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Abstract

The distribution of a functional of two correlated vector Brownian motions is approximated by a

Gamma distribution. This functional represents the limiting distribution for cointegration tests with

stationary exogenous regressors, but also for cointegration tests based on a non-Gaussian likelihood.

The approximation is accurate, fast, and easy to use in comparison to both tabulated critical values

and simulated p-values.

1 Introduction

Consider the vector error correction model (VECM)

�Xt = ��X�
t�1 +

k�1X
j=1

�j�Xt�j +�qt + "t; t = 1; : : : ; T; (1)

where fXtg is a p-vector time series, the starting values (X1�k; : : : ;X0) are fixed, f"tg is i.i.d. N(0;
),

and X�
t�1 = (X 0

t�1; d
0
t)
0, where dt and qt are deterministic regressors. The three deterministic specifi-

cations that are most commonly used, are, in the notation of Doornik et al. (1998) (also see Johansen,

1995, Section 5.7):

� Hz : both dt and qt are void; no deterministics;

� Hc : dt = 1, qt is void; restricted constant;

� Hl : dt = t, qt = 1; restricted linear trend.

�Correspondence to: H. Peter Boswijk, Department of Quantitative Economics, Universiteit van Amsterdam, Roetersstraat

11, NL-1018 WB Amsterdam, The Netherlands. E-mail: peterb@fee.uva.nl.
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When rank�� = r � p and some further restrictions on (��; f�jg) are satisfied, the model implies

that Xt is cointegrated. The likelihood ratio (LR) statistic for the hypothesis H(r) : rank�� � r has

been derived by Johansen (1988, 1995), and its limiting distribution (when rank�� = r) is characterized

by the functional

T = tr

(Z
1

0

dBF 0

�Z
1

0

FF 0du

��1 Z 1

0

FdB0

)
; (2)

where B(u) is a standard (p� r)-vector Brownian motion, and where either F (u) = B(u) (model Hz),

or F (u) = fB(u)0; 1g0 (model Hc), or F (u) = f[B(u)�
R
1

0
Bdu]0; [u� 1

2
]g0 (model Hl).

Recently, Seo (1998) and Rahbek and Mosconi (1998) considered an extension of (1), where some

exogenous stationary vector process Zt is added to the regressors (together with some of its lags):

�Xt = ��X�
t�1 +

k�1X
j=1

�j�Xt�j +�qt +
mX
j=0

DjZt�j + "t; t = 1; : : : ; T: (3)

The limiting distribution under the null hypothesis of the LR statistic for H(r) in this case turns out to

be characterized by

Q = tr

(Z
1

0

dWF 0

�Z
1

0

FF 0du

��1 Z 1

0

FdW 0

)
; (4)

where F (u) is the same as before, and W (u) is a standard (p � r)-vector Brownian motion, with

E[W (1)B(1)0] = P = diag(�1; : : : ; �p�r), where �i 2 [0; 1] are correlation coefficients. Note that

Q = T when P = Ip�r.

In order to save notation, but without loss of generality, we shall only consider the case r = 0 hence-

forth, so that W and B are of dimension p.

When p = 1 (and P = �), the random variable Q in model Hz is the square of

R =

�Z
1

0

B2du

��1=2 Z 1

0

BdW:

Its distribution was obtained by Kremers et al. (1992) as the limiting distribution of a t-statistic for coin-

tegration with known cointegrating vector. Because we may decomposeW as �B+(1� �2)1=2U , with

U a standard Brownian motion, independent of B, it follows that

R = �

R
1

0
BdB�R

1

0
B2du

�1=2 +
�
1� �2

�1=2 R
1

0
BdU�R

1

0
B2du

�1=2
= �X+

�
1� �2

�1=2
Z; (5)

where X corresponds to the limiting distribution of the Dickey-Fuller t-statistic, and Z is a standard nor-

mal random variable, independent of B and hence X. Kremers et al. (1992) suggested to use critical

values from the standard normal distribution by a small-� (in this case small-�) asymptotic argument.

The same distribution ofRwas also obtained by Hansen (1995), in the context of testing for a unit root

with stationary exogenous regressors. Hansen tabulated the distribution of R for �2 2 f0:1; 0:2; : : : ; 1g,

and suggested to interpolate these critical values for other values of �2. This approach was extended
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by Seo (1998) to the multivariate case, leading to Q. With p > 1, however, one has to construct ta-

bles for different values of (�1; : : : ; �p) which is rather impractical. Seo provided tables for p � 5 and

(�1; : : : ; �p) 2 P � � � � � P , where P = f0; 0:2; 0:4; 0:6; 0:8; 1g, which already resulted in 20 pages

of tables. Requiring from practitioners to obtain appropriate critical values by interpolation in several

dimensions may be too much to ask, and definitely does not add to the ease-of-use of the proposed test.

Therefore, we suggest in the next section an alternative approach to obtaining critical values or (prefer-

ably) p-values, based on Doornik’s (1998a) approach to approximate the distribution of T by a Gamma

distribution with the same mean and variance as T, also see Johansen (1988) and Nielsen (1997). This

is closely related to Abadir and Lucas’ (1996) approximation of the distribution of R by a normal distri-

bution with non-zero mean and non-unit variance.

The distribution of R and Q also arises when H(r) is tested in model (1) with non-Gaussian f"tg

and corresponding non-Gaussian likelihood function. See, e.g., Lucas (1997), who considers cointegra-

tion testing based on a Student-t likelihood function, and Boswijk and Lucas (1997), who use a semi-

nonparametric likelihood function. Furthermore, the distribution of R also emerges when f"tg is as-

sumed to follow a GARCH process, and an LR test for a unit root is based on the corresponding likelihood

function, see Ling and Li (1997, 1998).

The plan of the rest of this paper is as follows. In Section 2, we show that the mean and variance of

Q can be expressed as a function of the mean and variance of T, a covariance parameter, and the corre-

lations (�1; : : : ; �p). It is then suggested to use a Gamma distribution with the same mean and variance

as an approximation to the true distribution of Q. In Section 3, this approximation is shown to be very

accurate, at least for quantiles and p-values where accuracy is required (in the right-hand tail of the dis-

tribution). Section 4 applies the result to the purchasing-power parity model of Johansen and Juselius

(1992). Section 5 concludes.

2 Mean and Variance of Q

The Gamma distribution function �(x; b; a) is defined here as:

�(x; b; a) =

Z x

0

ab

�(b)
tb�1e�atdt; x > 0; b > 0; a > 0; (6)

with �(b) =
R1
0
tb�1e�tdt, the Gamma function. A random variable X with this distribution has mean

E(X) = b=a and variance var(X) = b=a2.

Doornik (1998a) shows that the Gamma distribution with b = E(T)2=var(T) and a = E(T)=var(T)

provides an accurate approximation of the distribution of T. The mean and variance of T could in prin-

ciple be simulated for the three different deterministic models and many values of p. However, Doornik

shows, using estimated response surfaces based on Monte Carlo simulation, that the following approxi-

mations are sufficiently accurate:

E(T) �

8>><
>>:

2p2 � p+ 0:07 + 0:07 � 1fp=1g for Hz;

2p2 + 2:01p + 0:06 � 1fp=1g + 0:05 � 1fp=2g for Hc;

2p2 + 4:05p + 0:5� 0:23 � 1fp=1g � 0:07 � 1fp=2g for Hl;

(7)
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and1

var(T) �

8>><
>>:

3p2 � 0:33p � 0:55 for Hz;

3p2 + 3:60p + 0:75 � 0:40 � 1fp=1g � 0:30 � 1fp=2g for Hc;

3p2 + 5:70p + 3:20 � 1:30 � 1fp=1g � 0:50 � 1fp=2g for Hl:

(8)

Doornik also analyzes

Ti =

Z
1

0

dBiF
0

�Z
1

0

FF 0du

��1 Z 1

0

FdBi;

where Bi is the ith component of B, so that T =
Pp

i=1 Ti. Since Ti and Tj have the same distribution,

we have E(Ti) = E(T)=p. Furthermore, he finds (by simulation) that for i 6= j,

cov(Ti;Tj) �

8>><
>>:

�1:270 for Hz;

�1:066 for Hc;

�1:35 for Hl:

(9)

This can be used to evaluate var(Ti) = var(T)=p� (p� 1)cov(Ti;Tj).

Here we adopt a similar approach forQ. Theorem 1 provides an expression for the mean and variance

of Q in terms of E(T), var(T), cov(Ti;Tj) and (�1; : : : ; �p). Subsequent substitution of the approxi-

mations (7)–(9) provides the first two moments of Q. This, in turn, may be used to obtain a Gamma

approximation of its distribution.

Theorem 1 Let q = dim(F ). Then

E(Q) =

Pp
i=1 �

2

i

p
E(T) +

�
1�

Pp
i=1 �

2

i

p

�
pq; (10)

and

var(Q) =

pX
i=1

�4i var(Ti) + 2

pX
i=2

i�1X
j=1

�2i �
2

jcov(Ti;Tj) + 4

Pp
i=1 �

2

i (1� �2i )

p
E(T) + 2q

pX
i=1

(1� �2i )
2:

(11)

Proof. Decompose W as PB+RU , where R = diagf(1��2
1
)1=2; : : : ; (1��2p)

1=2g = (I�P 2)1=2,

and where U is a standard p-vector Brownian motion, independent of B. This implies that

Z =

�Z
1

0

FF 0du

��1=2 Z 1

0

FdU 0 � N(0; Iqp);

independently of B. Defining

X =

�Z
1

0

FF 0du

��1=2 Z 1

0

FdB0;

1The variance entries in Table 7 of Doornik (1998a) should be labelled (n� p); 1; n� p = 1; n� p = 2:
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it follows that (remembering that both P and Q are diagonal)

Q = tr
�
[XP + ZR]0[XP + ZR]

�
= tr

�
PX0XP + PX0ZR+RZ0XP +RZ0ZR

�
;

= tr
�
PX0XP

�
+ 2tr

�
PX0ZR

�
+ tr

�
RZ0ZR

�
=

pX
i=1

�2iTi + 2tr
�
PX0ZR

�
+

pX
i=1

(1� �2i )�i; (12)

where �i =
Pq

j=1 Z
2

ji are independent �2(q) random variables. Because Z is independent of X,

E(2tr[PX 0ZR]) = 0. Thus we find

E(Q) =

pX
i=1

�2iE(Ti) +

pX
i=1

(1� �2i )q

=

Pp
i=1 �

2

i

p
E(T) +

�
1�

Pp
i=1 �

2

i

p

�
pq:

To obtain the variance of Q, we first note that the first and third term in (12) are independent, and

hence uncorrelated. Furthermore, the second term is uncorrelated with the first term, because it has mean

zero conditionally on X. Next, the covariance between the second and third term in (12) is zero (condi-

tionally onX), because elements of Z are uncorrelated with squared elements of Z. Hence all covariances

are zero, and the variance of Q can be reduced to

var (Q) = var

 
pX

i=1

�2iTi

!
+ 4var

�
tr[PX0ZR]

�
+ var

 
pX

i=1

(1� �2i )�i

!
: (13)

For the first term of (13) we find

var

 
pX

i=1

�2iTi

!
=

pX
i=1

�4i var(Ti) + 2

pX
i=2

i�1X
j=1

�2i �
2

jcov(Ti;Tj):

To evaluate the second variance term, we use

tr
�
PX0ZR

�
= vec(P )0(X0 
R)vec(Z0):

Hence

var
�
tr[PX0ZR]

�
= E

�
var
�
vec(P )0(X0 
R)vec(Z0)jX

�	
= E

�
vec(P )0(X0X
R2)vec(P )

�
= E

�
tr
�
X0XP 2R2

��
=

pX
i=1

�2i (1� �2i )E(Ti)

=

Pp
i=1 �

2

i (1� �2i )

p
E(T):

The final term in (13) follows immediately from the fact that �i � i:i:d: �2(q):

var

 
pX

i=1

(1� �2i )�i

!
= 2q

pX
i=1

(1� �2i )
2:

This completes the proof. �
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3 Evaluation of the Approximation

The accuracy of the Gamma approximation based on the results from Theorem 1 is assessed using sim-

ulation. The experimental design is a follows. Following Doornik (1998a, Section 4), the distribution of

Q is simulated from �T
P

log(1 � �i). Here, �i are the eigenvalues of T�1E0R(R0R)�1R0E, which

is the discrete approximation to the expression inside the trace of (4). The dimensions and correlations

are respectively: p = 1; : : : ; 5, and (�1; : : : ; �p) 2 P � � � � � P , where P = f0; 0:2; 0:4; 0:6; 0:8; 1g

(the ordering of the correlations is irrelevant). The design consists of 461 specifications for each of the

three treatments of deterministic terms, so 1383 experiments in total. This corresponds to the tables in

Seo (1998). The number of Monte Carlo replications was chosen as M = 10 000, and the sample size

in the discretization as T = 2000.2

Table 1 compares the absolute relative error in the mean and standard deviation ofQwhen using The-

orem 1 together with (7)–(9) to that found in the simulations. The table reports the mean of the absolute

relative errors for each dimension separately as a percentage. The proposed procedure is very accurate

indeed. The discrepancy is somewhat higher at dimension one. Here, the distribution is very skewed (as

discussed in Doornik, 1998a), requiring more precise estimates of the mean and variance, corresponding

to the dummies for low dimensions needed in (7) and (8).

Table 1: Mean absolute relative errors of E(Q) and s:d:(Q)

n = 1 n = 2 n = 3 n = 4 n = 5

mean 0.83% 0.35% 0.37% 0.23% 0.21%

std.deviation 1.27% 0.75% 0.75% 0.70% 0.71%

count 18 63 168 378 756

To evaluate the whole procedure, we contrast the p-values obtained from the Gamma approximation

based on (7)–(9) and Theorem 1 with the empirical rejection frequencies. We record the absolute differ-

ence between the p-value from the Gamma approximation and the simulated values. Table 2 reports the

percentage of experiments where this absolute difference exceeds 0:0025; 0:005; 0:01 respectively. In

no experiment did the difference exceed 0:02. For example, at 0:95 (the most commonly used p-value),

27% of the experiments (379 out of 1383) have a difference exceeding 0:0025, and only 2% a difference

greater than 0.005 (but never exceeding 0:01). If the simulated distribution were exact, this implies that

only 2% from the Gamma approximation are outside the range 0:945 – 0:955. Actually, we cannot rule

out that the Gamma approximation is more accurate than the simulated values, because the latter uses

T = 2000, rather than the range of sample sizes which were used to obtain (7) and (8).

2All experiments are done using Ox 2.0, see Doornik (1998b).

6



Table 2: Difference between Gamma-based and simulated distribution of Q

probability: 0.01 0.05 0.1 0.2 0.4 0.5 0.6 0.8 0.9 0.95 0.99

> 0:0025 difference 6% 30% 43% 55% 70% 73% 70% 63% 45% 27% 2%

> 0:005 difference 1% 5% 12% 27% 43% 44% 43% 29% 11% 2% 0%

> 0:01 difference 0% 1% 1% 3% 9% 11% 11% 3% 0% 0% 0%

> 0:02 difference 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

4 Application

To illustrate the proposed procedure, we use a variant of the model estimated by Johansen and Juselius

(1992). They estimate a VAR(2) with unrestricted constant (model Hlc) and seasonal dummies using the

UK wholesale price index (p1), the trade-weighted foreign wholsesale price index (p2), the UK effective

exchange rate (e12), the three-month treasury bill rate in the UK (i1), and the three-month Eurodollar

interest rate in the UK (i2). In addition, the change in oil price (�poil) and its lag were used as condi-

tioning variables. Johansen and Juselius (1992) found two cointegrating vectors. Hansen and Juselius

(1995) use a transformed version in terms of p1 � p2;�p1 to avoid I(2)-ness. Following Rahbek and

Mosconi (1998) we adopt model Hl by allowing a trend to enter the cointegrating space. In terms of (3)

our specification is a VAR(2):

Xt = (p1t � p2t;�p1t; e12;t; i1t; i2t)
0; X�

t = (X 0
t; t)

0;

qt = (1; S1t; S2t; S3t)
0;

Zt = �poil;t;

with k � 1 = m = 1, and where Sit are seasonal dummy variables. The effective sample size, after

taking all lags into account is 1972 (4) – 1987 (2).

Table 3: p-values for the tests T and Q

r p� r trace test 1� P (T) 1� P (Q) �̂

0 5 95.3 0.014 0.002 1, 1, 1, 0.842, 0.378

1 4 61.4 0.077 0.016 1, 1, 0.881, 0.396,

2 3 37.8 0.150 0.084 1, 0.918, 0.813

3 2 16.7 0.445 0.303 0.968, 0.826,

4 1 5.27 0.567 0.515 0.960,

Table 3 lists the test values for each rank, together with p-values. The fourth column, labelled 1 �

P (T), gives the asymptotic p-value under the assumption that the presence of Zt does not affect the dis-

tribution. The second cointegrating vector is only present if we are willing to adopt a 10% significance

level. However, the sample is very small: 59 observations with 17 regressors in each equation. There
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may be a tendency to overreject the true rank in small samples. Indeed, when adopting the sample-size

adjusted p-value for Hl(1) (using the formulae in Doornik, 1998a), we find that it changes from 7:7%

to 14%. Correcting for the stationary exogenous regressors shrinks the distribution towards zero, so that

the p-values will always decrease. Now rank one is firmly rejected with a p-value of 1:6%. If we use the

small sample mean and variance of T in the formulae forQ (which is somewhat ad hoc), the p-values for

ranks 0–2 change to 1%; 3%; 11% respectively.

The canonical correlations �̂i are computed using the kernel method of Andrews (1991), as suggested

in Seo (1998). We use the quadratic spectral kernel with automatic bandwidth and an AR(1) for each

component. However, we found that the standard long-run covariance matrix gave nearly identical re-

sults.

To illustrate the procedure to obtain the distribution, consider Hl(r = 4), which has only one canon-

ical correlation. The following steps are involved:

� Use p� r = 1 for p in (7) and (8) to compute E(T) and var(T). This yields 6:32 and 10:6. The

next step requires var(Ti) which is also 10:6 in this case.

� To compute E(Q) and var(Q), again use p � r = 1 for p; q is one more, corresponding to the

trend which has been added to the cointegrating vector. With �̂ = 0:96, the result is 5:98 and

10:85 respectively.

� The approximating distribution is �(�; 5:982=10:85; 5:98=10:85). Or roughly: 1:1 � 5:27 comes

from a �2(6:6).

Rahbek and Mosconi (1998) suggest to add poil to the cointegrating space to avoid the need to com-

pute the nuisance parameters. In that case, the analysis is conditional on an I(1) variable, and the analysis

of Harbo et al. (1998) pertains. This test statistic, denoted S here, was considered by Doornik (1998a),

and the p-values are listed in Table 4. As Rahbek and Mosconi (1998) note, these results barely support

the hypothesis that the rank is one.

Table 4: p-values for the test conditional on the I(1) variable poil

r p� r trace test 1� P (S)

0 5 99.1 0.059

1 4 65.2 0.179

2 3 41.5 0.246

3 2 18.8 0.570

4 1 6.10 0.682

This discrepancy merits further investigation. The small sample size is a possible limitation to the

power of the tests, and therefore we shall work with a model which is more parsimonious. However, we

first note that, although �poil was added by Johansen and Juselius (1992) to avoid non-normality, there
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is still strong non-normality in the i1 equation, caused by a single outlier. Therefore we add a dummy for

1980(2). With this adjustement, all the vector and univariate misspecification tests of PcFiml (Doornik

and Hendry, 1997) are passed. A joint tests on the seasonals supports their deletion; the same holds for

the second lags, with the exception of i2;t�2. The seasonals and second lags are deleted, but �i2;t�1 is

entered unrestrictedly.

Table 5: p-values for the tests T, Q, and S

r p� r trace test 1� P (T) 1� P (Q) trace test 1� P (S)

0 5 171.6 0.000 0.000 176.3 0.000

1 4 73.5 0.005 0.002 78.3 0.018

2 3 41.2 0.072 0.039 45.0 0.137

3 2 16.4 0.468 0.348 18.9 0.566

4 1 3.22 0.841 0.816 3.47 0.932

The new test results, using the same sample period, are in Table 5. (Doornik et al., 1998, noted that

an impulse dummy, when entered unrestrictedly, does not affect the distribution.) The outcomes are no

longer contradictory: a rank of two or more (the original conclusion of Johansen and Juselius), is clearly

supported. There is some evidence of a third cointegrating vector, but the small sample argument leads

us to reject this. Accepting r = 2, we can test whether the oil price can be deleted in the model corre-

sponding to S. The test supports this: �2(2) = 0:92 [0:63]. A weak form of purchasing power parity,

namely that p1 � p2 and e12 have equal but opposite coefficients in both cointegrating vectors, is not

rejected: �2(2) = 4:38 [0:11] (without the trend, it would be strongly rejected).

5 Conclusion

We have derived a convenient way to tabulate the distribution of cointegration tests in the presence of

additional stationary regressors. The proposed method is very accurate, and avoids the need for interpo-

lation required with previous tabulations. In addition, the method is compact and easy-to-use, making it

suitable for application in computer programs.
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