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Abstract
This paper presents a dynamic model of road traffic congestion based on simple car-
following theory, allowing for finite group velocity and discrete vehicles. The model offers a
full-fledged dynamic version of the standard static model of road traffic congestion based on
the so-called ‘fundamental diagram’, depicting the relation between density and speed. Using
this dynamic formulation, it is proven formally and illustrated numerically that the suggested
hypercongested equilibria of the standard static model are in fact dynamically unstable. The
model presented is fully consistent with the standard static model, and reproduces non-
hypercongested stationary state outcomes found in that model for arrival rates of new users
below the maximum capacity of the road. When this maximum capacity is exceeded, the model
behaves in the same manner as Vickrey’s dynamic model of bottleneck congestion. Therefore,
the model presented here offers an integration and a generalization of these two important
types of models.



1. Introduction

The standard static model of road traffic congestion, based on the so-called ‘fundamental

diagram of road traffic congestion’ depicting the inverse relation between density and speed on

a road segment, has been subject to extensive debate in the literature – see, for instance, Else

(1981, 1982) versus Nash (1982); De Meza and Gould (1987) versus Alan Evans (1992);

Andrew Evans (1992, 1993) versus Hills (1993); and more recently, discussions by Chu and

Small (1996), Yang and Huang (1998) and Verhoef (1998). In these studies, primarily

stationary state solutions to the model are considered. The present paper aims to develop a

full-fledged dynamic model of road traffic congestion, which in stationary states yields

equilibria consistent with those found with the standard static model. With this proposed model

however, based on simple car-following theory, it is possible to study the dynamic behaviour of

the system also during transitional phases. This will prove to offer more than just a minor

extension of the static model. Instead, the specification turns out to result in an integrated

model of road traffic congestion, which is capable of producing both stationary state equilibria

with flow congestion as described by the standard static model, and equilibria with bottleneck

congestion such as found in Vickrey’s (1969) model. Furthermore, the dynamic specification

allows one to study the dynamic stability of the equilibria suggested by the standard static

model. These analyses show that equilibria associated with hypercongestion are in fact

dynamically unstable.

The paper has the following structure. In the next section, the standard static model of

road traffic congestion will be briefly reviewed, and the simple transformations that yields the

dynamic model are discussed. Section 3 presents the simulation model. In Section 4, a number

of general propositions based on the new formulation are derived, and illustrative numerical

illustrations are provided. Section 5 considers the implications for models where the demand

side of the market is modelled more elaborately. Section 6 concludes.

2. Reformulating the standard static model on the basis of some simple dynamic
car-following theory

The standard static model of flow congestion on a single-lane/single-entry/single-exit/constant-

capacity road is deceptively simple. It is based on the so-called ‘fundamental diagram’ of road

traffic congestion, depicting how speed S (in meters per second in the sequel) decreases with

an increasing density D (vehicles per meter) on the road. For the density-speed relation (DS-

curve) in the first quadrant in Figure 11, it is assumed that a certain maximum free-flow speed

S* can be sustained for positive densities (the DS-curve starts with a flat segment); and that

there is some maximum density Dmax for which speed falls to zero. Because traffic flow F

(vehicles per second) is equal to the product of D and S for the single lane model, F obtains a

maximum for some combination of speed and density. This combination is denoted S# and D#.

                                               
1 Figures 1 and 2 are taken directly from Verhoef (1998).
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Figure 1. The density-speed curve (I), the speed-flow curve (IV) and the density-flow curve (II)

This gives rise to the familiar backward-bending speed-flow curve (SF-curve) in the fourth

quadrant of Figure 1, and density-flow curve (DF-curve) in the second quadrant of Figure 1.

Next, under the assumption that only time costs matter for generalized user costs, the speed-

flow curve in Figure 1-IV can subsequently be combined with the inverse relation between

speed and travel times to obtain the standard backward-bending average social cost function

depicted in Figure 2. The lower section of this AC-curve, where speeds are relatively high and

travel times relatively short, corresponds with the upper section of the SF-curve in Figure 1-

IV. Likewise, the upper section of the AC-curve, representing situations that are usually

referred to as ‘hypercongestion’, corresponds with the lower section of the SF-curve. As

speeds go to zero in Figure 1-IV, generalized user costs go to infinity in Figure 2. Therefore,

each level of flow, except the maximum level and zero flow, appears to be obtainable at two

cost levels: a low one (denoted with superscript l), where the density is relatively low and the

speed relatively high; and a high one (denoted with superscript h), where the opposite holds.

The backward-bending cost curve in Figure 2 has led to heated debate in the literature,

because the confrontation with a demand curve such as E may lead to puzzling and sometimes

counterintuitive results. These include the possibility of multiple equilibria (denoted x, y and z

in the diagram), and the fact that in the decentralized optimum with tolling, the traffic flow may

actually exceed the non-intervention flow (note that no marginal costs are depicted in Figure 2

in order to keep the diagram decipherable). Space is lacking here to repeat the arguments in

detail (see, for instance, Else, 1981, 1982; Nash, 1982; De Meza and Gould, 1987; Alan

Evans, 1992; Andrew Evans, 1992, 1993; Hills, 1993; Chu and Small, 1996; Yang and Huang,

1998; and Verhoef, 1998).
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In Verhoef (1998) it was suggested that the backward-bending segment of the AC-curve is

dynamically unstable. However, in order to make that statement rigorously, one actually needs

a full-fledged dynamic model, that is consistent with the stationary state equilibria implied by

Figures 1 and 2, but that is also capable of describing the situation on the road outside

stationary states. In this respect, it can be observed that the fundamental diagram in Figure 1-I

can only imply a certain speed if the density is unambiguously defined. This means that the

density on a certain point along the road should have the same value upstream as downstream.

Since this property should hold for every point along the road, the logical consequence is that

density should be constant along the road. Moreover, if density would vary along the road,

even a local measure for density is not unambiguously defined, because it then depends on the

road stretch considered when determining density. Since the fundamental diagram therefore

presupposes a constant density along the road, it implies equal speeds along the road, and

hence reproduces constant densities for subsequent instants. Hence the inherently static nature

of the standard model.

In order to develop a dynamic model consistent with the stationary states represented in

Figures 1 and 2, two variables used above will be manipulated in a very basic manner. First, it

is used that in stationary states, the density D (cars per meter) is equal to the inverse of the

distance between subsequent cars, δ (meters between cars): D=1/δ. Hence, we can directly

manipulate the DS-curve in Figure 1-I into an equivalent distance-speed (δS-curve), which

should produce exactly the same stationary state equilibria as the original DS-curve. The

equivalent DS and δS-curves are sketched in Figures 3-I and 3-II, respectively. The maximum

density Dmax is equal to 1/δmin, where δmin gives the minimum distance between cars, for which

speeds fall to zero. Since the distance δ should be measured from front-to-front (or back-to-

back) of subsequent cars, δmin will be slightly more than the length of a car. Next, δ#=1/D#

gives the distance between cars for which the equilibrium flow is at its maximum. Finally, the

limit of D=0 corresponds with δ→∞. Since S* can be sustained for positive densities, however,
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S* can apply for stationary states with non-infinite values of δ. It is assumed throughout the

paper that the function S(δ) is continuous for all δ and smooth for all δ>δmin.

The second basic transformation to be made first involves the observation that for stationary

states, the arrival rate of new vehicles at the entrance of the road ρ (cars per second) should be

equal to the equilibrium flow F on the road. We can next use the identity that the time span τ
between the arrival of two vehicles at the entrance of the road (seconds between cars) is the

inverse of ρ: τ=1/ρ. It should be noted that this requires a fully deterministic arrival of new

vehicles at the entrance of the road, but the same assumption of course must underlie the

deterministic relations depicted in Figures 1 and 2. A formulation with stochastic arrivals is

certainly not considered as irrelevant, but rather as a topic for future research after the

behaviour of the model with deterministic arrivals has been explored in the present paper.

So far, we have only manipulated variables in the standard model, so we literally still

have exactly the same model. Nevertheless, the stage is already nearly set to spell out the

dynamic model that is consistent with the static one outlined above for stationary states. An

important assumption that is made first is that when a driver chooses a speed according to δS-

curve in Figure 3-II, δ denotes the distance to his predecessor.2 In other words, knowing that

the driver(s) upstream – behind him – behave in exactly the same manner as he does himself, a

driver can safely ignore them in cases that the distance to his predecessor and to his follower

differ. This assumption is consistent with the reasonable assumptions that (1) a driver can and

will always speed up when the density behind him is relatively high, but the density in front of

him allows such speeding up; and (2) a driver following a relatively slow platoon (which he

cannot overtake because of the single-lane assumption) will not change his speed if and

because faster cars, at a relatively large distance, are approaching him from behind.

Now starting from any initial situation on the road, and given an arrival rate of new

users ρ possibly inconsistent with this initial state, the above manipulations and additional

assumption imply a simple dynamic car-following model that should allow us to study also

                                               
2 Strictly speaking, the δS-curve would give the maximum speed a driver can choose for a given distance to his
predecessor. However, Proposition 1 in Section 4.1 asserts that this maximum speed coincides with the actual
speed that a travel time minimizing user chooses.
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non-stationary processes. The preposition ‘simple’ is not merely qualitative. It also reflects that

the standard classical car-following model is defined using a second-order differential equation,

where the acceleration or deceleration of a driver i depends on the difference in speed with his

predecessor (see for instance Zhang and Jarret, 1997). Hence, denoting the location along the

road as x, with 0≤x≤X (x=0 denotes the entrance of the road which is X meters long, so that

the exit is at x=X), the classical model uses a formulation of the type:
&& ( & & )x f x xi i i= −−1 (1)

(ignoring terms related to reaction time for convenience). In the current model, however, a

first-order differential equation is used, where the speed of a driver depends on the distance

with his predecessor. Hence, the present model uses a formulation of the following type:

& ( )x f x xi i i= −−1 (2)

where f gives a distance-speed function such as shown in Figure 3-II. This simple first-order

structure in the first place follows directly from the static model that we wish to make dynamic.

Next, it can be noted that also with (2) as the fundamental car-following equation, the

acceleration or deceleration of a driver depends on the difference in speed between him and his

predecessor. For instance, if a driver is driving slower than his predecessor, the distance

between them is increasing, and therefore this driver must be accelerating. Hence, (2) is

certainly not inconsistent with the type of behaviour assumed in (1), be it that with (2), the

acceleration for a given speed difference may be different for different absolute speeds of the

two drivers considered. This is, however, not necessarily an unrealistic assumption.

The dynamic model therefore hinges on the assumptions that the δS-function in Figure

3-II also applies during transitional phases, and that it is only the distance to the predecessor,

not to the follower, that matters in the selection of the speed. However, two more assumptions

have to be made before the model is fully determined. The first one has to do with the entrance

of the road. It is assumed that queuing is possible when upon arrival of a driver, his

predecessor has not yet travelled δmin meters. The queuing process used is simple and, as in

Vickrey’s (1969) model, in itself congestion-free: if the queue involves multiple users, they

maintain their order of arrival during their queuing time, and a driver will start driving at a

positive speed and pass the actual entrance of the road as soon as his predecessor has travelled

(marginally farther than) δmin meters.

The second assumption involves the behaviour near the exit of the road. Clearly, when

his predecessor has completed his trip, we can no longer determine the speed of a driver

according to (2). The possible assumption that a driver would then immediately speed up to S*

would in the first place be inconsistent with real-world situations where predecessors do not

vanish into thin air when leaving the road, but would often take the same exit-link – which is

outside the present one-link model. Secondly, because one of the conclusions below will be

that the hypercongested equilibria depicted in Figure 2 are dynamically unstable and will

therefore normally not result as stationary state equilibria, it is important that this conclusion

should not possibly be dependent on drivers speeding up to S* near the road’s exit. On the
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other hand, the introduction of some bottleneck at the road’s exit is also not an attractive

option, since this too may become an unwarranted additional driving force in the model.

Therefore, the rather mild and general assumptions are made that if a driver has not

decelerated (accelerated) up to the moment that his predecessor leaves the road, he will also

not do so afterwards; and if he has had a constant speed for a positive number of last seconds

that his predecessor was still on the road, he will maintain that speed also when his predecessor

has left. For the numerical simulation model to be used below, a more specific assumption has

to be made. There it is assumed that over the last meters where drivers no longer have a

predecessor, they behave as if the road were longer and their predecessor were still there. This

assumption technically means that the behaviour of the first drivers has to be calculated as if

the road were much longer than X, although only their speeds over the given length X of the

road are considered as relevant for their travel times. In practice it implies that the speed as a

function of location x will be smooth curves for all drivers, without any kinks near the exit. It is

thus implicitly assumed throughout that X is ‘sufficiently large’: X is much larger than the

values of δ considered, so that the ‘predecessor-less’ part of the trip near the exit is always

relatively small and does not become a major driving force in the model.

This concludes the general discussion of the model. In its present form, the model is of

course primarily concerned with the cost side of the market. This follows from the aim of

studying the dynamic stability of equilibria suggested by the standard static model, which will

lead to a rejection of the shape of the standard AC-curve depicted in Figure 2. The demand

side will be largely neglected in the next sections: only exogenously determined arrival rates,

consistent with inelastic demand, will be considered. In Section 5, however, the implications

for models with more elaborate demand structures will be discussed.

Finally, some distinguishing features of the present specification and set of assumptions,

compared to other dynamic models of flow congestion, can be mentioned. First, the present

model does not have the unrealistic properties of either ‘zero group velocity’ as in Henderson

(1974, 1981) and Chu (1995), where drivers maintain the same speeds during their entire trip;

or ‘infinite group velocity’ as in Agnew (1973), where all drivers simultaneously present on the

road on a certain instant all have the same speed regardless of their position. Still, the finite

positive group velocity considered here is no novelty; see the hydro-dynamic models of

Lighthill and Whitham (1955) and Newell (1988). In contrast to these models, however, the

present model uses a rather realistic specification by treating vehicles as discrete entities

instead of considering a homogeneous flow, and by its micro-basis on behavioural

assumptions. Like these models, however, the present model has the possible disadvantage that

it does not have simple closed-form solutions for variables like traffic flow or speed at a certain

point along the road at a certain moment, other than in stationary states.

3. The numerical model

This section briefly outlines the illustrative numerical model to be used below. For this model,

the following distance-speed function S(δ), depicted in Figure 4-I, is used:
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It is thus assumed that δmin=5 m, and that the maximum speed S* of 33 1
3  m/s (120 km/hr) is

obtained if δ≥100. For intermediate values of δ, an arbitrary polynomial function was chosen,

that however secures the δS-relation be continuous at δ=5 and δ=100, and smooth at δ=100.

For stationary states, the flow F must by definition be equal to S(δ)/δ. The implied

speed-flow curve for stationary states is shown in Figure 4-II. The maximum flow of

Fmax=0.965 veh./s is consistent with a speed S#=17.551 m/s and a distance between cars of

δ#=18.195 meters (hence, the density at this maximum flow D#=0.055 vehicles per meter).

I                                                            II
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Figure 4.   The distance-speed function (I) and the implied speed-flow function for stationary states
(II) for the numerical simulation model

The simulation model uses around 30 subsequent car users (depending on the specific

simulation), and derives their speeds and positions over time by numerical solution of the first-

order differential equations as implied by (3) (note that a driver’s speed is the time derivative

of his position: S x;= &  and that the distance between a driver i and his predecessor i–1 is the

difference between their positions: δi=xi–1–xi). All simulations start with an initial stationary

state; that is: the very first driver modelled has a constant speed.

4. Dynamic properties of the model

4.1. Introduction

In this section, the dynamic properties of the model outlined above are investigated. The

general procedure will be to first provide a general proposition, and next to give an illustration

obtained with the simulation model.

Before proceeding, it is first necessary to briefly discuss the notation to be used, and to

define precisely the different types of stationary and steady states that will be considered. Table

1 defines these – where the various ways in which subscripts and superscripts will be used are

exemplified only for the variable speed (S), and where the logic in the applied nomenclature for

various types of stationary states can be deducted from the examples given:
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D density

F flow
i index for driver i
S speed
Si

t=a (Si
x=a) speed of driver i at clock time t=a (speed of driver i when he passes the position x=a)

S0 (S1) equilibrium speed consistent with a stationary state with F=F0 (F=F1) according to Figure 4-II
S0h (S1h) equilibrium speed consistent with the hypercongested stationary state with F=F0 (F=F1) according

to Figure 4-II
S0n (S1n) equilibrium speed consistent with the non-hypercongested stationary state with F=F0 (F=F1)

according to Figure 4-II
SI,i

t (SII,i
t) the speed for driver i for a given trip I (trip II) at clock time t

t clock time
x position along the road, with 0≤x≤X
δi distance between driver i and his predecessor i–1: δi=xi–1–xi

θ rate at which the queue before the entrance of the road grows, if there is one
ρ arrival rate of new users at the entrance of the road – or at the back of the queue before the

entrance of the road, if there is one
τi time span driver i’s and his predecessor’s arrival time at the entrance of the road – or at the back

of the queue before the entrance of the road, if there is one
τi

x=a time span driver i’s and his predecessor’s clock time that the point x=a is passed; τi
x=0=τi if both

driver i–1 and driver i can immediately start with a positive speed upon arrival at the entrance
SSR Stationary state on the road; situation where the Sx, δx and Fx remain constant for all x, and Fx

(necessarily) has the same value for all x
SS|SSR Single speed (SS) SSR: SSR where Sx has the same value for all x
QF|SS|SSR Queue free (QF) SS|SSR; SS|SSR with no queue before the entrance of the road
SGQ|VS|SSR ‘Variable speed’ (VS) SSR, where Sx does not have the same value for all x, and with a steadily

growing queue (SGQ) before the entrance of the road
trip a unique path of  Si

t=0 for the waiting time in the queue if there is one, and Si
x defined over all

0≤x≤X

Table 1. Variables, notation, abbreviations and some definitions

We start with two rather intuitive propositions that will prove to be useful later on. Proposition

1 asserts that there are no feasible trips, which are defined as trips with Si
t≤S(δi

t) for all

relevant t, superior to (i.e., with an earlier instant of completion than) the trip implied by

Si
t=S(δi

t) for all relevant t.

Proposition  1 A driver that chooses a speed Si
t=S(δi

t) for all relevant t has the maximum

possible xi
t at every instant, and hence has the earliest possible instant of completion of the trip,

when xi
t=X. Travel time minimizing drivers can therefore be assumed to choose Si

t=S(δi
t) for

all relevant t.

Proof Defining the trip with Si
t=S(δi

t) for all relevant t as trip I, by definition there exists no

feasible alternative trip II with SII,i
t≥SI,i

t for all relevant t and SII,i
t>SI,i

t for some relevant t.

Hence, all alternative feasible trips must involve SII,i
t<SI,i

t for at least some relevant t. This can

only result in a higher xi
t later on if trip II implies ‘overtaking’ of trip I for some relevant t.
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However, this is inconsistent with the features that for trip I, SI,i
t=S(δi

t) is the maximum

possible speed for δi
t, and that xi–1

t is independent of driver i’s behaviour.n

From now on, we will therefore assume that all drivers always choose Si
t=S(δi

t), unless

explicitly stated otherwise (in particular in constructions in proofs for propositions).

Proposition 2 states that if driver i–1 has a strictly faster (slower) trip, with the speed

never lower (higher) than in the alternative trip, for a given τi driver i will also have a strictly

faster (slower) trip, with the speed never lower (higher) than in the alternative case.

Proposition 2 Consider two alternative trips Ii–1 and IIi–1 for driver i–1, a given τi, and the

implied trips Ii and IIi for driver i. If driver i–1 has trip Ii–1 with SI,i–1
t≥SII,i–1

t for all relevant t

and SI,i–1
t>SII,i–1

t for some relevant t in a time interval [t1,t2] with t2>t1, then trip Ii also has

SI,i
t≥SII,i

t for all relevant t and SI,i
t>SII,i

t for some relevant t in a time interval [t1
*,t2

*] with t2
*>t1

*.

Driver i therefore completes his trip earlier if driver i–1 has trip Ii–1 instead of trip IIi–1.

Proof First observe that SI,i
t=SII,i

t and δI,i
t=δII,i

t for t<t1. Now suppose that driver i–1 has the trip

Ii–1. From the moment t1 onwards, xI,i–1
t>xII,i–1

t for all xi–1
t≤X by construction. Hence, if driver 1

would follow trip IIi while driver i–1 follows Ii–1, Si
t<S(δi

t) from t1
* onwards, where t1

* gives

MAX{t1,ti
x=0}. The reason is that xII,i

t would apply throughout, xI,i–1
t>xII,i–1

t from t1≤t1
*

onwards, and δi
t=xi–1

t–xi
t. Since xI,i–1

t>xII,i–1
t from t1 onwards and since xI,i–1

t–xII,i–1
t is growing

during [t1,t2] because SI,i–1
t>SII,i–1

t during [t1,t2], one can easily construct feasible trips with

Si
t>SII,i

t during some time interval [t1
*,t2

*], and Si
t≥SII,i

t for all relevant t. From t1
* onwards,

these trips should only satisfy:

( ) ( )S S dt x xi
t

II,i
t

I,i 1
t

II,i 1
t

t

t

1
*

*

− < −− −∫  for all t1
*≤t*≤t2

* (4)

By Proposition 1, trip Ii must have the lowest possible travel time among all such trips. For trip

Ii, t2
*≥t2 is required, otherwise the same reasoning could be applied for some instants later than

t2
*. SI,i

t<SII,i
t will not occur after t1

* because (1) during [t1
*,t2

*], δI,i
t>δII,i

t because SI,i
t>SII,i

t; (2) at

t2
*, δI,i

t must therefore have approached δII,i
t from above; (3) both trips Ii and IIi satisfy

Si
t=S(δi

t); and (4) SI,i–1
t=SII,i–1

t from t2
*≥t2 onwards by construction. Before t1

*, we already saw

that SI,i
t=SII,i

t.n

4.2. The stationarity of equilibria

Proposition 3 deals with the question of whether all points on a speed-flow curve as depicted

in Figures 1-IV or 4-II, and hence an average cost curve as in Figure 2, can be stationary

states. They can.

Proposition 3 All points on the speed-flow curve, both non-hypercongested (S≥S#) and

hypercongested (S<S#), can be QF|SS|SSR configurations.
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Proof Consider any initial situation with {S0(δ0), D0=1/δ0, F0=S0/δ0} according to the speed-

flow curve. Observe that F0=S0/δ0 by construction of the speed-flow curve. Consider an arrival

rate ρ0=1/τ0=F0. When driver i appears at the entrance of the road and there is no queue, driver

i–1 has travelled S0⋅τ0 meters. That means that δi
x=0=S0⋅τ0=S0/ρ0=S0/F0=δ0>δmin. Hence, driver i

needs not queue, obtains δ0 and S0 straight away, and will maintain this speed throughout his

trip since we started with an initial situation with constant speeds S0.n

Proposition 3 is illustrated by considering the two points in Figure 4-II for which F=0.7,

namely {δ,S}={44.33,31.03} and {δ,S}={8.8,6.17}, where the latter is the ‘hypercongested’

equilibrium, and setting ρ=F=0.7. Figures 5-I and 5-II show for both equilibria the ‘clock time-

speed functions’ (tS-functions) for 20 subsequent drivers. These functions show a driver’s

speed as a function of clock time, starting with his arrival at the entrance of the road (or at the

back of the queue, if there is one) up to the instant the road’s exit is passed. The fact that for

both cases, these 20 individual functions merge into one horizontal line illustrates the

proposition: speeds, and hence – as a necessary condition as well as a consequence – also

densities, and therefore also flows, all are and remain constant over time and place.

I                                                            II
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Figure 5.   The clock time-speed functions for the non-hypercongested (I) and hypercongested (II)
stationary states with ρ=F=0.7

4.3. The dynamic stability of non-hypercongested stationary states

Proposition 4 states that the non-hypercongested stationary states on a speed-flow curve as

depicted in Figures 1-IV or 4-II, and hence an average cost curve as in Figure 2, are

dynamically stable.

Proposition 4 All non-hypercongested points on the speed-flow curve, with S≥S#, are

dynamically stable QF|SS|SSR configurations: starting with an initial non-hypercongested

QF|SS|SSR {S0n(δ0n)≥S#, D0n=1/δ0n, ρ0=F0=S0n/δ0n}, a persistent change of ρ0 to ρ1≤Fmax will

cause the system to converge to the non-hypercongested QF|SS|SSR {S1n(δ1n)≥S#, D1n=1/δ1n,

ρ1=F1=S1n/δ1n}.
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Proof Consider an initial QF|SS|SSR {S0n(δ0n)>S#, D0n=1/δ0n, ρ0=F0=S0n/δ0n}. Label the last

driver with τi=1/ρ0 as driver i=0, and the subsequent first driver with τi=1/ρ1 as driver i=1.

Denote the clock time at which driver 0 starts as t=0. Driver 0 maintains S0 by Proposition 3.

Consider ρ1>ρ0. Observe that driver 1 starts at t=1/ρ1=τ1, so that we have:

δ δ
ρ

δ
ρ

δ
ρ

τ τ
min < = < = < = ⇒ < <= =1

1

1 1

0

1
0

0

0
1

1
01 1n

n
t

n n
n t nS S S

S S S (5)

Therefore, driver 1 starts at a speed below driver 0’s speed, and both δ1 and (hence) S1 start

growing immediately after driver 1’s start; until δ1=δ0n and S1=S0n. Driver 1’s speed is

therefore strictly greater than S1n throughout his trip, but strictly smaller than S0n for a positive

first number of meters. Reapplying the same reasoning to subsequent drivers with i>1, it is

clear that S1n remains a lower bound for each of these drivers’ speeds, and that δ δτ
i
t i= ⋅ >1

min

for all i so that no queuing will occur. Still, average speeds (over the entire trip) must be

decreasing for subsequent drivers by Proposition 2. Since the non-hypercongested QF|SS|SSR

{S1n(δ1n)≥S#, D1n=1/δ1n, ρ1=F1=S1n/δ1n} is the only queue free stationary state with Sx≥S1n for

all x consistent with ρ1, the system must asymptotically approach this stationary state. The

proof for ρ1<ρ0 is analogous to the present one, and is therefore omitted.n

Proposition 4 is illustrated in Figure 6 by considering the initial stationary state with ρ0=0.7

depicted in Figure 5-I, and considering a change to ρ1=0.6 and ρ1=0.8 in Figures 6-I and 6-II,

respectively. The diagrams show the tS-functions for 30 subsequent drivers, and depict how

the new stationary states with S1=32.5 and S1=28.7 are approached asymptotically. The

simulation results revealed, as expected, that the flow along each point of the road also

approached the new stationary state values of 0.6 and 0.8, respectively.
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Figure 6.   The clock time-speed functions for an initial non-hypercongested stationary state with
ρ=F=0.7 after a change in ρ to ρ=0.6 (I) and ρ=0.8 (II)

4.4. The dynamic stability of hypercongested stationary states

Propositions 5 and 6 to be given below imply that the hypercongested stationary states on a

speed-flow curve as depicted in Figures 1-IV or 4-II, and hence an average cost curve as in

Figure 2, are dynamically unstable.
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Proposition 5 Starting with an initial hypercongested QF|SS|SSR {S0h(δ0h)<S#, D0h=1/δ0h,

ρ0=F0=S0h/δ0h}, a persistent reduction of ρ0 to ρ1 with ρ1<ρ0≤Fmax will cause the system to

converge to the non-hypercongested QF|SS|SSR {S1n(δ1n)>S#, D1n=1/δ1n, ρ1=F1=S1n/δ1n}, and

hence not to the hypercongested QF|SS|SSR {S1h(δ1h)<S#, D1h=1/δ1h, ρ1=F1=S1h/δ1h}.

Proof Consider the initial QF|SS|SSR {S0h(δ0h)<S#, D0h=1/δ0h, ρ0=F0=S0h/δ0h}. Again label the

last driver with τi=1/ρ0 as driver i=0, and the subsequent first driver with τi=1/ρ1 as driver i=1.

Denote the clock time at which driver 0 starts as t=0. Driver 0 maintains S0h by Proposition 3.

Observe that driver 1 starts at t=1/ρ1=τ1, so that we have:

δ δ
ρ

δ
ρ

δ
ρ

τ τ
min < = < = < = ⇒ < <= =1

1

1
0

0

0 1

0

1
1 0

1
1 1h

h
h

h
t

h
h h tS S S

S S S (6)

Therefore, driver 1 starts at a speed exceeding S0h, which is driver 0’s speed, and both δ1 and

(hence) S1 start declining immediately after driver 1’s start; until δ1=δ0h and S1=S0h. Driver 1’s

speed is therefore strictly greater than driver 0’s speed for a positive first number of meters of

his trip and will not fall below S0h throughout the rest of the trip, and is hence strictly greater

than S1h throughout the trip. By Proposition 2, driver 2 will have a strictly higher speed than

driver 1 has had over the first meters, and will never have a lower speed. Reapplying the same

reasoning to subsequent drivers with i>3, it is clear that average speeds (over the entire trip)

must be increasing for subsequent drivers by Proposition 2 and that queuing will not occur.

Since the non-hypercongested QF|SS|SSR {S1n(δ1n)>S#, D1n=1/δ1n, ρ1=F1=S1n/δ1n} is the only

queue free stationary state with Sx≥S0h for all x consistent with ρ1, this system must

asymptotically approach this stationary state.n

Proposition 5 is illustrated in Figures 7-I and 7-II. In order to be able to show the full

transitional phase, we start with an initial stationary state with ρ0=0.96 at a hypercongested

speed S0h=16, which is quite close to (but of course below) S#=17.551. Furthermore, ρ1 is set

at 0.6. Figure 7-I shows the tS-functions for 33 subsequent drivers, and depicts how the new

stationary state with S1n=32.5 is approached asymptotically. Figure 7-II shows the flow levels

at the entrance (Fen) and the exit (Fex) of the road, which are defined as 1/(ti
x=0–ti–1

x=0) and

1/(ti
x=X–ti–1

x=X), respectively. The flow at the entrance immediately falls to the level equal to the

new arrival rate of ρ=0.6. It takes a while before the flow at the exit reaches this level; this

happens when the speed at x=X has reached the new stationary state level of S=32.5. Figure 7

thus demonstrates how the initial hypercongestion vanishes after a reduction in the arrival rate,

and how the system evolves to the non-hypercongested rather than the hypercongested

stationary state consistent with the new arrival rate. Finally, Figure 7-II shows that during the

transitional phase, neither the flow at the entrance nor the flow at the exit reaches Fmax. In

other words, the system does not somehow ‘follow’ the speed-flow curve (Figure 4-II) when

moving from a hypercongested stationary state to a non-hypercongested one: transitional

phases certainly need not be sequences of stationary states.
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Figure 7.   The clock time-speed function (I) and the flow at the entrance and exit of the road (II) after
a reduction in the arrival rate to ρ=0.6 following an initial hypercongested stationary
state with ρ=F=0.96

Proposition 6 Starting with an initial hypercongested QF|SS|SSR {S0h(δ0h)<S#, D0h=1/δ0h,

ρ0=F0=S0h/δ0h}, a persistent increase of ρ0 to ρ1 with ρ0<ρ1≤Fmax will not cause the system to

converge to a QF|SS|SSR; neither the hypercongested QF|SS|SSR {S1h(δ1h)<S#, D1h=1/δ1h,

ρ1=F1=S1h/δ1h}, nor the non-hypercongested QF|SS|SSR {S1n(δ1n)≥S#, D1n=1/δ1n,

ρ1=F1=S1n/δ1n}. Instead, provided the road is sufficiently long, the system will converge to a

SGQ|VS|SSR with θ=ρ1–ρ0, Fx=ρ0 for all 0<x≤X, but where Sx and δx vary along the road.

Proof Consider the initial QF|SS|SSR {S0h(δ0h)<S#, D0h=1/δ0h, ρ0=F0=S0h/δ0h}. Again, label the

last driver with τi=1/ρ0 as driver i=0, the subsequent first driver with τi=1/ρ1 as driver i=1 and

the clock time at which driver 0 starts as t=0. Driver 0 maintains S0h by Proposition 3. Observe

that driver 1 starts at t=1/ρ1=τ1, so that we have:

δ
ρ

δ
ρ

δ
ρ

δ
ρ

τ τ
1

0
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1
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1
1

1

1 1
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t h h nS S S S
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Therefore, driver 1 starts at a speed below driver 0’s constant speed S0h, and hence certainly

below S1h and S1n. Hence, δ1 starts growing immediately after driver 1’s start; and so does S1,

provided δ δτ
1

t
min

1 ;= ≥ otherwise, driver 1 starts his trip queuing and obtains a positive speed

only at t=δmin/S
0h. In both cases, driver 1 will therefore be accelerating from either t=τ1

(without queuing) or t=δmin/S
0h (with queuing) onwards, until δ1=δ0h and S1=S0h. Driver 1’s

speed is therefore strictly below driver 0’s speed for a positive first number of meters of his trip

and will not exceed S0h throughout the rest of the trip, and is hence strictly below S1h and S1n

throughout the trip. As a consequence, driver 2 must have a strictly lower speed than driver 1

has had over the first meters (δ δτ τ
2

t
1

t1 1 )= ⋅ =<2 . Driver 2 will therefore also be accelerating over

the first meters, and will also never have a speed exceeding S0h. Hence, driver 2 will have a

lower average speed (over the entire trip) than driver 1, which is in line with Proposition 2.

Reapplying the same reasoning to subsequent drivers with i>3, it is clear that average speeds



An Integrated Dynamic Model of Road Traffic Congestion14

(over the entire trip) must be decreasing for subsequent drivers by Proposition 2, that all

drivers will accelerate over the first meters and that speeds will never exceed S0h. Since there

exist no QF|SS|SSR {S1(δ1), D1=1/δ1, ρ1=F1=S1/δ1} with Sx≤S0h for all x consistent with ρ1, the

system cannot converge to a QF|SS|SSR.

To prove that the system will converge to a SGQ|VS|SSR with θ=ρ1–ρ0 and Fx=ρ0 for

all 0<x≤X, first observe that there is a feasible trip II1 for driver 1 that implies ‘passing times’

at all points x>0 along the road exactly τ0 seconds later than driver 0’s passing time at those

points. Driver 1 should for this trip II1 wait 1/ρ0–1/ρ1 seconds at the entrance, and drive at a

constant speed S0 throughout. This trip II1 is feasible by Proposition 3. By Proposition 1,

driver 1’s actual trip I1 with S1
t=S(δ1

t) should have xI,1
t≥xII,1

t. Now defining in general trip IIi

for driver i (i≥1) as waiting i⋅(1/ρ0–1/ρ1) seconds at the entrance and driving at a constant

speed S0 afterwards, it is clear that since xI,1
t≥xII,1

t and since trip II2 is feasible given trip II1 by

Proposition 3, it should also be feasible given trip I1. Hence, xI,2
t≥xII,2

t by Proposition 1, and

hence trip II3 is feasible. Reapplying the same reasoning for subsequent drivers, it follows that

all trips IIi are feasible and that ρ0 therefore remains a lower bound on the flow at any point of

the road: no driver i will arrive more than i⋅τ0=i/ρ0 seconds after driver 0 at any point of the

road because trip IIi is always feasible and since xI,i
t≥xII,i

t.

If the drivers have a constant speed over a last positive number of meters of their trip,

this lower bound on the flow implies a lower bound on that constant speed equal to S0h. Since

speeds at the same time cannot exceed S0h as proven above, it follows that if the trips end with

a constant speed in the new stationary state, it must be S0h implying ρ0. Because speeds are

below S0h over a first positive number of meters of the road, there is a minimum positive

acceleration drivers must have during these first meters. The reason is that the flows were

shown not to fall below ρ0 at any point of the road, while the time needed to travel δ meters

(which is the inverse of the flow) at a speed S(δ)<S0h would exceed 1/ρ0 seconds. Hence, if the

road is sufficiently long, the accelerating drivers must obtain the constant speed S0h at some

point. Also, because flows cannot be below ρ0 at any point of the road, there exist positive

minimum speeds for all x>0. Hence, the decreasing speeds (over time) over the first meters of

the road have positive lower bounds which increase with x, and the system must asymptotically

be approaching a stationary state. A stationary state implies that the flow be equal along the

road. Since this flow will be ρ0 provided the road is sufficiently long, whereas the arrival rate is

ρ1>ρ0, a queue must be growing at a rate θ=ρ1–ρ0. Because queuing occurs, drivers must start

with a zero speed.n

Figure 8 illustrates Proposition 6 using an initial hypercongested stationary state with ρ0=0.7

and S0=6.17 and considering a shock to ρ1=0.8. Figure 8-I shows how the subsequent drivers’

starting speeds drop quickly and reach 0 already for driver i=4, implying queuing time. What is

clear from Figure 8-I, however, is that once in motion, drivers will have a rather rapid

acceleration, which is consistent with the fact that flows cannot fall below ρ=0.7 also on that

part of the road where the speed is below S0. Note that the flat segments at S=0 in the clock
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time-speed functions from driver i=4 onwards represent the queuing of these drivers. Figure 8-

II shows the flow at the entrance and exit of the road (for determining the flow at the entrance,

a queuing driver’s instant of passing the entrance is determined as the moment at which his

predecessor has travelled δmin meters, so that the driver himself can start speeding up). Only

during the transitional phase can the flow at the entrance temporarily reach the level of 0.8.

From driver i=4 onwards however, who starts with a zero speed, the flow at the entrance

drops quickly to the (old and new) stationary state level of 0.7.
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Figure 8.   The clock time-speed function (I) and the flow at the entrance and exit of the road (II) after
an increase in the arrival rate to ρ=0.8 following an initial hypercongested stationary
state with ρ=F=0.7

Propositions 5 and 6 together imply that the hypercongested stationary states on a speed-flow

curve as depicted in Figures 1-IV or 4-II, and hence an average cost curve as in Figure 2, are

in fact dynamically unstable. Although these configurations can be stationary states, there are

no equilibrium paths from other initial stationary states that would lead to these

hypercongested stationary states. Coming from non-hypercongested stationary states, the

system will remain in the non-hypercongested regime as long as ρ remains below Fmax. Coming

from hypercongested stationary states, the system will move to a non-hypercongested

stationary state after a reduction in ρ, and will maintain the initial flow level in conjunction with

a growing queue after an increase in ρ.

Therefore, the only possible route towards hypercongestion that is still open would

involve hypercongestion caused by an arrival rate ρ exceeding Fmax. This last possibility will be

explored in the following sub-section.

4.5. Arrival rates exceeding the road’s maximum capacity

Proposition 7 states that, when starting with an initial non-hypercongested state, an increase in

the arrival rate to a value exceeding Fmax will lead to a variable speed stationary state consistent

with Fmax on the road, while the queue before the entrance of the road will be growing at a rate

θ=ρ–Fmax.
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Proposition 7 Starting with an initial non-hypercongested QF|SS|SSR {S0n(δ0n)≥S#, D0n=1/δ0n,

ρ0=F0=S0n/δ0n}, a persistent increase in ρ0 to ρ1>Fmax will cause the system to converge to a

maximum flow SGQ|VS|SSR with Fx=Fmax for all 0<x≤X, and θ=ρ1–Fmax, provided the road is

sufficiently long.

Proof Consider the initial QF|SS|SSR {S0n(δ0n)≥S#, D0n=1/δ0n, ρ0=F0=S0n/δ0n}. Again, label the

last driver with τi=1/ρ0 as driver i=0, the subsequent first driver with τi=1/ρ1 as driver i=1 and

the clock time at which driver 0 starts as t=0. Driver 0 maintains S0n by Proposition 3. Observe

that driver 1 starts at t=1/ρ1=τ1, so that we have:

δ
ρ

δ
ρ

τ τ
1

0

1
0

0

0 1
01 1t

n
n

n
t nS S

S S= == < = ⇒ < (8)

In the same manner as in the proof to Proposition 6, it follows that driver 1’s speed is therefore

strictly below driver 0’s speed for a first positive number of meters of his trip and will not

exceed S0n throughout the rest of the trip, that driver 1 will therefore be accelerating from

either t=τ1 (without queuing) or t=δmin/S
0n (with queuing) onwards, until δ1=δ0n and S1=S0n,

and that by reapplying the same reasoning to subsequent drivers with i>2, it can be proven that

average speeds (over the entire trip) must be decreasing for subsequent drivers by Proposition

2, that the speed over a first positive number of meters of the road must be decreasing over

time, that all drivers will be accelerating over the first meters, and that speeds will never exceed

S0n.

Now define trip Ii again as the trip driver i actually chooses, with Si
t=S(δi

t); and define

trip IIi for driver i (i≥1) as waiting i⋅(1/Fmax–1/ρ1) seconds at the entrance and driving at S#

afterwards. Observe that such a trip II is feasible for driver 1 since S#≤S0n (the latter is his

predecessor’s speed), and  since he will start driving not sooner than at t=1/Fmax, at which for

δ1 we find:

δ δ1

1 0
t

F

nS

F

S

F
= = ≥ =max

max

#
#

max

(9)

Next, since trip II2 is feasible given trip II1 by Proposition 3, it would certainly be feasible given

trip I1 since xI,1
t≥xII,1

t by Proposition 1. Hence, xI,2
t≥xII,2

t by Proposition 1, and trip II3 is feasible

by Proposition 3. Reapplying the same reasoning to subsequent drivers, it is evident that all

trips IIi are feasible. It thus follows that xI,i
t≥xII,i

t for all i. Driver i’s actual ‘passing time’ at any

point x along the road, tI,i
x, can therefore be no later than tII,i

x, so that:

t t
i

F

x

SI i
x

II i
x

, ,
max

#≤ = + (10)

Observing that the flow at a certain point x along the road at a certain time clock time t can be

written as Fx=1/(ti
x–ti–1

x), (10) implies that Fmax is a lower bound on the stationary state flow at

any point x along the road (Fmax of course needs not be a lower bound on the actual flow

during the transitional phase; observe for instance that we start with F0<Fmax from the outset).

Because speeds are decreasing over time while the flow remains positive, the system

must asymptotically converge to a stationary state. If the drivers do reach a constant speed
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during some part of their trip during this stationary state it must be S#, because Fmax is a lower

bound on the flow. Other speeds can only apply if drivers are accelerating when driving that

speed different from S#, because otherwise they can not travel the associated distance of δ
meters in 1/Fmax seconds (or less), as is required by the lower bound on flow. However, if

drivers do accelerate, speeds cannot exceed S# in a stationary state with a flow at least equal to

Fmax. The reason is that acceleration would be needed to keep the flow at Fmax (or more) for

any S>S#. This however implies unlimited acceleration after the speed has exceeded S#,

whereas an upper bound on speeds of S0n was identified above. Hence, S# is the maximum

speed that can occur when Fmax is the minimum flow. If the road is sufficiently long, this

implies that the system must converge to a stationary state where drivers accelerate up to a

speed of S# and maintain this speed for the rest of their trip. The implied flow is then Fmax, so

that θ=ρ1–Fmax. Because queuing occurs, drivers must start with a zero speed.n

Proposition 7 is illustrated in Figure 9, where the non-hypercongested stationary state with

ρ0=0.7 is followed by an increase in flow to ρ1=1.8. Note that Figure 9-II shows that flows can

temporarily – during transitional phases – exceed Fmax. This can of course only occur if drivers

are accelerating.
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Figure 9.   The clock time-speed function (I) and the flow at the entrance and exit of the road (II) after
an increase in the arrival rate to ρ=1.8 (>Fmax) following an initial non-hypercongested
stationary state with ρ=F=0.7

Otherwise, the interpretation of Figure 9 resembles that of Figure 8. Clearly then, also an

increase in the arrival rate to values exceeding Fmax does not lead to a hypercongested

equilibrium, at least not to hypercongested single speed equilibria with S<S# as illustrated in

Figures 1 and 3. Although speeds below S# will certainly occur, the distinguishing factor is that

the flow will not fall below Fmax. The explanation for this paradox is that positive speeds below

S# only occur when drivers are accelerating.

4.6. Conclusion to Section 4

The above propositions imply that the hypercongested segments of the standard backward

bending speed-flow and average cost curves do not represent dynamically stable market

equilibria. The reason that these configurations are nevertheless suggested as possible
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equilibria by the standard model is that this model is inherently static in nature, and therefore

presupposes an initial state equal to the equilibrium suggested, completely ignoring questions

of dynamic stability. Likewise, the standard static model does not predict and is not able to

describe the steady states, with the maximum flow on the road and steadily growing queues

before the entrance, that would result from persistent arrival rates of new users exceeding the

capacity of the road.

5. Implications for models of road traffic congestion with elastic continuous demand
or with peak demand

The analyses in the previous section were performed under the assumption of a rather rigid

demand structure, namely inelastic demand at a fixed, exogenous rate, which could change in

value only once in order to study the dynamic stability of equilibria. In this section, the

implications of the results presented above for models with more elaborate demand structures

will be discussed briefly and only qualitatively; partly in order to save space, and partly because

the conclusions confirm those already predicted in Verhoef (1998).

As in Verhoef (1998), two archetypes of demand will be considered here. The first is

‘continuous demand’, where the demand function is stable over time, and demand is unrelated

over time: a driver does not consider rescheduling, but only takes a go-no-go decision based

on the actual costs of the trip. This  type of demand is in the same spirit as the type of demand

implicitly assumed in static models of road traffic congestion, and actually in most standard

static demand-supply diagrammatic analyses of market equilibria. The second type of demand

is ‘peak demand’, which is the type of demand assumed in dynamic models of road traffic

congestion based on bottleneck congestion (Vickrey, 1969; Arnott, De Palma and Lindsey,

1993, 1998), or flow congestion (Henderson, 1974, 1981; Chu 1995).

For models with a not completely inelastic ‘continuous’ demand function, the

propositions in the previous sections imply a general shape of the average cost function for

stationary states. First of all, the backward-bending segment of the AC curve in Figure 2 can

be ignored in a market analysis, since the implied equilibria are not dynamically stable. Hence,

the suggested problem of multiple equilibria with a demand curve like E in Figure 2 will also

not be relevant, since only the equilibrium labelled z will be dynamically stable. For demand

curves that do have an intersection with the AC curve on the lower segment, such as E in

Figures 2 and 10, this particular intersection can thus be expected to be the single long run

stationary state equilibrium (FE in Figure 10). For demand curves that do not have such an

intersection, such as E’ in Figure 10, the demand exceeds the capacity of the road for any cost

level associated with non-hypercongested speeds exceeding S# in absence of queuing. Hence,

for such cases, one would expect an arrival rate exceeding Fmax, and hence a queue to be

building up, for at least some period of time. In contrast to the inelastic exogenous demand

assumed in the previous section, we should now take account of the fact that because of the

growing queue and falling speeds during such a transitional phase, total travel times will be

increasing. Therefore, because of demand elasticity, the arrival rate will be decreasing during

this phase (see the arrows). Proposition 7 asserts that the stationary state flow on the road will



An Integrated Dynamic Model of Road Traffic Congestion 19

not be below Fmax, so that as soon as the arrival rate has fallen to a value of Fmax, one can

expect a stationary state equilibrium with Fmax and variable speeds on the road, and a queue of

constant length before the road’s entrance. The implied waiting time costs in the queue (qc) is

then just sufficient to keep away excessive demand (arrival rates exceeding Fmax) in the non-

intervention outcome.

Figure 10. Dynamically stable stationary state equilibria (AC*) and dynamically unstable (dashed
part of AC) equilibria with continuous demand

Therefore, the curve denoted AC* in Figure 10 gives the average cost function for dynamically

stable stationary states with continuous demand, as suggested by the analyses in the previous

section. The hypercongested equilibria on the upper segment of the original AC-curve are not

included in AC*, because of their dynamic instability. However, all non-hypercongested

equilibria on the lower segment of the original AC are included. Furthermore, the possible

stationary state equilibria with an arrival rate of ρ=Fmax, a maximum flow Fmax on the road, and

a queue of constant length, are represented by the vertical segment of AC*.

Given the shape of AC*, an implied marginal social cost curve MC*, located above AC*,

could now be derived using the identity MC*=AC*+F⋅∂AC*/∂F. The optimal stationary state

flow levels could subsequently be identified as the unique intersection between this MC* curve

and the prevailing demand curve, and the optimal toll as MC*–AC*=F⋅∂AC*/∂F in the optimum.

For reasons of graphical clarity, this MC*-curve is not shown in Figure 10 (see also Verhoef,

1998). The reader may easily verify, however, that with this curve the optimal flow will never

exceed the flow in the unregulated equilibrium.

Next, in models of peak demand, it is assumed that a certain group of drivers, with an

endogenous size when elastic demand is considered, wish to use the road during the same

period. Normally, it is assumed that all potential users have the same desired arrival time, and

that deviations from this desired arrival time imply ‘scheduling costs’. The dynamic equilibrium

then requires the sum of scheduling costs, travel delay costs and tolls (if levied) to be constant

$

ρ,F

AC

AC*

E

E’

qc

FmaxFE



An Integrated Dynamic Model of Road Traffic Congestion20

over the peak. The distribution of trips, scheduling costs and travel delay costs over time are

thus determined endogenously.

For such demand structures, the present model can be expected to behave in a way

similar to the bottleneck model as proposed by Vickrey (1969), and extended in various

directions by Arnott, De Palma and Lindsey (1993, 1998). The model presented above shares

the property with the bottleneck model that when the arrival rate of users exceeds the

maximum capacity, a queue will be building up, while the road (or the bottleneck) operates at

maximum capacity. In contrast to the pure bottleneck model, in the present model the flow on

the road will not immediately take on the value Fmax as soon as ρ≥Fmax. However, this transition

need not take much time and may therefore be of only limited practical importance. For

instance, in the numerical example presented in Figure 9, already after some six or seven

drivers starting after the moment that ρ exceeded Fmax for the first time, both Fen and Fex

approach Fmax rather closely.

A further distinction between the models is that in the bottleneck model a queue starts

growing immediately after the first driver has started his trip, and does not vanish completely

until the last driver has passed the bottleneck. The present model would normally have some

periods of flow congestion without queuing over the first and last phases of the unregulated

peak. Likewise, it is likely that for the present formulation, not all congestion will be eliminated

in the optimum, although all queuing will be. In contrast, like in the dynamic models of flow

congestion with zero group velocity as presented by Henderson (1974, 1981) and Chu (1995),

some flow congestion – that is, speeds below S* – can be expected to remain existent in the

optimum.

6. Conclusion

A new approach to model road traffic congestion was presented, based on simple car-

following theory, allowing for finite group velocity and discrete vehicles. The model

constitutes a full-fledged dynamic version of the standard static model of road traffic

congestion based on the so-called ‘fundamental diagram of road traffic congestion’. It was

proven formally and illustrated numerically that the suggested hypercongested equilibria of the

standard static model are in fact dynamically unstable. The model presented is fully consistent

with, and reproduces non-hypercongested stationary state outcomes found in the standard

static model, as long as the arrival rate of new users is below the maximum capacity of the

road. When this maximum capacity is exceeded, the model behaves in the same manner as

Vickrey’s (1969) model of bottleneck congestion, by predicting a maximum flow on the road

in conjunction with a growing queue before the road’s entrance. Therefore, the model

presented above offers an integration and a generalization of these two important types of

models. An important next step would be to integrate the model with a more elaborate demand

structure, and to study the behaviour of such a model during transitional phases more explicitly

than in the qualitative last section of the paper.

The conclusion that the hypercongested equilibria suggested by the standard static

model of road traffic congestion are in fact dynamically unstable should not be mistaken to
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imply that every observation of hypercongested speeds in reality actually falsifies the model

presented here. In contrast, the present model would only suggest that whenever such speeds

are observed, it is unlikely that the cause is to be found in flow congestion on that road itself,

but that the true reason for such speeds may often be a downstream bottleneck. Therefore,

optimal pricing rules should then not primarily be based on the road’s characteristics, but

rather on the bottleneck’s capacity, which will in general imply different optimal road prices.
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