clearly, the

second term of (9) can be written as

n

n! Z —my (X)) =n" Z(m(Xt) — E(my,(Xy))?

7S (ma(X0) — E(ma(X0)* 42070y (m(X) — E(ma(X,)) (ma(X,) — E(ma(X0).

t=1

Using Bosq (1996, Theorem III.1) it follows that

sup (m(m) - E(mn(x))>2 = sup ([%ig(m) +o(hy,) + O(nLhn)QD2

zeC zeC
where
d*>m  dLog fdm )
{w) = (de * dz %) (x)/t K(#)dt
and

sapmae) ~ Bl = sup [ [ Ry +o(0+ )]

where v(z) = V(Y|X = z) that is bounded using assumptions (H.2), (H.4) and (H.5).
So, under assumption (M.1), the term n~! >~  (m(X;) — E(m,,(X;))? converges to 0 and
nTt T (ma(Xe) — E(my,(X)))? converges to 0 in probability.

Now

n

0=t 2 (m(X0) = B(ma(X0)(ma(X2) — B(ma(X,)))| <

t=1

sup |m(z) — E(ma(z))

sup |ma(z) — E(mn(x))‘. (10)

zeC

10



Using Bernstein-Fréchet inequality, under assumption (C.2), the second term on the right-

hand side of (10) tends to 0, i.e.,

sup |my,(z) — E(my(z))| == 0.
zcC n—00

So the second term of (9) converges to 0 in probability. Now we consider the third term
on the right-hand side of (9)

n n

nTt Y (Y= (X)) (m(Xy) = ma(X0) = 0Tt w(m(X) = ma(Xy)
< ilellc) m(z) — mn(:c)‘ nt Zut.

If ~(.) is the autocovariance function of {u;}, then for any non-negative integer k, |y(k)| =

| Dm0 ANk < /Do A/ > A2y Under assumption (H.4), D777 A7, "% 0. So
|y (k)| "% 0. We now apply Theorem 5 of Gihman-Skorokhod (1980, p. 158). The process
{u;} is ergodic, so n 1 S0 uy = E(u;) = 0. Moreover, sup,.q |m(x) — mu(x)| - 0.
So, 17 Yy (Y — m(X0)) (m(X) — ma(X,)) 0.

Hence, we have
syt a® Y N (11)
i=0

Now it is clear that

Vilifma(s) ~mi@)} SN [ K

= X

Ve K w)dy Ve [ K W)y

S/

NCOVATY

. S/

According to Theorem 1, term (B) is asymptotically normally distributed. From (11),
term (A) converges to 1 in probability because 1/ f,,(x) converges in probability to 1/ f(z);
see, e.g., Bosq and Lecoutre (1987). The proof of Corollary 1 is completed by using

Slutzky’s theorem. ]
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4 Simulations

To assess the performance of the confidence bands that can be constructed from Theorem
1 and Corollary 1 in Section 2, we conduct a Monte Carlo experiment. Two sets of

regression functions will be considered:
I1) m(X,) = 2.3exp{—3X?}.

Function I) is taken from Chu and Marron (1991) and Tran et al. (1996). The regressor
i.4.d.

X; is sampled from the AR(1) process X; = 0.5X;_1 + & with & '~ N(0,1). For {u;}

we choose the following two processes:

a) AR(1) process: u; = ¢uy_1 + € with ¢ Rt N(0,1) and |¢| < 1;

i.49.d

b) MA(1) process; u; = €; + 0¢;—q with ¢, ~" N(0,1) and |0] < 1.

Simulation results will be reported for samples sizes n=100, 200, 300, 500, and 1000.
For a single replicate sample of the regression function m,,(X;), =100 replicates of the
noise process {u;} are generated. Then we obtain the estimate of the nonparametric
regression of n equally spaced values X1y, X(2), ..., X5 in the (0, 1] interval, where X ;) =
min(X;) + (i — 1) x (range(X;)/n) with (i,t =1,...,n). Next, the whole experiment is
repeated until altogether N=100 replicates samples of the regressor m,,(X;) are generated.

As a measure to evaluate m,(x) we compute for each replicate of the regression function
the Averaged Squared Error (ASE)

100 n

ASE(N 100n >N {mi (X)) —m(X@)), (N =1,...,100),

r=1 i=1
where 7 is the replicate number of the noise process. In addition the overall average of
the ASE(N)’s is computed, i.e. ASE =100""3.3°, ASE(N).
To assess the performance of the confidence bands defined by Corollary 1, we record

the proportion of times the true regression values m(X;) are contained in the confidence

bands
Ma(X0) £ Zasuy | / K2(y)dy//nhmfa(@) (12)

12



where z, is the 100(1 — a)th percentile of the standard normal distribution. For a=0.05
and a=0.1, we also compute the average (over the N=100 replicates) of these empirical
coverage probabilities. For the estimation of m(z) the Gaussian kernel function is used
throughout the calculations which implies that [ K?(y)dy = 1/2y/7 in Corollary 1. The
bandwidths are chosen by using h,, = 1.06n~1/%5,, where &,, is the estimated standard

deviation of the series X;.

| Table 1 about here|

Table 1 shows the empirical coverage probabilities for the particular case {u,} follows
a white noise (WN) error process, an AR(1) process with parameter ¢=0.5, and an MA(1)
process with parameter #=0.5. It is evident that as n increases, the empirical coverages
approach the nominal probabilities. For the WN case, we can see that at n=1000 the
empirical coverages are nearly nominal coverages for both regression functions. However,
for the AR(1) case with n=1000 the results are still far from desired. On the other hand,
the empirical coverage probabilities in the MA(1) case improve very gradually with sample

sizes increases.

|Figure 1 about here|

Examination of Figure 1.a clarifies the differences between the nominal and empirical
coverage probabilities in the AR(1) and MA(1) case. There, for model I), a=0.05, and
n=300, 500, and 1000, we plotted the curves of the empirical coverage probabilities versus
the AR(1) error process parameters ¢ = —0.95, —0.90,...,0.95. Figure l.a also contains
a conservative 95% critical region about the nominal confidence level, indicated by two
dash-dotted (practically horizontal) lines, and computed as 0.95 £ 2 x SD(cov), where
SD(cov) is the standard deviation of the overall (averaged over N=100 replicates and
for n=1000) empirical coverage probabilities at each AR parameter value ¢. This critical
region provides a quick means of determining whether any of the empirical coverages are
significantly different from the nominal level at the 5% level. As can be noted from Figure
1.a the difference between the nominal and empirical coverage probabilities is not greater
than 5% if the values of the AR parameters ¢ are within the range [-0.75,0.0]. Thus if we

approximate the MA(1) error process in Table 1 by an AR(1) error process with ¢=-0.5,

13



Table 1: Empirical coverage probabilities and overall ASE (multiplied by 10%) for the
particular case {u;} follows a white noise error process, an AR(1) process with parameter
¢=0.5, and an MA(1) process with parameter §=0.5, for models I) and II), and for various

sample sizes n.

Noise n Regression function I) Regression function II)
process Nominal coverage (%) Nominal coverage (%)
95 90 ASE 95 90 ASE

WN 100  0.924 0.864 326.121 (28.208) 0.952 0.904 271.651 (23.266)
200 0.929 0.870 180.705 (12.286)  0.956 0.910 150.052 (10.927)
300  0.930 0.871 128.512 (9.102) 0.956 0.911 106.556 (7.238)
500  0.932 0.874 83.903 (5.950) 0.959 0.914 69.437 (4.331)
1000 0.932 0.874 46.519 (2.777) 0.961 0.917 36.754 (2.187)

AR(1) 100 0.840 0.761 657.224 (49.053) 0.862 0.786 602.797 (44.351)
200  0.862 0.787 340.593 (24.430) 0.885 0.812 310.099 (23.609)
300  0.867 0.793 236.688 (17.035) 0.889 0.819 215.034 (15.746)
500 0.881 0.808 147.104 (9.294) 0.904 0.835 132.773 (7.909)
1000  0.890 0.820 78.824 (4.075) 0.915 0.850 68.904 (3.757)

MA(1) 100 0.889 0.819 489.721 (38.332)  0.914 0.849 435.254 (34.356)
200  0.900 0.834 261.243 (17.583) 0.925 0.865 230.765 (16.608)
300  0.904 0.837 183.464 (12.711)  0.928 0.869 161.719 (11.093)
500 0.912 0.847 116.931 (7.895) 0.935 0.878 102.535 (6.334)
1000 0.916 0.853 63.504 (3.604) 0.941 0.887 53.691 (3.149)
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the empirical coverage probability will lie within the above critical region. As expected if ¢
approaches the stationary boundary, the discrepancy between the nominal and empirical
coverage probabilities increases. At ¢=0.95 the empirical coverage probabilities are as
low as 0.773, 0.799, and 0.829 for respectively n=300, 500 and 1000. The effect of sample
size on the differences between the nominal and empirical coverage probabilities becomes
more apparent as ¢ — 1. If n=300 the potential difference is about 18.6% whereas
for n=1000 it is only 12.7%. Both these percentages may be a cause for some concern.
Nevertheless evidence of much larger differences (> 20%) have been reported in many
practical situations; see, e.g., Donaldson and Schnabel (1987).

Table 1 also contains values of the ASE with estimates of the standard deviation of the
ASE in parentheses. We can see that the ASE decreases with increased sample size. Figure
1.b shows curves of the ASE versus the AR(1) parameters ¢ = —0.95, —0.90, ...,0.95 for
model I) with n=300, 500 and 1000. The general features of these curves are essentially the
same. However, notice that for n=300 the ASE is about 3 times larger than for n=1000.
Hence, there is a significant loss of efficiency in the estimation of m(z) by m,,(z) if the
sample size is too small. Note that the gaps between the three curves widen as ¢ — 1.
This shows that the loss of estimation efficiency even becomes higher for small n when the
errors are strongly positively serially correlated. It means that the rate of convergence of

the estimator is dominated by the near-nonstationarity of the error process.

5 Examples

As a first example, consider the systolic (X;) and diastolic (Y;) blood pressure readings
given in Figure 2.a. The data were sampled twice a day for 230 days (n=460); see
Shumway (1988, Appendix I, Table 5). The interest was to determine a possible leading-
lagging linear relationship between the two series. The sample autocorrelation function
(ACF) of both series showed a slow positive decay from a value of 0.42 (0.37) at lag 1
to a value of 0.25 (0.22) at lag 10 for X; (Y;). These values are all significant at the
5% level, suggesting clearly that first differencing of the series is necessary. On doing
this, the sample ACFs of the series AX; = X; — X;_; and AY; =Y, — Y,_; are almost

compatible with white noise, except from significant negative spikes at lag 1. The sample
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cross correlation function (CCF) of AY; and AX, showed a significant value of 0.35 at
lag 0. Also small (-0.18 and -0.13), though significant, values of the sample CCF were
obtained at lags 1 and -1, respectively. This provides some information about how AY;

is related to current and earlier values of AX;.

Figure 2 about here|

Figure 2.b shows a plot of the smoothed estimate m,,(AX;) (full curve) from applying
(5) (with h,=2.17) to the series AY; and AX;, surrounded by the 95% confidence bands
(medium dashed lines) obtained from Corollary 1. It is apparent from this figure that the
width of these bands increases markedly as the values of AX; approach the left and right
boundaries of the observation interval. This is due to the fact that the data are more
sparse near these boundaries. From the central part of Figure 2.b we see that there exists
a nearly linear relationship between AY; and AX; with a positive slope parameter.

We checked the adequacy of the nonparametric regression by examining the residual
ACF of the series AY; — m,(AX;). All but the residual ACF at lag 1 (-0.48) lie well
within the 95% confidence bands. This may indicate that the residuals themselves follow
an MA(1) process. To check for any leading-lagging relationship between AY; and AX;
we estimated a dynamic regression (DR) model with AY; related to its own past and the
past of AX; up to lag 2, and with a first-order MA error term. All estimated coefficients
appeared to be not significantly different from zero at the 5% level, except for the coeffi-
cient of AX; and the MA(1) parameter. The “final” model (with approximate standard
errors in parentheses) fitted to the data is given by

AY, = —0.009+ 0.284AX,+¢ —0.860¢
(0.022)  (0.028) (0.023)

(13)
with R?=0.48, the residual standard deviation is 6=3.35, and the value of the Durbin-
Watson (DW) statistic is 1.90. The residual ACF indicated that the errors are white noise,
as they should be for a correct fit. The fitted regression line is plotted in Figure 2.b (dotted
line). Note that model (13) is different from the best “fitted” model Y; = 0.6.X; proposed
by Shumway (1988, p. 104). A reasonable interpretation of (13) is that a change in the

systolic blood pressure leads to an almost instantaneous change in the diastolic blood

pressure.
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The second example concerns the declining number of ovarian follicles (eggs) as women
age. The data set contains the age of 110 females in years, and the count of follicles; see the
website: www.blackwellpublishers.co.uk/rss/. Faddy and Jones (1999) analysed the data
by local quadratic nonparametric smoothing. Their interest was in the pattern of decline
in the number of follicles as a function of age, leading to infertility and the menopause.
Hence, the input series (X;) is the age of the women in years. The output series is the
common logs of the count of follicles. Figure 3 is a plot of the estimate m,,(X;) (full curve)
together with 95% confidence bands (medium dashed lines) with h,=5.84. The pattern of
decline is nearly linear until age reaches the late 30s. Beyond the age of 40 there appears
to be a accelerated loss in fertility. The residual ACF at lags 1 (0.23), 5 (0.21), and 6
(0.25) were all significant at the 5% level. This suggests the presence of first-order serial

correlation in the residuals with a parameter value close to 0.23.

|Figure 3 about here

A simple way to improve the fitted regression function is to remove the observed AR(1)
effect by transforming the data so that Y; = ¥; — 0.23Y;_;. Next, reestimating m,(X¢) in
Y, = m,(X:) + € and checking the residual ACF we noted that the serial correlation was
effectively removed. Of course, some caution is needed here because the transformation
chosen may not be optimal. Therefore we fitted various parametric DR models to the
series. The “best” model, in terms of the minimum value of Akaike’s information criterion,
is given by

Y, = 45924+ 0.261Y; ; —0.040X; + ¢

(14)
(0.604) (0.095)  (0.006)

with R?=0.75, 6=0.44, and DW=2.05. The residual ACF indicated that, except at lag 6,
no serial correlation was left in the residuals. Clearly, the AR(1) parameter in (14) is very

close to the transformation parameter used in the modified nonparametric regression.
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Figure 1: a) Empirical coverage probabilities for model I) and a=0.05 versus the AR(1) er-

ror process parameters for n=300 (straight line + dots), n=500 (dotted line), and n=1000

(straight line). A conservative 95% critical region is indicated by two dash dotted lines;
b) ASE for model I) and a=0.05 versus the AR(1) error process parameters for n=300
(straight line + dots), n=500 (dotted line), and n=1000 (straight line).
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Figure 2: a) Systolic (solid line) and diastolic (dotted line) blood pressure readings for a
mild hypertensive, sampled twice a day for 230 days (n=460); b) Nonparametric regression
estimates of the first differences of the blood pressure data; solid line = m,,(AX}); medium

dashed lines are 95% confidence bands; dotted line = fitted linear DR model (13).
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Figure 3: Owarian follicle data and nonparametric regression estimates; solid line =

my,(Xt); medium dashed lines are 95% confidence bands.



