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ABSTRACT

In this paper life insurance contracts based on an urn-of-urns model, with age-at-death as observable variable, are
analyzed. Premium payment functions based on the principles of "equivalence on an individual level" and
"equivalence on a group level" are compared. Both the aggregate loss and its second moment for an individual
contract are split in several components. Life insurance contracts are compared with non-life insurance contracts, also
with respect to solidarity.
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1. Introduction

Unobserved heterogeneity is a problem which involves both life and non-life insurance. In this
context heterogeneity is defined as the existence of anurn-of-urnsmodel (see e.g. Jewell
(1980)) with a non-degenerate structure distribution. In an urn-of-urns model first the outcome
of a random structure variable is drawn from an urn. Then the outcome of a certain random
variable is drawn from the second urn which corresponds to the outcome of the first draw.
In this paper we consider some aspects of unobserved heterogeneity in life insurance. We will
restrict ourselves to single life policies.

In terms of non-life insurance, we assume that the distribution of an individual’s total claim
amount is known up to a risk parameter. The values of these risk parameters are not
observable; the insurer only knows the parameters’ distribution density (structure distribution).
The company charges an average premium for each contract of the portfolio such that the
expected loss for the whole portfolio is equal to zero, i.e. the expected value of the premium
income is equal to the expected value of the claim amounts. This implies that, for each
insured individual, the company is faced by both aprocess effect(the difference between
claim amount and the expected claim amount for that individual) and aparameter effect(the
difference between the expected claim amount for that individual and the average premium).
An essential property of the parameter effect is that it does not depend on the draw from the
second urn in the urn-of-urns model.

In the non-life case, the unconditional loss variance consists of two parts. In this paper we
will investigate whether this is also the case for life contracts.

In Section 2 the main assumptions will be described. These involve an urn-of-urns model with
respect to remaining lifetime and the definition of a loss function. The conceptsequivalence
on an individual levelandequivalence on a group level, introduced in Spreeuw (1996), will
be recalled here. If "equivalence on an individual level" was possible then each individual
would have his/her own premium payment function, in this paper defined asindividual
(discounted) premium payment function. For two individuals with different risk parameters,
different individual premium payment functions would result.

Since the heterogeneity is unobserved, only equivalence on a group level is possible. In this
paper a premium payment function which satisfies this principle, and applies to all insured,
is calledaverage (discounted) premium payment function.



Section 3 will deal with the division of an aggregate loss into several components. The
section will begin with the non-life case, mentioned in the second paragraph of this
introduction. When in this paper we mention non-life insurance, we restrict ourselves to non-
life policies where a premium is only paid at issue. Then a major difference between life
insurance and non-life insurance is the period during which premiums have to be paid by the
individual. Contrary to a non-life contract, this period is for a life contract often a time
interval and not one single time point during the contract term. This is the reason why the
expression which results from subtracting theexpected loss in case of equivalence on an
individual level (a more generalized definition of process effect) from theaggregate loss,
defined as parameter effect in the non-life case, is in general not independent of the drawn
outcome itself, in this case the age-at-death. In this paper we will split this difference further
in a) the expected loss for the individual contract, which is similar to the parameter effect in
the non-life case, and b) a remaining part. Hence the aggregate loss for an individual contract
consists of three parts (the two parts mentioned in the previous sentence and the process
effect). First and second moments of these three parts will be derived. It will be proved that
the (unconditional) variance of the aggregate loss consists of the above mentioned second
moments, besides a covariance term.

In Section 4 payment by single premium will be discussed. In the case of single premium
payment, there is the most resemblance between a life contract and a non-life contract. The
average single premium(based on the principle of equivalence on a group level) will be
compared withindividual single premiums(satisfying equivalence on an individual level).
Similar to a non-life insurance contract, the parameter effect is equal to the expected loss for
the individual contract. It will be shown that in this particular case two components of the
loss variance, derived in Section 3, vanish. As a result, two terms remain, which are similar
to the non-life case, namely the expectation of the variance in case of equivalence on an
individual level and the variance of the expected loss.

To illustrate the results derived in previous sections, a numerical example, involving an
endowment insurance, will be given in Section 5. We will compare the cases of single
premium payment and continuous level premium payment.

Finally Section 6 deals with some solidarity aspects. In comparison with above all issues of
this paper will now be considered from the insured’s point of view. The conceptsrisk
solidarity and probabilistic solidarity, as well asex ante transferand ex post transfer, the
latter concepts being closely related to process effect and parameter effect, respectively, will
be discussed.

2. Assumptions

Our assumptions mainly involve an urn-of-urns model which will be introduced next.
Furthermore in this section, we will specify a loss function and define the principles
equivalence on an individual levelandequivalence on a group level.
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2a. The urn-of-urns model

We consider a large group of persons, all agedx0. The distribution of remaining lifetime of
an arbitrary member of this group, depends on the value of his/her individual, one-
dimensional, risk parameter. The draw of an individual with risk parameter valuedθ involves
the outcomeθ of a random variableΘ. The latter has structure density functionu(θ). Given
the outcomeθ, the force-of-mortality function is equal to µ(x0+ s; θ) (s ≥ 0). Then the
corresponding c.d.f.FT Θ(t,x0; θ), the probability of a person agedx0 to die before age
x0+ t, is equal to

FT Θ(t, x0; θ) = . (1)1 − e

−⌡
⌠
t

0

µ(x0+s;θ) ds

The marginal c.d.f. ofT, the latter being the random variable of the remaining lifetime of an
arbitrary member of the population, is then given by

FT(t, x0) = . (2)1 − ⌡
⌠
θ
u(θ)e

−⌡
⌠
t

0

µ(x0+s;θ) ds

dθ

So we have an urn-of-urns model, see e.g. Jewell (1980). Usually only the outcomes of the
second draw (the selection of the outcome from the "small urn", in this case the age-at-death
t) can be observed. However, we assume that both the conditional c.d.f.’s of remaining life-
time FT(t, x0) and the structure densityu(θ) are known to the insurer. Only the outcome of
the first draw (the draw of the "small urn" within the "large urn", in this case the outcome
of Θ) remains unobserved.

2b. The loss function

We assume that there is a fixed infinitesimal interest rate, namelyδ. Let c(t) be the present
value of the benefits due att in case of dying at timet andB(t) the total amount of benefit
payments in [0,t] while the insured is alive. Then the present value at time 0 of all benefits
(life and death) (to be) paid if the insured dies at timet is equal toβ(t), whereβ(t) is defined
as follows:

 e−δt c(t) + e−δs dB(s), (t > 0)⌡
⌠
t

0
β(t) =  (3) 0. (t = 0)

In this article we will ignore expenses, although they can be defined such that they are part
of β(t). The present value of all premiums paid by the insured in [0,t] in case of dying at
time t is denoted byρ(t):
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 e−δs dΠ(s), (t > 0)⌡
⌠
t

0
ρ(t) =  (4) 0, (t = 0)

whereΠ(s) is defined as the total amount of premium payments in [0,s]. We assume that the
integrals, appearing in the right hand sides of formulas (3) and (4), exist for eacht.

Then l(t), the loss incurred in case of dying at timet, is equal to

l(t) = β(t) − ρ(t). (t ≥ 0) (5)

By writing this loss as a function ofT we obtain the random loss:

l(T) = β(T) − ρ(T). (T ≥ 0) (6)

These loss functions are formulated in a very general way. In Section 3 we will use the same
notation for loss functions, where the termρ(t) is subject to "equivalence on a group level".
The latter principle will be defined in the next subsection.

2c. Two equivalence concepts

We first consider equivalence on an individual level. Anindividual (discounted) premium
payment functionfor an individual with risk parameterθ is defined as a functionρ(t) which
is a solution of the following equation:

E[l(T) Θ=θ] = 0

⇔ E[ρ(T) Θ=θ] = E[β(T) Θ=θ]

⇔ = . (7)⌡
⌠
∞

0

ρ(t)dFT Θ(t,x0;θ) ⌡
⌠
∞

0

β(t)dFT Θ(t,x0;θ)

In the remainder of this paper we will denote such a solution byρ(t;θ).
In our case of "equivalence on a group level", theaverage (discounted) premium payment

function, denotes a functionρ(t) which is applicable to all insured and satisfies an equation
similar to (7), though now with respect to the marginal distribution ofT (see equation (2)):

E[E[l(T) Θ]] = 0

⇔ E[E[ρ(T) Θ]] = E[E[β(T) Θ]]

⇔ =⌡
⌠
θ













⌡
⌠
∞

0

ρ(t)dFT Θ(t,x0;θ) u(θ)dθ ⌡
⌠
θ













⌡
⌠
∞

0

β(t)dFT Θ(t,x0;θ) u(θ)dθ

⇒ = . (8)⌡
⌠
∞

0

ρ(t)dFT(t,x0) ⌡
⌠
∞

0

β(t)dFT(t,x0)
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We defineρ(t) as a functionρ(t) which satisfies equality (8).

Note that neitherρ(t; θ), nor ρ(t), has to be unique unless sufficient restrictions are imposed
on the premium payment function. The latter is the case in the following example, involving
continuous level premium payment.

Example 1 (level premium payment)

If a contract with durationn years is purchased by a level premium paid continuously during
the first m years (m ≤ n) while the insured is alive, we have thatρ(t) in (4) is defined as

ρ(t) = π e−δs ds, (t ≥ 0) (9)⌡
⌠

t m

0

where t∧m is defined as the minimum oft and m. In this case, a unique value forπ will
result, since there are sufficient constraints imposed onρ(t), using one of the equivalence
principles in subsection 2c. Henceρ(t) is then uniquely determined as well.

The level premium for an individual with parameterθ in case of equivalence on an individual
level, in the remainder called theindividual level premiumand denoted byπ(θ), is

π(θ) = . (10)E[β(T) Θ=θ]
E[ā

T m
Θ=θ]

On the other hand, applying the principle of equivalence on an individual level will result in
the following average level premiumπ:

π = . (11)E[β(T)]
E[ā

T m
]

3. Separation of the loss; process effect and parameter effect; first and second moments

In this section we will separate the aggregate loss, first for non-life and then for life contracts.
In subsection 3a the aggregate loss of a non-life policy will be split in components. Division
of the aggregate loss of a life contract is the subject of subsection 3b, the approach being
based on subsection 3a. Subsections 3c and 3d will deal with first and second moments,
respectively. It will be proved at the end of subsection 3d that these second moments are part
of the loss variance for an arbitrary contract.

3a. Separation of aggregate loss for non-life insurance contracts

Generally speaking, an "urn-of-urns model", as described in e.g. Jewell (1980), involves a two
stage draw. At the first stage, which is unobserved, an outcome of a random variableΘ,
having density functionu(θ), is drawn. Then, givenΘ = θ, the outcome of the second stage
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h involves the realization of a random variableH (e.g. claim amount), with corresponding
density function being a function ofθ. Then in non-life insurance, "equivalence on a group
level" implies that each individual pays a premium equal to the unconditional expectation of
H, namely

E[H] = E[E[H Θ]]. (12)

For an individual contract with outcomeh and risk parameterθ, the loss is

l(h) = h − E[H]. (13)

For an individual contract with risk parameterθ, this loss can be separated as follows:

l(h) = l1(h; θ) + (l(h) − l1(h; θ)), (14)

where theprocess effectis defined as

l1(h; θ) = h − E[H Θ=θ], (15)

being equal to the actual loss in case of equivalence on an individual level. The remaining
term is defined as theparameter effect, which is independent ofh:

l(h) − l1(h; θ) = E[H Θ=θ] − E[H]. (16)

The parameter effectis equal to the expected loss for the individual contract. (The concepts
in italics are related to "process risk" and "parameter risk", respectively, which are introduced
and verbally described in Cummins et al. (1983, p. 68).)

3b. Separation of aggregate loss for life insurance contracts

With the urn-of-urns model described in Section 2 as basis, we will now separate the
aggregate loss for the life contract into the process effect and the difference between the
aggregate loss and the process effect. Similar to above subsection, by the process effect the
loss corresponding to equivalence on an individual level is denoted. The other term will be
again separated, namely into the expected loss for the individual contract and a remaining
component.

The drawn outcomes of the urn-of-urns model in the previous section are times-of-death,
rather than claim amounts. In the life case the relevant variables are functions of these times-
of-death, namely those defined in formulas (3) and (4), instead of the draws themselves.
Besides, interest has to be taken into account.

In this paper we suppose that the principle of equivalence on a group level is used by the
insurer. Therefore, each insured pays premiums according to the average (discounted)
premium payment functionρ( ), which satisfies equality (8):

E[E[ρ(T) Θ]] = E[E[β(T) Θ]]. (17)
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Then at time-until-deatht the loss for the insurer is equal to

l(t) = β(t) − ρ(t). (18)

(Note that the form ofl(t) is now more specific than in definition (5).) For an individual with
risk parameterθ this loss can be separated in two parts:

l(t) = l1(t; θ) + (l(t) − l1(t; θ)). (19)

In (19) theprocess effectis defined as

l1(t; θ) = β(t) − ρ(t; θ), (20)

being equal to the loss in case of equivalence on an individual level. The process effect has
expectation zero on the level of an individual contract. The remaining part of (19) is given
by

l(t) − l1(t; θ) = ρ(t; θ) − ρ(t). (21)

Recall from subsection 3a that in the non-life case the difference between the aggregate loss
and the process effect is equal to the expected loss for the individual contract.

We will now investigate whether this also holds for the life case, by deriving the expected
loss for the individual contract and subtracting it from the right hand side of (21). The
expectation of the latter is denoted byEL(θ) (EL is short for "Expected Loss"):

EL(θ) = E[l(T) − l1(T; θ) Θ = θ] = E[l(T) Θ = θ], (22)

since

E[l1(T; θ) Θ = θ] = 0 for eachθ. (23)

So EL(θ) is equal to the expected loss for the individual contract.

Rewriting the aggregate loss as a function of both the process effect andEL(θ) we get:

β(t) − ρ(t) = l1(t; θ) + l2(t; θ) + l3(t; θ), (24)

where

l2(t; θ) = EL(θ) for eacht, and (25)

l3(t; θ) = ρ(t;θ) − ρ(t) − EL(θ). (26)

The latter term is to be interpreted as the difference between the actual parameter effect and
its expectation. Since (26) in general depends ont, (21) is not equal to the expected loss for
the individual contract.
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3c. Analysis of first moments

We have thatl1(t; θ) and l3(t; θ) have expectation zero on an individual level and thatl2(t; θ)
is equal to its expectation on the level of an individual contract, since it does not depend on
t:

E[l1(T; θ) Θ = θ] = 0 for eachθ, so E[l1(T; Θ) Θ] ≡ 0,

E[l2(T; θ) Θ = θ]] = EL(θ) = E[l(T) Θ = θ], (27)

E[l3(T; θ) Θ = θ] = 0 for eachθ, so E[l3(T; Θ) Θ] ≡ 0.

All three parts have average expectation zero:

EΘ[ET[li(T; Θ) Θ]] = 0 for eachi ∈ {1, 2, 3}. (28)

3d. Analysis of second moments

In this subsection we will derive the second moments of all three components, as well as the
covariances between these terms.

Since

E[l(T)] = E[β(T) − ρ(T)] = 0, (29)

we have that the variance of the aggregate loss is equal to

Var[l(T)] = E[l2(T)] = E[E[l2(T) Θ]]

= E[E[{ l1(T; Θ) + l2(T; Θ) + l3(T; Θ)} 2 Θ]]

= E[E[li(T; Θ) lj(T; Θ) Θ]]. (30)
i, j∈{1,2,3}

Theorem 1 (Composition of the loss variance)

Var[l(T)]

= E[Var[β(T) − ρ(T; Θ) Θ]]

+ Var[E[β(T) − ρ(T) Θ]]

+ E[Var[ρ(T;Θ) − ρ(T) Θ]]

+ 2 E[Cov[β(T) − ρ(T; Θ), ρ(T; Θ) − ρ(T) Θ]]. (31)
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Verbal interpretation:

Equation (31) shows that the variance of the loss for an arbitrary individual contract consists
of:

- the expected loss variance in case of equivalence on an individual level;

- the variance of the expected loss;

- the expected variance, due to the deviation of the actual difference between the
aggregate loss and the process effect from the expected differenceand

- two timesthe expected covariance between, on the one hand,the process effect and,
on the other hand,the difference between the aggregate loss and the process effect.

Proof

The theorem is proved by calculating E[E[li(T; Θ) lj(T; Θ) Θ]] for each possible combination
of i and j. We will first consider the cases withi = j:

E[ET[l21(T; Θ) Θ]] = E[Var[l1(T; Θ) Θ]]

= E[Var[β(T; Θ) − ρ(T; Θ) Θ]]; (32)

E[ET[l22(T; Θ) Θ]] = E[ET[EL2(Θ) Θ]]

= E[E2[ρ(T; Θ) − ρ(T) Θ]]

= E[E2[β(T) Θ] − E2[ ρ(T) Θ]]

= Var[E[β(T) − ρ(T) Θ]]; (33)

E[ET[l23(T; Θ) Θ]]

= E[ET[{ ρ(T;Θ) − ρ(T) − EL(Θ)} 2 Θ]]

= E[Var[ρ(T;Θ) − ρ(T) Θ]]. (34)

For the remaining cases we can restrict ourselves to all combinations withi < j (j < i gives
the same results):

E[ET[l1(T; Θ) l2(T; Θ) Θ]] = E[EL(Θ) ET[l1(T; Θ) Θ]] = 0; (35)

E[ET[l2(T; Θ) l3(T; Θ) Θ]] = E[EL(Θ)ET[l3(T; Θ) Θ]] = 0; (36)
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E[ET[l1(T; Θ) l3(T; Θ) Θ]]

= E[ET[(l1(T; Θ) − E[l1(T; Θ) Θ]) l3(T; Θ) Θ]]

= E[Cov[l1(T; Θ), l(T) − l1(T; Θ) Θ]]

= E[Cov[β(T) − ρ(T; Θ), ρ(T; Θ) − ρ(T) Θ]]. (37)

By substituting all last sides of formulas (32) to (37) into (30) we get the desired result.

4. Single premium payment

Single premiums in life insurance and premiums in non-life insurance have one thing in
common: the amount is paid at one single time point and intended to cover the expected
amount of benefits during the contract period. Therefore we will consider this special case
of premium payment below in order to be able to compare the urn-of-urns model concerning
time-until-death with the traditional one, mentioned at the beginning of Section 3. We will
give formulas for the single premiums and analyze both the loss components and their second
moments.

4a. Special form of premium payment function

If a contract is paid by single premium, the formulas forρ(t; θ) reduce as follows:

 SP(θ), (t > 0)ρ(t; θ) =  (38) 0, (t = 0)

where theindividual single premium, is

SP(θ) = E[β(T) Θ=θ]. (39)

For ρ(t) we get

 SP, (t > 0)ρ(t) =  (40) 0. (t = 0)

In this equationSP, the average single premium, equals

SP= E[β(T)] = E[E[β(T) Θ]] = E[SP(Θ)]. (41)
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4b. Separation in different parts; second moments

The three parts of formula (24) are in this case

l1(t; θ) = β(t) − SP(θ), and (42)

l2(t; θ) = EL(θ) = E[ρ(T; θ) − ρ(T) Θ = θ]

= SP(θ) − SP. (43)

l3(t; θ) = SP(θ) − SP− E[ρ(T; θ) − ρ(T) Θ = θ] = 0. (44)

So we have that in the case of single premium payment the difference between the aggregate
loss and the process effect is not dependent on time-until-deatht and hence is equal to the
expected loss.

The first, third and fourth term of the right hand side of (31) are in this case

E[Var[β(T) − ρ(T; Θ) Θ]] = E[Var[β(T) − SP(Θ) Θ]]

= E[Var[β(T) Θ]]; (45)

E[Var[ρ(T;Θ) − ρ(T) Θ]] = E[Var[SP(Θ) − SP Θ]] = 0; (46)

E[Cov[β(T) − ρ(T; Θ), ρ(T; Θ) − ρ(T) Θ]]

= E[Cov[β(T) − ρ(T; Θ),SP(Θ) − SP Θ]] = 0. (47)

So the unconditional variance reduces to

Var[l(T)] = E[Var[l(T) Θ]] + Var[E[l(T) Θ]] (48)

= E[Var[β(T) Θ]] + Var[E[β(T) Θ]], (48)′

since adding a constant term, in this case the average single premium, to the argument of a
variance does not influence the value of the variance itself. As the right hand side of formula
(48) demonstrates, the loss variance in the case of single premium payment consists solely
of the expected variance of the loss in case of equivalence of an individual level and the
variance of the conditional expected loss.

The similarity with the urn-of-urns model, described at the beginning of subsection 3a, with
random variableH is entirely clear, since

Var[l(H)] = Var[H] = E[Var[H Θ]] + Var[E[H Θ]]. (49)
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5. An example

In this section we illustrate the results derived in Sections 3 and 4 for an example, involving
an n-year endowment insurance. We assume that the amount insured is equal to 1.

The functionβ(t), derived in (3), now reads

 e−δ(t∧n), (t > 0)β(t) =  (50) 0. (t = 0)

Payment of this insurance is by either single premium orn year continuous level premium.
We will treat both cases separately.

The individual single premium for a person with risk parameterθ is equal to (see equation
(3)):

SP(θ) = E[e−δ(T∧n) Θ = θ], (51)

while for the average single premium we have (cf. equation (4)):

SP= E[e−δ(T∧n)] = E[E[e−δ(T∧n) Θ]]. (52)

To be able to compare the quantities computed in this subsection with the respective results
to be derived in subsection 5b we will frequently make use of the following well known
formula:

(53)e−δ (t n) = 1 −δ ā
t n

.

Using the formulas (10), (11) and (53), we get for the individual level premium and average
level premium

π(θ) = = (54)E[e−δ(T n) Θ=θ]
E[ā

T n
Θ=θ]

1
E[ā

T n
Θ=θ]

− δ,

and

π = = (55)E[e−δ (T n)]
E[ā

T n
]

1
E[ā

T n
]

− δ,

respectively.

Table 1 displays the formulas for the components of the aggregate loss itself and components,
while expressions for the variance parts of the aggregate loss are given in Table 2 (single
premium payment) and Table 3 (level premium payment).
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Table 1

The aggregate loss and its components for an n-year continuous level endowment insurance.

Compo-

nent

Single premium

payment

Level premium payment

l1(t; θ) e−δ(t∧n)

− E[e−δ(T∧n) Θ = θ]
e−δ (t n) − E[e−δ (T n) Θ=θ]

1 − E[e−δ (T n) Θ=θ]

l2(t; θ) E[e−δ(T∧n) Θ = θ]

− E[e−δ(T∧n)]
E[e−δ (T n) Θ=θ] − E[e−δ (T n)]

1 − E[e−δ (T n)]

l3(t; θ) 0 (e−δ(t n)−E[e−δ(T n Θ=θ]) (E[e−δ(T n)] − E[e−δ (T n) Θ=θ])

(1 − E[e−δ (T n)]) (1 − E[e−δ (T n) Θ=θ])

l(t) e−δ(t∧n)

− E[e−δ(T∧n)]
e−δ (t n) − E[e−δ (T n)]

1 − E[e−δ (T n)]

Table 2

The loss variance and its components for an n-year level continuous

endowment insurance in case of single premium payment.

Component Formula

E[Var[β(T) − ρ(T; Θ) Θ]]
E Var[e−δ (T n) Θ]

Var[E[β(T) − ρ(T) Θ]]
Var E[e−δ (T n) Θ]

E[Var[ρ(T;Θ) − ρ(T) Θ]] 0

2 E[Cov[β(T) − ρ(T; Θ),

ρ(T; Θ) − ρ(T) Θ]]

0

Var[l(T)] Var[e−δ (T n)]
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Table 3

The loss variance and its components for an n-year level continuous endowment insurance in

case of continuous level premium payment.

Component Formula

E[Var[β(T) − ρ(T; Θ) Θ]]
E











Var[e−δ (T n) Θ]

(1 − E[e−δ (T n) Θ])2

Var[E[β(T) − ρ(T) Θ]]
Var E[e−δ (T n) Θ]

(1 − E[e−δ (T n)])2

E[Var[ρ(T;Θ) − ρ(T) Θ]]

E























E[e−δ (T n) Θ] − E[e−δ(T n)]

1 − E[e−δ(T n) Θ]

2

Var[e−δ(T n) Θ]

(1 − E[e−δ (T n)])2

2 E[Cov[β(T) − ρ(T; Θ),

ρ(T; Θ) − ρ(T) Θ]]
2

E










E[e−δ(T n)] − E[e−δ (T n) Θ]

(1 − E[e−δ(T n) Θ])2
Var[e−δ(T n) Θ]

1 − E[e−δ (T n)]

Var[l(T)] Var[e−δ (T n)]

(1 − E[e−δ (T n)])2

The next numerical example is based on the following proportional model:

µ(x0+ s; θ) = µ(x0+ s) θ, (56)

where µ(x0 + s), denoting the force of mortality of a "standard" individual at agex0 + s,
corresponds to the graduated Dutch life table for males (GBM 1985-1990) andθ is usually
defined as thefrailty variable, see, for instance, Vaupel et al. (1979).

We assume the structure distributionu(θ) to be of the form:

u(θ) = 0.8I{0.5} (θ) + 0.2I{4} (θ), (57)

using the discrete equivalent of (2) to calculateFT Θ(t, x0; θ). In (57), I{ a} (θ) is the indicator
function, giving value 1 ifΘ = a and 0 otherwise.

The age-at-issue,x0, is equal to 35, while forn the value 30 is taken. The variance
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components in Tables 2 and 3 are based on an insured amount of 100 and calculated at annual
interest rates of 4% and 8% (corresponding with values forδ equal to 0.03922 and 0.07696,
respectively). The results are shown in Table 4.

Table 4

Illustration of the formulas in Tables 2 and 3, calculated at annual interest

rates of 4% and 8%.

Component Single premium

payment

Level premium

payment

4% 8% 4% 8%

E[Var[β(T) − ρ(T; Θ) Θ]] 65.86 74.24 165.44 104.28

Var[E[β(T) − ρ(T) Θ]] 9.45 8.16 21.49 10.68

E[Var[ρ(T;Θ) − ρ(T) Θ]] 0 0 0.93 0.29

2 E[Cov[β(T) − ρ(T; Θ),

ρ(T; Θ) − ρ(T) Θ]]

0 0 −16.62 −7.48

Var[l(T)] 75.31 82.40 171.24 107.77

The table above illustrates a result derived in Wolthuis & Kling (1992), namely that for
insurances with non-increasingβ(t), payment by single premium gives the lowest value for
the loss variance Var[l(T)]. Note furthermore that, assuming level premium payment, the third
component, E[Var[ρ(T;Θ) − ρ(T) Θ]], is in both cases small, but that the covariance part is
not negligible.

6. Solidarity aspects

In the middle of the 1980’s some papers have been published on solidarity in non-life
insurance, the main paper being De Wit & Van Eeghen (1984). In the latter the concepts
probabilistic solidarityand risk solidarity are defined. As will be seen below each of them
indicates a variance part of the right hand side of (49). In this section we will also discuss
the paper of Posthuma (1985), which is based on non-life insurance contracts and has an
approach similar to the one in Section 3, though from the insured’s point of view.

In this section we will use the notation of subsection 3a. For an individual with parameterθ,
the quantity E[H Θ = θ] is called theindividual premium.

De Wit & Van Eeghen (1984) define theprobabilistic solidarityas

E[Var[H Θ]]. (58)
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In (31) the term reflecting the probabilistic solidarity is given by

E[Var[β(T) − ρ(T; Θ) Θ]]. (59)

Besides, De Wit & Van Eeghen denote therisk solidarity by

Var[E[H Θ]]. (60)

The term in (31) corresponding to this concept is

Var[E[β(T) − ρ(T) Θ]]. (61)

Posthuma (1985) considers two quantities, having the same absolute value asl1(h; θ) and
l2(h; θ) in (14), respectively, but opposite sign. The first component, theex post transfer,
denoted byPOST(h; θ), is equal to minus the process effect:

POST(h; θ) = − l1(h; θ) = E[H Θ=θ] − h. (62)

If there is equivalence on an individual level, considering all insured with the same valueθ,
an individual with a positive ex post transfer (having a claim amount smaller than the
individual premium) subsidizes a person with a negative ex post transfer (having a claim
amount larger than the individual premium).

Since sign differences are eliminated by taking squares, the expectation of the second
moment of all ex post transfers is also equal to the probabilistic solidarity in De Wit & Van
Eeghen (1984).

E[ET[(E[H Θ] − H)2 Θ]] = E[Var[H Θ]]. (63)

On the other hand, also in Posthuma (1985), theex ante transferhas been introduced, being
equal to minus the parameter effect:

ANTE(h; θ) = − (l(h) − l1(h; θ)) = E[H Θ=θ] − E[H], for eachh. (64)

The interpretation is that, if there is equivalence on a group level, a person with a positive
ex ante transfer (a person who pays a net premium which is higher than the individual
premium) subsidizes one with a negative ex ante transfer (someone whose net premium is
lower than the individual premium).

Since the parameter effect and the ex ante transfer only differ with respect to sign, the risk
solidarity in De Wit & Van Eeghen (1984) can also be obtained by taking the expectation of
the square of the ex ante transfers:

E[(E[H Θ] − E[H])2 Θ] = Var[E[H Θ]]. (65)

As indicated in the previous subsection, life contracts paid by single premium are in this
respect very similar to non-life contracts. To define the ex post transfer and the ex ante
transfer, we only have to replaceH by β(T) and h by β(t) in both formulas (62) and (64),
respectively.
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Problems arise when the premium payment is not restricted to time-at-issue. Similar to
Spreeuw (1996), where the particular case of continuous level premium payment has been
considered, we can define the ex ante transfer more generally as minus the expected loss for
the individual contract:

ANTE(t; θ) = − EL(θ). (66)

It also seems reasonable to define the ex post transfer as the loss in case of equivalence on
an individual level, though with reversed sign:

POST(h; θ) = − l1(t;θ) = ρ(t; θ) − β(t). (67)

Contrary to single premium payment, however, with these definitions we can not separate the
total transfer (being minus the aggregate loss) in only an ex ante transfer and an ex post
transfer. The reason is that one term remains, being equal to

− l3(t; θ) = − (ρ(t;θ) − ρ(t) − EL(θ)), (68)

indicating the deviation of the actual value of the premium differences, from the expected
value.
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