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resultant time series can usually be described by a low order moving average model

with estimated roots close to the unit circle. This latter feature complicates the

standard autoregression-based tests for (seasonal) unit roots which are often used in

practice. In this paper we propose an alternative route to detect seasonal unit roots

by analyzing (versions of) the basic structural model [BSM]. This BSM can generate

data which are (approximately) observationally equivalent to data generated from

an airline model. Using Monte Carlo simulations, we show that our method works

very well. We illustrate our approach for a large set of macroeconomic time series

variables.

Keywords: Seasonal unit roots, Overdi�erencing, Information criterion, Structural

time series model
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1 Introduction and motivation

Since its introduction by Box and Jenkins (1970), the so-called airline model has been

extensively used in modelling and forecasting seasonal time series. For a quarterly time

series fytg (t = 1; 2; : : : T ) this airline model is

(1� L)(1� L4)yt = (1� �1L)(1� �4L
4)�t; (1)

where L is the lag operator de�ned by Lkyt = yt�k, where f�tg is a standard white

noise process with variance �2� , and �1 and �4 are unknown parameters to be estimated.

One of the reasons for its empirical success is that, except for �2� , (1) contains only two

parameters. As the polynomial on the left hand side can be decomposed as

(1� L)(1� L4) = (1� L)(1� L)(1 + L)(1 + iL)(1� iL); (2)

it is clear that when j�1j < 1 and j�4j < 1, the airline model assumes that yt has 5 roots on

the unit circle, i.e. two nonseasonal unit roots 1, and three so-called seasonal unit roots

�1 and �i. In many practical applications, however, the estimated values for �1 and �4

(which are known to be bounded away from unity) take values which are very close to

1. Hence for these time series it may seem that either the 1 � L or the 1 � L4 �lter, or

maybe even the (1� L4)=(1� L) = 1 + L+ L2 + L3 � S(L) �lter, is redundant.

Standard tests for seasonal unit roots as those proposed in Hylleberg et al. (1990)

[HEGY] appear not to be very useful to investigate seasonal overdi�erencing in the airline

model. In fact, the simulation results in Ghysels et al. (1994) convincingly show that the

HEGY tests have severe size distortions in case (1) is the data generating process and

�1 and �4 take values close to the unit circle boundary. A cause for these distortions is

that the HEGY method assumes that the yt series can be described by an autoregressive

model of some moderate order.

In this paper we aim to overcome these di�culties caused by substantial moving av-

erage components by investigating seasonal unit roots in a model that can have close
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empirical resemblance with the airline model. In fact, the basic structural model [BSM]

we analyze can be shown to have the airline model as a special case, see also Harvey

(1984). Our investigation relies on the application of information criterion statistics like

AIC (Akaike (1973)) and BIC (Schwarz (1978) and Rissanen (1978)). Although our ap-

proach can be extended in various ways, we choose to focus on the seasonal unit roots

�1 and �i in a quarterly time series, also since this appears to be a relevant practical

problem.

Our simulation results in section 4 show that, when translating our outcomes in terms

of size and power, our method has good size and power properties. This is in contrast with

the recent approach in Psaradakis (1996) which aims to test for unit roots in time series

with nearly deterministic seasonal variation using the prewhitening techniques proposed

in Maekawa (1994). In fact, the empirical size of these novel tests are close to the nominal

size, but the resultant tests appear to have virtually no power. Our simulations in section

4 however show that we can make proper decisions even when the alternative models are

very close to the null model.

The outline of this paper is as follows. In section 2, we highlight some features of the

airline model and the BSM. In section 3, we present an outline of our model selection

approach. In section 4, we evaluate our method using Monte Carlo simulations, and based

on these results we formulate simple decision rules. In section 5, we apply our approach

to a set of 22 macroeconomic time series variables and we compare the results with those

obtained using the HEGY method in various other studies. In section 6, we conclude our

paper with some remarks.

2 Models

In this section we compare the airline model in (1) and the BSM with respect to their

autocorrelation properties in order to show that the BSM extends the airline model in
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various directions. For the airline model in (1), it is easy to show that the autocorrelations

at lag k, denoted as �k, are

�1 = ��1=(1 + �2
1
) (3)

�2 = 0 (4)

�3 = �5 = �1�4=f(1 + �2
1
)(1 + �2

4
)g (5)

�4 = ��4=(1 + �2
4
) (6)

�j = 0 for j = 6; 7; : : : (7)

When �1 = �4 = 1, i.e., when the double di�erencing �lter (1 � L)(1 � L4) amounts to

overdi�erencing, the nonzero �k's take the values �1 = �4 = �
1

2
and �3 = �5 =

1

4
so that

P
1

k=1 �k = �
1

2
.

The BSM for yt is given by a set of three equations, i.e.,

yt = �t + st + wt; wt � NID(0; �2w) (8)

(1� L)2�t = ut; ut � NID(0; �2�) (9)

(1 + L+ L2 + L3)st = vt; vt � NID(0; �2s) (10)

where the error processes wt, ut and vt are also mutually independent. This approach to

modelling nonstationary trending and seasonal time series became popular through the

work of Kitagawa (1981) and Harvey (1985), inter alia. The basic structural model seems

to be one of the most widely accepted terms to refer to the set of equations (8) { (10).

Although (9) is a second order random walk instead of a local linear trend in Harvey

(1989, p.172), we still refer to (8) { (10) as the BSM.

Substituting (9) and (10) in (8) yields that yt can be described by

(1� L)(1� L4)yt = qt (11)

where qt is a moving average process of order 5 [MA(5)]. The autocovariances k, k =

0; 1; 2; : : :, for qt are

0 = 4�2� + 6�2s + 4�2w (12)
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1 = 3�2� � 4�2s � 2�2w (13)

2 = 2�2� + �2s (14)

3 = �2� + �2w (15)

4 = �2�2w (16)

5 = �2w (17)

j = 0 for j = 6; 7; : : : : (18)

When �2� = 0 and �2s = 0, it is easy to see that (11) reduces to the airline model with

�1 = 1 and �4 = 1. Strictly speaking, when �2� 6= 0, the qt process in (11) is invertible.

This can be understood from the fact that for qt in (11) holds that

1X
k=1

�k = �
1

2
+
8�2�

0
(19)

i.e., the theoretical autocorrelations only sum to �1

2
when �2� = 0. One can observe from

(12) { (18) that the autocorrelation function of (11) can come close to that of the airline

model with �1 and �4 close to unity. Hence, the BSM is exible enough to generate a wide

range of time series data, amongst which are those that one may want to describe by an

airline model.

In this paper we exploit this link between the airline model and the BSM in order

to investigate the presence of seasonal unit roots when (1) seems to give a good data

description. In other words, we indirectly examine whether the airline model amounts to

overdi�erencing at the seasonal frequencies by analyzing the BSM. Our null hypothesis is

(8) { (10) and our alternative model is (8) and (9) with

(1 + aL)(1 + bL2)st = vt (20)

where (0 <)a 6= 1 and (0 <)b 6= 1. In the next section we describe our model selection

approach.
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3 Model Selection Approach

Throughout this paper we consider four models to be compared. They share equations

(8) and (9), i.e. we assume that all models consist of three components and that the trend

component �t and the observational noise component wt are common. Only the seasonal

components di�er according to the number of assumed seasonal unit roots. In sum, we

consider

Model 0 : (1 + aL)(1 + bL2)st = vt (21)

Model 1 : (1 + L)(1 + bL2)st = vt (22)

Model 2 : (1 + aL)(1 + L2)st = vt (23)

Model 3 : (1 + L)(1 + L2)st = vt : (24)

In models 0,1 and 2, a and b are unknown hyperparameters, so they have to be estimated

as well as �2s . Strictly speaking, model 0, for example, consists of (8), (9) and (21), but

there will be no confusion even if we simply refer to equation (21) as model 0 instead of

mentioning the whole set of equations. Model 3 is the standard BSM as discussed in the

previous section. In addition we can refer to model 0 through 2 as relaxed BSMs. This

makes sense because model 3 is a restricted version of the other models.

Our basic strategy to determine the number of seasonal unit roots in yt is as follows.

For given data, we estimate all the four models (21) through (24). If we introduce unnec-

essary parameters (a and/or b), that will be reected in the values of information criteria.

On the other hand, if seasonal unit roots do not exist, the information criterion statistics

of incorrectly restricted models (model 3 or even model 1 and 2) should be inferior. Al-

though many variants of information criteria are proposed since Akaike (1973), the most

popular criteria in practice seem to be AIC and BIC,

AIC = �2^̀+ 2k

BIC = �2^̀+ k logT
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where ^̀denotes the maximized log-likelihood, and k is the number of estimated unknown

parameters, see Akaike (1973), and Schwarz (1978), Rissanen (1978), respectively. It is

not clear a priori if we should rely on a single information criterion statistic in our decision.

Hence it is worthwhile to investigate how AIC and BIC behave in relevant situations. The

corresponding simulation results are reported in the next section.

The rest of this section provides a brief summary of the estimation of unknown hy-

perparameters and unobserved variables like f�tg. Generally, it is quite common to give

a state space representation to a time series model, which enables us to use recursive

methods to calculate the log-likelihood function. Especially this holds for the unobserved

components model or the structural time series model. If we de�ne the state vector xt

as xt = (�t; �t�1; st; st�1; st�2), it is easy to see that the system equation (or the transi-

tion equation, (25) below) and the observation equation (or the measurement equation,

(26) below) are linear with respect to the state vector, and also that they are linear with

respect to the system and observational noise. More explicitly, we have

xt = Fxt�1 +G~vt (25)

yt = Hxt + wt (26)

where F , G and H are de�ned as

F =

0
BBBBBBBBBBBB@

2 �1

1 0
O

O

�a �b �ab

1 0 0

0 1 0

1
CCCCCCCCCCCCA

; G =

0
BBBBBBBBBBBB@

1 0

0 0

0 1

0 0

0 0

1
CCCCCCCCCCCCA

H = (1; 0; 1; 0; 0):

The mean of ~vt is assumed to be zero, and the covariance matrix of ~vt is the diagonal

matrix with elements �2� and �2s by assumption, see (9) and (10). The F matrix shown
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above is for model 0. By restricting a and/or b to 1, we have state space forms for the

other models.

When we assume the Gaussian distribution for every noise process (see (8){(10)), the

above modelling approach invariably exploits the Kalman �lter. To obtain maximum

likelihood estimates of the hyperparameters, the �xed interval smoother yields a rather

precise distribution of the state vector, containing the unobserved components, Anderson

and Moore (1979) and Harvey (1989), inter alia.

We also note that this kind of modelling can be characterized as a smoothness prior

approach to `ill-posed' problems, see Akaike (1980) and Kitagawa (1981). Stated briey,

we have 2T +1 unknown parameters in (8) while we have only T observations. Therefore,

we introduce priors which allow smooth time transitions for parameters �t and st, and we

control only a few number of hyperparameters such as �2� and �2s .

We close this section with a remark on the support of the hyperparameters a and b

in seasonal components of the relaxed BSMs. Upon estimation, we impose nonnegativity

of a and b. If a is negative, it is no longer related with the biannual frequency but its

inverse corresponds with a nonseasonal root of a seasonal polynomial. In the same way,

if b is negative, 1 + bB2 loses its connection with annual seasonal frequencies. Intuitively,

it is also natural to expect the estimates of a and/or b to be less than 1 or at most 1.

Although most of the empirical results in section 5 appear to meet this expectation, we

did not impose such restrictions as a < 1 or b < 1 in estimating them.

4 Monte Carlo Simulations

In this section, after describing the Monte Carlo design, we examine several simulation

results and decision rules. When both AIC and BIC select the same model by minimum

AIC and BIC respectively, we select that model. If two criteria give a split decision,

we show that the combination of the results from minimum AIC and BIC still seems to
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provide accurate decision rules.

First, we give our Monte Carlo design in detail. All data are generated by the BSM

or relaxed BSMs based on their state space representations. As an initial state vector,

we used the result of one empirical data analysis. After �tting the BSM to Japanese

consumption data, we obtained the �lter mean at the end point (automatically smoother

mean) as xT jT = (0:86971882; 0:86493286;�0:03838920;�0:03977958; 0:07376490)0. Fix-

ing the innovation variance of the trend component to �2� = 1:0� 10�6, we consider three

di�erent combinations of the seasonal innovation variance and the observational noise

variance.

(A) �2s = �2w = 1:0� 10�4

(B) �2s = 1:0� 10�4 and �2w = 5:0� 10�4

(C) �2s = 1:0� 10�4 and �2w = 1:0� 10�5 .

Notice that with these values of the variances, the simulated data can easily be de-

scribed by an airline model. Let � be the trade-o� parameter (see Gersch and Kitagawa

(1988) for example) de�ned by � = �2s=�
2

w. Then, we have (A) � = 1, (B) � = 0:2 and

(C) � = 10. In case (B) the signal is more buried in the observational noise than others,

while in case (C) we have less measurement errors. As we will see in our empirical study,

most of macroeconomic variables seem to be like case (C).

For each case (A) { (C), we consider 16 combinations of (a; b), see Tables 1 { 3. In

unreported preliminary research, we examined lower values of a and b like 0.8 or 0.7.

However we �nd only the cases close to unit roots and the unit roots case itself worth

reporting here. In fact, the further away from 1 the stationary roots of the seasonal

polynomial are, the AIC and BIC invariably detect the true data generating process.

For each case of the 16 DGPs, the number of experiments is 100, and the sample size

is common throughout this experiment and is set to 150. Although we know the true

initial state vector, we estimate it by backward �ltering in each trial. This increases the

penalty term in AIC and BIC but it obviously has no e�ect on model selection where only
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the di�erence of AIC and BIC matters.

We can summarize what we learn from Tables 1 { 3 as follows.

� The larger the trade-o� parameter �, the easier it is to detect the true seasonal

structure. This result is not unexpected because a large � means we have relatively

small observational noise compared to the signal (or the seasonal pattern).

� AIC faces problems when a = 1, i.e. there is a biannual unit root in the seasonal

polynomial. In the �rst row of every table, we can recognize the known tendency of

AIC to prefer overparametrized models.

� The performance of the BIC is generally satisfactory, although BIC does not perform

well when we have stationary roots at the annual frequency extremely close to the

unit circle.

� It is relatively easier to detect the annual frequency unit roots than the biannual

unit roots. Except for the three unit roots case, both AIC and BIC give the correct

decision. Probably this is partly because the parameter b reects the contributions

of two seasonal frequencies due to the aliasing e�ect.

� When � is large and a � 0:99 and b � 0:98, our method has a `power' of 1, i.e., we

always select the appropriate alternative model.

In the a = 1 and/or b = 0:99 cases, decisions based on AIC and on BIC rarely coincide.

Therefore, we propose the rules of thumb in such split decision cases as given in Table 4.

Though it is a rough indication, it seems to be fairly valid when we have a large � value.

In the next section we will observe that � is large for many empirical data.

Before closing this section, we make a few more remarks on these and unreported

tables. In both cases where AIC or BIC perform worse, we can see a similar tendency

even if other roots are far from unity. For example, even if b = 0:9 or b = 0:7, the AIC

cannot detect the true seasonal structure in the a = 1 case. Our second remark is that

11



the b = 0:99 case is much closer to unit circle than the a = 0:99 case. Hence 1 + b2B2

may be more natural parametrization than 1 + bB2.

5 Empirical Analysis

In this section we illustrate our approach for a selected set of 22 quarterly macroeconomic

time series variables, namely 8 UK series previously analyzed in Osborn (1990), 6 US time

series in Franses (1996) and GNP data of 8 countries in Hylleberg et al. (1993). In these

studies, the data are all analyzed using the AR{based HEGY method. We summarize

our results in Tables 5 to 7.

For each series, we report AIC and BIC values for all four models (21) { (24). In the

third panel of each table, the number of seasonal unit roots by our method (upper) and

the result of the above mentioned studies (lower) are shown. The trade-o� parameter

de�ned in section 4, estimated for the model selected using our method, is reported in the

�nal panel. Except for UK import data (UKIMPORT), every series has a large � value,

so our decision rules are expected to perform well. The estimated seasonal innovation

variance in UKIMPORT is extremely small, and the posterior mean of fstg looks almost

deterministic. This suggests that a model with constant seasonal dummies might be more

suitable for this series. Also notice that the �nding of model 3 by both criteria can be

interpreted as the variance �2s equals zero for these data.

The empirical results in Tables 5 to 7 can be summarized as follows. Our BSM-based

method and the AR-based HEGY method �nd agreement for only 4 of the 22 time series.

In most cases, i.e. 10, the BSM-based method �nds more unit roots than the HEGY

method does. We �nd that model 3, which is the BSM in (8){ (10), is preferred in 8

of the 22 cases. The no seasonal unit root model is selected only twice (versus 7 times

using the HEGY method). Hence, in general we �nd empirical evidence that con�rm the

simulation �ndings in Ghysels et al. (1994), i.e. we �nd more unit roots when we allow
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that the data can be approximately described by an airline model.

6 Conclusion

In this paper we proposed a model selection approach to detect the number of seasonal

unit roots, especially for series which may well be described by the familiar airline model.

Our Monte Carlo simulations suggest that our method performs well. Even in cases

extremely close to the unit root case, the combination of AIC and BIC still provides a

useful strategy to determine the number of seasonal unit roots. Our empirical analysis

shows that our method and the HEGY method can lead to substantially di�erent results,

where our method tends to �nds more seasonal unit roots, as expected.
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Table 1: Simulation results for case (A) : � = 1

b! 1.00 0.99 0.98 0.97

a # AIC BIC AIC BIC AIC BIC AIC BIC

1.00 model 0 0 0 94 1 95 2 90 3

model 1 0 0 �4 �2 �5 �94 �10 �97

model 2 94 0 0 0 0 4 0 0

model 3 �6 �100 0 97 0 0 0 0

0.99 model 0 7 0 �100 �18 �100 �98 �100 �100

model 1 0 0 0 0 0 0 0 0

model 2 �93 �100 0 82 0 1 0 0

model 3 0 0 0 0 0 1 0 0

0.98 model 0 21 0 �100 �26 �100 �99 �100 �100

model 1 0 0 0 0 0 0 0 0

model 2 �79 �100 0 74 0 1 0 0

model 3 0 0 0 0 0 0 0 0

0.97 model 0 17 0 �100 �40 �100 �100 �100 �100

model 1 0 0 0 0 0 0 0 0

model 2 �83 �100 0 60 0 0 0 0

model 3 0 0 0 0 0 0 0 0

The cells with an asterisk indicate how many times minimum AIC and BIC select the

true DGP out of 100 experiments.
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Table 2: Simulation results for case (B) : � = 0:2

b! 1.00 0.99 0.98 0.97

a # AIC BIC AIC BIC AIC BIC AIC BIC

1.00 model 0 20 0 85 5 85 5 73 11

model 1 0 0 �13 �8 �15 �81 �27 �87

model 2 58 7 2 1 0 0 0 0

model 3 �22 �93 0 86 0 14 0 2

0.99 model 0 24 0 �99 �32 �100 �80 �100 �92

model 1 0 0 0 0 0 7 0 7

model 2 �76 �94 1 56 0 8 0 0

model 3 0 6 0 12 0 5 0 1

0.98 model 0 41 3 �100 �44 �100 �89 �100 �99

model 1 0 0 0 0 0 0 0 0

model 2 �59 �97 0 56 0 11 0 1

model 3 0 0 0 0 0 0 0 0

0.97 model 0 48 0 �99 �48 �100 �97 �96 �94

model 1 0 0 0 0 0 0 0 1

model 2 �52 �100 1 51 0 3 4 5

model 3 0 0 0 1 0 0 0 0

The cells with an asterisk indicate how many times minimum AIC and BIC select the

true DGP out of 100 experiments.
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Table 3: Simulation results for case (C) : � = 10

b! 1.00 0.99 0.98 0.97

a # AIC BIC AIC BIC AIC BIC AIC BIC

1.00 model 0 0 0 99 0 100 0 100 0

model 1 0 0 �1 �0 �0 �100 �0 �100

model 2 100 0 0 0 0 0 0 0

model 3 �0 �100 0 100 0 0 0 0

0.99 model 0 0 0 �100 �0 �100 �100 �100 �100

model 1 0 0 0 0 0 0 0 0

model 2 �100 �100 0 100 0 0 0 0

model 3 0 0 0 0 0 0 0 0

0.98 model 0 0 0 �100 �1 �100 �100 �100 �100

model 1 0 0 0 0 0 0 0 0

model 2 �100 �100 0 99 0 0 0 0

model 3 0 0 0 0 0 0 0 0

0.97 model 0 2 0 �100 �14 �100 �100 �100 �100

model 1 0 0 0 0 0 0 0 0

model 2 �98 �100 0 86 0 0 0 0

model 3 0 0 0 0 0 0 0 0

The cells with an asterisk indicate how many times minimum AIC and BIC select the

true DGP out of 100 experiments.

Table 4: Rules of thumb in split decision cases

AIC BIC decision

0 1 1

0 2 0

0 3 1

1 3 1

2 3 3
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Table 5: Empirical results : UK data

UKEXPORT UKGDP UKIMPORT UKINVPUB

Model 3 �477:88� �643:67� �459:69� �246:06

AIC Model 2 �476:02 �642:94 �458:67 �245:20

values Model 1 �476:76 �641:88 �458:12 �252:98

Model 0 �475:10 �641:16 �456:27 �257:20�

Model 3 �472:04� �637:85� �453:86� �240:70

BIC Model 2 �467:29 �634:20 �449:96 �237:05

values Model 1 �468:02 �633:15 �449:38 �244:94

Model 0 �463:45 �629:52 �444:62 �246:47�

Decision

{ BSM-based method 3 3 3 0

{ HEGY-AR method 0 0 0 3

trade-o� param. � 6.49 624.79 1:17� 10�13 41.36

UKINVTOT UKNONDUR UKTOTCO UKWORKFO

Model 3 �464:99 �635:30� �601:24 �1069:36

AIC Model 2 �468:97� �634:83 �601:77� �1089:88�

values Model 1 �463:01 �634:39 �600:86 �1082:06

Model 0 �467:16 �633:95 �601:47 �1088:04

Model 3 �459:16 �629:48� �595:42� �1063:54

BIC Model 2 �460:23� �626:09 �593:04 �1081:14�

values Model 1 �454:27 �625:65 �592:13 �1073:32

Model 0 �455:50 �622:30 �589:82 �1076:39

Decision

{ BSM-based method 2 3 3 2

{ HEGY-AR method 0 3 3 0

trade-o� param. � 241.59 4322.37 2052.51 8780.94

The decision based on the HEGY tests is obtained from Osborn (1990). The data

concern quarterly observations on exports, GDP, imports, public investment, total in-

vestment, consumption nondurables, total consumption and workforce. All data are in

natural logs.
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Table 6: Empirical results : US data

USCONSTO USDUR USINDPRO

Model 3 �778:21 �397:85 �607:17

AIC Model 2 �778:58 �397:34 �608:85�

values Model 1 �780:67 �400:67� �606:35

Model 0 �781:06� �400:47 �608:66

Model 3 �771:83� �391:46� �601:47�

BIC Model 2 �769:00 �387:76 �600:29

values Model 1 �771:09 �391:09 �597:80

Model 0 �768:29 �387:69 �597:26

Decision

{ BSM-based method 1 1 3

{ HEGY-AR method 1 1 1

trade-o� param. � 3800.73 282.03 96756.33

USMONEY USNONDUR USSERVI

Model 3 �753:97 �734:65 �1141:26

AIC Model 2 �753:04 �733:86 �1142:84

values Model 1 �754:33� �734:86� �1141:95

Model 0 �753:42 �734:09 �1143:91�

Model 3 �748:15� �728:26� �1134:87�

BIC Model 2 �744:30 �724:29 �1133:26

values Model 1 �745:59 �725:28 �1132:37

Model 0 �741:77 �721:32 �1131:13

Decision

{ BSM-based method 1 1 1

{ HEGY-AR method 0 3 0

trade-o� param. � 24271.13 2320.05 22012.87

The decision based on the HEGY tests is obtained from Franses (1996). The data

concern quarterly observation on total consumption, consumption durables, industrial

production, money (M1), consumption of nondurables and consumption of services. All

data are in natural logs.
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Table 7: Empirical results : GNP data

JAPAN UK ITALY TAIWAN

Model 3 �261:59 �618:00� �209:74 �418:51

AIC Model 2 �262:95 �617:60 �208:94 �420:63

values Model 1 �261:83 �616:17 �211:35� �422:83

Model 0 �263:18� �615:79 �210:64 �424:80�

Model 3 �256:62� �612:25� �205:55� �413:16

BIC Model 2 �255:49 �608:97 �202:65 �412:61

values Model 1 �254:37 �607:54 �205:07 �414:81�

Model 0 �253:22 �604:29 �202:26 �414:11

Decision

{ BSM-based method 1 3 1 1

{ HEGY-AR method 3 1 3 3

trade-o� param. � 5359.25 765.51 998.55 1904.05

NETHER GERMANY CANADA SWEDEN

Model 3 �170:22 �428:30 �421:89 �260:44�

AIC Model 2 �168:85 �435:17 �435:51� �258:91

values Model 1 �171:19� �429:64 �421:09 �259:01

Model 0 �170:06 �437:01� �434:94 �257:48

Model 3 �166:65� �422:88 �416:55 �255:92�

BIC Model 2 �163:50 �427:04� �427:49� �252:12

values Model 1 �165:84 �421:51 �413:07 �252:22

Model 0 �162:93 �426:17 �424:25 �248:43

Decision

{ BSM-based method 1 0 2 3

{ HEGY-AR method 3 2 3 2

trade-o� param. � 5095.84 2817.95 3981.91 694.63

The decision based on the HEGY tests is obtained from Hylleberg et al. (1993). All

data are in natural logs.
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