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Abstract

We show that a su�cient condition for the identi�cation of all pa-

rameters of the censored regression model with a stochastic and un-

observed threshold is that the errors are jointly normally distributed.

Exclusion restrictions are not needed.
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1 Introduction

In this note we show that all parameters of the censored regression model
with a stochastic and unobserved threshold are identi�ed if the errors of
the regression and threshold equations are jointly normally distributed. No
exclusion restrictions in either equation are needed.

2 A censored regression model with a stochas-

tic and unobserved threshold

We consider the censored regression model with normally distributed errors

y�1 = � 01x + u1 (1)

y�2 = � 02x + u2 (2)

y1 = y�1I(y
�
1 � y�2) (3)

y2 = I(y�1 � y�2) (4)

with
u1; u2 � N(0;�) (5)

The model applies to all members of an in�nitely large population. We
omit subscripts that identify individual members. The parameters of the
model are the vectors of regression coe�cients �1; �2 and the components
of the variance-covariance matrix � of the errors. To avoid trivial instances
of the model, we restrict the variances in � to be strictly positive and the
correlation to be strictly greater than -1 and strictly less than 1. The latent
variables y�1; y

�
2 are the dependent variables in a SUR model with normally

distributed errors. Equations (3) and (4) relate the observed y1; y2 to the
latent variables. By (3) y�1 is observed if it exceeds the latent threshold y�2.
If it is below this threshold, we do not observe y�1, and the missing value
is labeled by the number 0. The missing value label is in the range of the
observed values of y�1, but the probability of such an observation, i.e. of the
event y�1 = 0; y�1 > y�2, is 0. We also observe the indicator y2 of the event that
the latent threshold is exceeded.

This model was introduced by Nelson (1977), who also gives some exam-
ples. Unobserved thresholds occur in optimization problems with possibly
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binding restrictions ,e.g. the demand for consumer durables and labor supply,
or dynamic choice problems, in which the optimal strategy is characterized by
a reservation value, e.g. optimal stopping problems as in job search models.
In these applications both the (distribution of) the partially observed depen-
dent variable and that of the unobserved threshold are of interest. For that
reason, it is important to know under what conditions their joint distribution
can be recovered from the distribution of the observations.

Nelson (1977) and Maddala (1983) (section 8.4) discuss the identi�cation
of the parameters of this model. Nelson reparametrizes the model and in-
spects the resulting likelihood function. He uses an analogy between the new
parametrization and the original one, and the parameters of the structural
and reduced form in a system of simultaneous equations, to derive su�cient
conditions for identi�cation. Maddala derives the same su�cient conditions
by considering the estimation problem as a two-stage problem. In the �rst
stage a probit model is estimated for the dummy-dependent y2. The probit
estimates are used in the second stage to obtain the conditional expectation
of y1 given x. Both authors conclude that

1. The parameters of equation (1), �1; �
2
1 are identi�ed, if the regression

equation (2) has at least one explanatory variable (that may also appear
in regression of the partially observed variable).

2. The other parameters, �2; �
2
2; �12 are identi�ed, if, in addition, either

�12 = 0 or, if there is at least one explanatory variable xk with �2k =
0; �1k 6= 0.

In this note we argue that these conditions are not necessary. In par-
ticular, we show that no exclusion restrictions are needed to identify all
parameters of the model. Our result is a warning against the use of informal
arguments or analogies in the discussion of the identi�cation of models with
limited dependent variables.

3 Identi�cation without additional parame-

ter restrictions

Without loss of generality we omit the explanatory variables x. Let f(y1; y2;�;�)
be the density function of the observed variables y1; y2 with � the vector of
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means of the latent variables. We say that two sets of parameters �;� and
~�; ~� are observationally equivalent if for all y1; y2 with �1 < y1 < 1,
y2 = 0; 1,

f(y1; y2;�;�) = f(y1; y2; ~�; ~�) (6)

We prove the following theorem

Theorem 1 Let the latent variables y�1; y
�
2 have a bivariate normal distribu-

tion with mean � and variance-covariance matrix �. Let the observed vari-
ables y1; y2 be de�ned as in equations (3) and (4). Then (�;�) and (~�; ~�)
are observationally equivalent if and only if (�;�) = (~�; ~�).

Proof The joint density of (y1; y2) is

f(y1; y2;�;�) =

(
�

 
y1 � �2 � ��2

�1
(y1 � �1)

�2
p
1� �2

!
1

�1
�

�
y1 � �1

�1

�)y2

�

�
8<
:1� �

0
@ �1 � �2q

�21 + �22 � 2��1�2

1
A
9=
;
1�y2

(7)

with �1 < y1 <1, y2 = 0; 1.
Let �;� and ~�; ~� be observationally equivalent. Consider the joint density

for y2 = 0. Observational equivalence implies the following restriction on the
parameters

�1 � �2q
�21 + �22 � 2��1�2

=
~�1 � ~�2q

~�21 + ~�22 � 2~�~�1~�2
(8)

For y2 = 1 observational equivalence implies

�

 
y1 � �2 � ��2

�1
(y1 � �1)

�2
p
1� �2

!
1

�1
�

�
y1 � �1

�1

�
=

�

0
@y1 � ~�2 � ~� ~�2

~�1
(y1 � ~�1)

~�2
p
1� ~�2

1
A 1

~�1
�

�
y1 � ~�1

~�1

�
(9)

for all �1 < y1 <1.
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We express equation (9) as a ratio by division by the right-hand side
that is strictly positive if the variance of y�1 is strictly positive, as is assumed
throughout. Observational equivalence implies that this ratio is identically
equal to 1. Note that the ratio is equal to an individual contribution to the
likelihood ratio for these two sets of parameters. Our identi�cation proof
considers the behavior of this likelihood ratio contribution over the support
of the observed variables. In particular, we look for values of the observed
variables that favor one set of parameters over the other, with observational
equivalence implying that such values can not be found. Without loss of
generality we assume that �1 > ~�1. Then for the second factor in the ratio

lim
jy1j!1

�
�
y1��1
�1

�
�
�
y1�~�1
~�1

� =1 (10)

Next consider the �rst factor in the ratio that we rewrite as

�

0
@
�
1��

�2

�1

�
y1��2+�

�2

�1
�1

�2

p
1��2

1
A

�

0
@
�
1�~�

~�2

~�1

�
y1�~�2+~�

~�2

~�1
~�1

~�2

p
1�~�2

1
A

(11)

We distinguish four cases

I

�
1� ��2

�1

�
� 0;

�
1� ~� ~�2

~�1

�
� 0

II

�
1� ��2

�1

�
� 0;

�
1� ~� ~�2

~�1

�
< 0 or

�
1� ��2

�1

�
= 0;

�
1� ~� ~�2

~�1

�
> 0

III

�
1� ��2

�1

�
< 0;

�
1� ~� ~�2

~�1

�
� 0 or

�
1� ��2

�1

�
> 0;

�
1� ~� ~�2

~�1

�
= 0

IV

�
1� ��1

�2

�
< 0;

�
1� ~� ~�2

~�2

�
< 0

Only the instance that both weak inequalities in case I are equalities, belongs
to case I. If one of these weak inequalities is an equality and the other strict,
we are in case II or III, as indicated. The limit for y1 ! 1 or y1 ! �1
of the ratio obtained by dividing the left-hand side of equation (9) by the
right-hand side is equal to the product of the limit in equation (10) and the
limit of equation (11). The product of the limits is1 if either y1 !1 (cases
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I and II) or y1 ! �1 (cases III and IV). Because this limit should be equal
to 1, we have a contradiction, and we conclude that

�1 = ~�1 (12)

We substitute this equality in equation (9). The ratio of the right- and
left-hand sides of that equation simpli�es to

�

0
@
�
1��

�2

�1

�
y1��2+�

�2

�1
�1

�2

p
1��2

1
A

�

0
@
�
1�~�

~�2

�1

�
y1�~�2+~�

~�2

�1
�1

~�2

p
1�~�2

1
A
� e

�1�~�1

�
2

1

y1 � e
~�
2

1
��

2

1

2�2

1 (13)

Again,without loss of generality we may assume that

�1 > ~�1 (14)

We consider the cases I-IV separately, where the instances with equalities
are subsumed under the same cases as before. In the cases I and II, we let
y1 ! 1. The ratio of c.d.f.'s converges to 1 and 1, respectively, and the
exponential function increases to 1, so that the expression diverges to 1.
This contradicts the assumed observational equivalence. In the cases III and
IV, we let y1 ! �1. In case IV the ratio of c.d.f.'s converges to 1 and the
exponential function to 0. Again, this it at odds with observational equiva-
lence. Case III is more involved. In the instance that the weak inequality in
case III is an equality the denominator is a positive constant and the limit
is 0. Again, this contradicts observational equivalence. Next, we consider
the case that the inequality is strict. Because the c.d.f. in the numerator
converges to 1, we can restrict attention to the exponential function in the
numerator and the c.d.f. in the denominator that both converge to 0. Using
l' Hospital's rule we �nd that the limit is 1, again a contradiction.

We conclude that

�1 = ~�1 (15)

Upon substitution of (12) and (15) in (8) and (9), we obtain the following
system of three equations
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�1 � �2q
�21 + �22 � 2��1�2

=
�1 � ~�2q

�21 + ~�22 � 2~��1~�2
(16)

1� ��2
�1

�2
p
1� �2

=
1� ~� ~�2

�1

~�2
p
1� ~�2

(17)

��2
�1
�1 � �2

�2
p
1� �2

=
~� ~�2
�1
�1 � ~�2

~�2
p
1� ~�2

(18)

Consider ~�2; ~�2; ~� as the unknowns of this system. We must show that the
unique solution is ~�2 = �2; ~�2 = �2; ~� = �. By solving equation (17) we can
express ~�2 as a function of ~�, and by solving equation (16) we can express
~�2 as a function of ~�; ~�2. Substitution of these expressions in equation (18)
gives an equation in ~�. After some calculations we obtain

~�p
1� ~�2

=
a+ �21b

2 � bc� �1b
2

c
�1
+ �1

�1
b

(19)

with a; b; c the left-hand sides of equations (16), (17), (18). Because (19) has
a unique solution, the system has a unique solution ~�2 = �2; ~�2 = �2; ~� = �.
This completes the proof.

4 Conclusion

Explanatory variables x do not play any role in the proof. By repeating
the argument for every subpopulation de�ned by a vector of explanatory
variables x, we see that �1(x); �2(x), and �1(x); �2(x); �(x) for that matter,
are identi�ed for all x.

The identi�cation of the pair �;� poses a number of questions. First, do
distinct pairs have joint densities of observables that di�er with respect to a
suitable metric, e.g. the Kullback-Leibler metric associated with Maximum
Likelihood estimation? Second, are the parameters identi�ed in the sense
of Rothenberg (1971), i.e. is the information matrix of constant rank in a
neighborhood of the population parameters and of full rank? Third, given
the nature of the identi�cation proof that is based on the behavior of the
likelihood ratio for extreme observations and relies on the tail behavior of
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the normal density, can we distinguish between distinct pairs in practice?
The answer to these questions is beyond the scope of the current note.
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