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Abstract

A key application of long memory time series models concerns inflation. Long memory
implies that shocks have a long-lasting effect. It may however be that empirical evidence
for long memory is caused by neglecting one or more level shifts. Since such level shifts are
not unlikely for inflation, where the shifts may be caused by sudden oil price shocks, we
examine whether evidence for long memory (indicated by the relevance of an ARFIMA
model) in G7 inflation rates is spurious or exaggerated. Our main findings are that
apparent long memory is quite resistant to level shifts, although for a few inflation rates
we find that evidence for long memory disappears.
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1 Introduction

A key application of long memory time series models concerns inflation. For example, Has-
sler & Wolters (1995) and Baillie, Chung & Tieslau (1996) find convincing evidence for the
presence of long memory characteristics in, especially, inflation rates in the G7 countries.
Long memory implies that shocks have a long-lasting effect. Similar to the arguments in the
literature on unit roots versus mean shifts, see Perron (1989) and Perron & Vogelsang (1992),
it may however be that empirical evidence for long memory is caused by neglecting one or
more level shifts. Since such level shifts are not unlikely for inflation, where these may be
caused by sudden oil price shocks, we examine whether evidence for long memory (indicated
by the relevance of an ARFIMA model) in G7 inflation rates is spurious or exaggerated.

The outline of the study is as follows. In Section 2 we start with a brief motivation by
having a closer look at monthly US inflation, thereby extending some recent results summa-
rized in Ooms (1996). In Section 3 we put forward the relevant theory for testing for long
memory and structural level shifts. Our results build on that of Hidalgo & Robinson (1996),
who showed that the Wald test is applicable to testing for breaks in a long memory model and
on Cheung (1993) since we put forward LM and Wald tests. Section 4 deals with a simulation
study of the practical performance of the tests. In Section 5 we apply our tests to monthly
G7 inflation rates, where we assume that structural level shifts concur with substantial oil
price changes. Our main findings are that apparent long memory is quite resistant to mean
shifts, although for a few inflation rates we find that evidence that long memory disappears.
In Section 6, we conclude our paper with several remarks.

2 A motivation

Consider the monthly US inflation rate in Figure 1. The data cover January 1957-December
1995 and concern all commodities (source: Bureau of Labor Statistics, series SA0). In the
same graph, we draw straight lines that suggest that US inflation has undergone four different
regimes. First, until approximately 1967, inflation is stable at a low level. Then the Vietnam
war exerts its effect on prices. Inflation is higher, but still quite stable (around this higher
level). At the time of the first oil crisis, inflation almost doubles, while at the same time
starting to display higher variability. This period of high inflation ends approximately halfway
1981. The final subsample shows a return to earlier inflation levels, although the variability
of inflation stays high.

The apparent level shifts might reflect genuine long memory properties intrinsic to infla-
tion. However, the level shifts may also be caused by exogenous events such as the oil crisis.
It may also be that the data are better described by a long memory model with mean shifts.

To examine the impact of including mean shifts, we estimate an ARFIMA model (of
the type discussed in section 3 below) for U.S. inflation (adjusted for seasonal means). We
allow for zero, two or four breaks in our ARFIMA model. The timing of the breaks is fixed
exogenously and they correspond with shortly before and after the first oil crisis (1973:07 and
1976:07) and shortly before and after the second oil crisis (1979:01 and 1982:07). In Table 1
we give some key results concerning the fractional differencing parameter d in an ARFIMA
model and the parameters for the mean shifts.

The behavior of the parameter d indicating the degree of fractional integration is interest-
ing. Under the assumption of no mean shifts, we find clear indication of long memory, with
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Figure 1: US inflation levels

Table 1: Estimated values of fractional parameter d and mean shifts # in an ARFIMA model
for U.S. inflation

Nr. of breaks 0 2 4
d 0.50 (0.05)  0.40 (0.06)  0.38 (0.06)
Brara:or 1.85 (0.35)  1.65 (0.40)
Broze:07 -0.25 (0.44)
Brore:01 0.97 (0.43)
Brgsa0r 171 (0.35)  -2.10 (0.39)

Note: Standard errors are given in parentheses



an estimate for d even at the border of the non-stationary region. Allowing for two breaks
we observe that d reduces considerably. Finally, allowing for four breaks does not seem to
change much, since d obtains about the same value as in the case of two shifts.

3 Some theoretical results

The empirical results in Table 1 evoke interest in the following issues. The first concerns
how one would formally address modeling breaks and fractional integration jointly. The
second concern is with test statistics that are useful to examine if structural shifts in an
ARFIMA model are statistically plausible. The asymptotic distribution of these statistics is
then relevant, but also their small sample performance. In this section we deal with these
issues, except for the simulation evidence which we postpone to Section 4.

The ARFIMA model

A fractionally integrated model aims to capture the long memory that is apparent in a time
series. Where the influence of a shock in a stationary [I(0)] model disappears after a limited
number of periods (depending on the short memory parameters in the autoregressive and
moving average parts), and where the effect of a shock lasts forever in a unit root [I(1)]
process, the fractionally integrated model [FI(d) with d € (0,1)] takes up an intermediate
position, see Granger & Joyeux (1980), Hosking (1981), and more recently, Baillie (1996) and
Beran (1994).
The ARFIMA (p,d, q) model is written as

S(L)(1 - L)zt — ) = O(L)er  t=1,.,T 1)

where z; is the time series at time ¢, p. its mean, and ®(L) = 1 — ¢1L — .. — ¢pLP is the
stable autoregressive polynomial in the lag operator L and ©(L) = 1+ 6;L + .. + 6,19 the
invertible moving average part (p,q € {0,1,2,..}). ®(L) and ©(L) together define the short
memory characteristics of the model. We assume the noise process ¢; to be Gaussian, with
expectation zero and variance 2. The long memory behavior is governed by the part (1—L)%.
If d is an integer, the I(d) process is non-fractional, and taking d*! differences of z; leads to a
(stationary) I(0) series. If d € (0,1), one says that z; exhibits long memory behavior.

Including a level shift

To allow for a level shift, after a fraction 7 (0 < 7 < 1) of the data, we write the observations
y¢ as the sum of an unobserved ARFIMA process and the term for the level shift:

Yt = 2t + pd>r1) (2)
The parameter p indicates the size of the level shift in the series y; at time 7T. We define
the relative level shift as

g=L£ (3)

Oz

with o, being the standard deviation of the ARFIMA process. If the level shift y and the
timing of the break 7 are known, this standard deviation can be estimated directly using the
empirical standard deviation of the underlying process z:.



The extension of (2) to k breaks is straightforward. We define y, as the r-th shift in level,
compared to the previous level, and we define the relative breaksize 3, similar to (3), where
r=1,..,k. When we allow for k level changes at prespecified fractions 0 < 7y < .. < 7 < 1,
we can extend (2) to

k
a=y— Y trlisn Ty (4)
r=1
The sample mean of the underlying process z; is now defined as

k

k
Z= %Xt:yt—%zzuﬁ{»ﬂ} :g_%ZLT(l—Tr)Jun (5)
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where || denotes the operator to take the integer part of the argument (the entier function).

In this paper we assume we know the values of 71,.., 7. It is of course possible to endo-
genize the timing of the breaks, as in Andrews (1993) or Bai (1996). This would complicate
matters too much for the moment, and further investigation into this subject is postponed
for later research.

The spectrum of an ARFIMA model

In order to derive the following results, we assume from now on that z; is a zero mean,
stationary and invertible ARFIMA process, which is obtained from the original data by
filtering out the known level shifts, and, if needed, by appropriate differencing, and subtracting
the sample mean Z, i.e.,

k
Anld+3) = ve— 3 wlinm) (6)
r=1
B, ld+3)) = (1- D)4l 7
alwld+3]) = #- ®)

We assume that z; in (8) can be described by an ARFIMA (p, d, ¢) model with d in [—0.5,0.5).
The autocovariance generating function (ACGF') of an ARFIMA (p, d, q) process is written
as

_a0(2)0(z 1)

Lo Y

g(50) = ? (1 - 2)(1 - 271))
see Harvey (1989). To save notation, we use ® as the set of parameters {¢1,..,¢,} in the
polynomial ®(L), © likewise for the MA parameters and we write ¥ as shorthand for the
ARFIMA parameters {®,d, ©,02}. We use p to denote the level shifts 11 to u,. The spectral
generating function (SGF) of the ARFIMA model is given by

NEACIC]E
g\ 0) =o? |1 - ——, (10)
@ ()]
leading to the power spectrum, which is used extensively in the likelihood function as
1
1 U) = —g(\;0). 11
) = g% ) (1)



The loglikelihood
With z; defined as in (8), the loglikelihood of the ARFIMA model is

In £(y|®, d, O, 1, 02) = —g In 27 — %m IS(0)] — %z'z;l(xp)z. (12)
The covariance matrix of z is ¥p(¥) = [v(j — l)]zlzl, with v(j) the j-th autocovariance of
the process z. The loglikelihood depends only on the level shifts through the change from
observations y; to the underlying process z;. This dependence is not stressed in the notation.
Although it is possible to construct the exact likelihood function in the time domain
(see Sowell (1992)), we use an approximation in the frequency domain following Harvey
(1989). The latter procedure is computationally simpler. In practice, the problem with the
calculation of the loglikelihood function is found in the covariance matrix ¥7(¥), which is a
T x T matrix. Calculation of its determinant and inverse is time-consuming. Harvey (1989,
section 4.3) proposes to use the following approximations

T-1
In|S7(P)| = Ta2r + »  Inf(\j; 0) (13)
5=0

with f(A; ¥) the power spectrum of the process z; at frequency A and \; = 275/ T, and

Til ..
2'r(0)z = z_;) %, (14)

where I, (A; 1) denotes the break-adjusted periodogram of z; at frequency A. In this notation,
the dependence of the periodogram I,(A;u) on the level shifts p is made explicit again, see
the Appendix.

When calculating the elements of equations (13)-(14), elements at frequency zero are
disregarded, as advocated in Beran (1994), hence the summations start at j = 1. Taking all
above results together leads to Whittle’s approximative loglikelihood function, denoted by

In L(y|®,d, O, 1, 02)

T 1 1,
=~ 5 In2r — 2 In[Sr(Y)| - 52571 (D)
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Here we use the fact that for the power spectrum it holds that f(\; ¥) = f(—\; ¥) and that
fA¥) = f(A+2m; ¥). Furthermore, T* = |T/2] and weights J; are defined as

1 - T T
_ s if j=5 =53]
0 = { 1 else (16)

for j = 1,..,7*. The purpose of the weighting is only to make sure that the midpoint of the
range of frequencies is not used twice if T is even.



Testing for breaks

Testing whether level shifts occur corresponds with testing a linear restriction on the para-
meters £ = {U, u} = {®,d,0, 02, u}. The relevant null hypothesis and alternative hypothesis
are

Hy:RE=p=0 Hy:RE=p#0, (17)

where the alternative implies that we are testing against k breaks at prespecified moments. R
is the matrix to select the parameters to be restricted from the vector £. In this setting, the
Wald, Lagrange Multiplier (LM) and Likelihood Ratio (LR) tests can be used. In our case,
the parameters under the null hypothesis of no breaks are more easily calculated than under
the alternative, as the inclusion of breaks in the likelihood function would imply that for every
evaluation of the likelihood, the periodogram I,(\; ) would have to be recalculated. Thus,
the LM principle is our first choice for the next section, where the simulations are presented.
In Section 5, where the analysis is done for the countries of the G7, both the LM and Wald
test statistics are used.

Hidalgo & Robinson (1996) have proved that the Wald test statistic on a single structural
change in a long memory environment follows a x? distribution, when using a non-parametric
estimator for d and an OLS estimate (disregarding the value of d or any short memory
parameters) for the mean of the series before and after the break. Their proof cannot easily be
translated to a setting where an iterative generalized least squares or (approximate) maximum
likelihood procedure is used. However, as parametric estimators tend to converge at least as
fast as non-parametric estimators (assuming a correct model specification under the null
hypothesis), this asymptotic x? distribution can be expected to hold in our case too. As the
Wald and LM tests are asymptotically equivalent, the results of Hidalgo & Robinson can be
translated to the LM test. Finally, the extension to multiple breaks is straightforward, as
long as we condition on the number and the timing of the breakpoints. Asymptotically, we
expect a X% distribution for the test on k£ breaks under the null hypothesis.

The calculation of the test statistics follows the familiar lines:

n —1
w, = i (RITEDR) & (18)
dlnL |’ . dlnL
LM, = Ly 1
1% 86 JEOJ ( 070) 85 Jéo’ (9>

with £ as defined before. The ¥ and [i are the unrestricted estimates of the parameters in
the model, whereas &y = {Wy, 0} is the estimate of the parameters under the null hypothesis
of no breaks. The J(¥, ) denotes the information matrix

ovaov’  9vay’
?InL 9 InL
opov’ ouop’

J(U,p) = —E (20)

2InL a2lnL]

In appendix A we provide more details on the calculation of these test statistics.

4 Simulation evidence

In this section we report on some simulation evidence concerning the small sample properties
of the estimators of the parameters and of the LM test for level shifts.



Two data generating processes

We generate 512 (=T) observations from an AR(1) process with ¢ = 0.8 and from an
ARFIMA(1,d,0) process with ¢ = 0.4 and d = 0.3 (see appendix B for information on
the generator used for the ARFIMA model). The variance o2 of the disturbances is taken
to be 1. Halfway the sample, we add a level shift of size § = 1, i.e., a shock of one time
the standard deviation of the underlying process is added to the mean of the series after the
observation at %T. Given the variance of the ARFIMA processes, which is 02 = 2.778 for the
AR(1) model and o2 = 2.357 in the ARFIMA(1, d, 0) case, the parameter y in (2) equals
1.667 and 1.535, respectively. For both time series, i.e., AR(1) and ARFIMA(1,d,0), with
and without a level shift, we estimate the parameters of an ARFIMA(1,d,1) model. Our
simulations are based on 5000 replications.

The empirical distribution of the estimators

In Figure 2 the empirical distribution functions of dA), d and  are shown for data generated
according to the AR(1) process without a break. Figure 3 shows the estimation results for the
same parameters, but estimated for data which include a level shift. The boxes indicate the
5%, 50% and 95% quantiles, whereas the dashed lines cross at the original parameter value.

From the first graph we can conclude that the estimation procedure leads to consistent
results. The estimated medians (with the corresponding values in the DGP between brackets)
are ¢soy = 0.79 [0.8], dsge, = 0.00 [0.0] and 059 = 0.01 [0.0]. Including a break in the data
generating process (DGP) leads to Figure 3, which depicts the same estimators. In the left-
hand graph we see that in a certain fraction of the simulations, inclusion of a level shift in
the DGP leads to data with unit root properties ((23 close to 1). A closer examination of the
estimation results shows that in these cases d is estimated around or even below zero. In the
other cases, ¢ was estimated below the ‘true’ value of 0.8, i.e. the median decreases to 0.68.
Except for cases where a unit root was found, d is estimated at a value higher than in the
previous simulations. Indeed, a correlation of -0.89 between d3 and d is found. The median
0?50% shifts upwards to a value of 0.27. Such a value for the degree of fractional integration
is in general taken as a strong indication of long memory behavior. The estimates of the
parameter 6 decrease somewhat, relative to the original value of zero, while their spread is
higher than before. Clearly, neglecting a level shift in otherwise short memory data may lead
one to believe that long memory resides in the data.

When the ARFIMA(1,d,0) model is taken as the DGP, we obtain the results as given in
Figures 4 and 5. Figure 4 shows the consistency of the approximative Whittle estimator in the
presence of long memory in the data. This result agrees with those reported in Hauser (1997),
where encouraging results for this estimator are obtained from an extensive simulation study.
The medians (with values of the DGP between brackets) found are ¢sgy = 0.41 [0.4], dsgo, =
0.29 [0.3] and f555, = 0.03 [0.0]. For the DGP where a break is included, we observe shifts
in the empirical distribution of the estimators. Now, no indication of unit roots is found.
The estimates of ¢ shift down to a distribution with 0.28 as a median. Estimated d values
indicate even stronger long memory characteristics than found before. The parameter 6 does
not change much. Again, a positive bias in d is found when a level shift is neglected.
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Figure 3: Estimating parameters in an ARFIMA(1,d, 1) model. The DGP is an AR(1) model

with ¢ = 0.8,
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The empirical distribution of the LM test statistic for a level shift

Figure 6 depicts the empirical density and distribution function of the Lagrange Multiplier
test statistic, when the presence of a break is tested in the series simulated according to the
AR(1) DGP. The dashed curve in the same graph indicates the x? distribution, which is
supposed to be the asymptotic distribution of the statistic. The empirical density function
exhibits the same shape as the y? density. However, large values of the test statistic occur
too often, as indicated by the heavier tail of the empirical distribution when compared to the
x? distribution. The standard 5% critical value for the x? distribution is 3.84. Using this
critical value leads to an empirical size of the test of 14%. The empirical 5% critical value is
found at a value of the test statistic of 7.80.

The effects of the inclusion of a break in the DGP on the LM test statistic are summarized
in Figure 7. Although the shape of the density function still resembles a x?, much larger values
of the test statistic are found. The standard x?-based critical value would lead to a (correct)
rejection of the null hypothesis of no break in 82% of the cases. Using the empirical critical
value of 7.80 reduces the power to 68%, which is still quite reasonable.

When the data are generated according to the ARFIMA(1, d, 0) model, the empirical size
of the test (at a nominal level of 5 %) is 21% (see Figure 8). Even when generating under the
null, more large values of the test statistic are found. The empirical critical value at the 95%
confidence level is 12.19, which is considerably higher than the original 3.84. Finally, when
the DGP is the ARFIMA(1,d,0) model with a break, we obtain the results as in Figure 9. If
the critical value of 3.84 is used, the empirical power is still around 80%, as indicated by the
horizontal dashed line in the graph on the right hand side of Figure 9. Using the empirical
5% critical value in this case however lowers the power to 49%. The findings on size and
power are summarized in Table 2. The third column in this table reports the rejection rates
for the Beran test for goodness-of-fit, advocated in Beran (1994), at a nominal level of 5%.
We interpret the numbers in this column as that this test statistic does not signal important
residual correlation in the models fitted to the data.

Our simulations lead to the conclusion that a neglected level shift has a substantial effect
on the parameter estimates. The LM test seems to be able to detect a level shift, although
the power can be low and some size distortions do occur.

5 Inflation: Long memory and level shifts

In this section we re-analyze part of the series previously used by Baillie et al. (1996). The
dataset consists of the Consumer Price Indices (CPI) for the countries of the G7: Canada,
France, Germany, Italy, Japan, the United Kingdom and the United States. The data for
the U.S. originates from the Bureau of Labor Statistics concerning the overall price index
SAQ, and it ranges from January 1957 until November 1995. Indices for the other countries
are extracted from Citibase. Observations on the months January 1948 until March 1990 are
available. Inflation rates are constructed from the price indices by taking y; = 100A In CPI,.
As the inflation rates exhibit rather erratic behavior in the first years of the sample, we only
use the data starting in 1958. For the U.S., we have a sample of 455 observations, while for
the other countries 387 observations are available. To account for part of the seasonality, the
data y; are first adjusted for seasonal means. The parameters in the ARFIMA models for
the resulting series are estimated by optimizing the likelihood as described in Section 3. As
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Figure 6: Empirical distribution of the LM-test statistic. The DGP is an AR(1) model with
¢ = 0.8,02 = 1, without a level shift.
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model with ¢ = 0.4,d = 0.3, 02 = 1, with a level shift of size 8 = 1.
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Table 2: Empirical rejection frequencies of the LM test statistic for a level shift and the Beran
test for residual white noise
DGP: AR(1), ¢ = 0.8

6| LM >384 LM>7.80 pgean <0.05
0.00 13.74 5.00 4.08
1.00 82.48 68.46 3.90
DGP: ARFIMA(1,d,0), ¢ =0.4,d = 0.3

6| LM > 3.84 LM > 12.19 pgaan < 0.05
0.00 21.22 5.00 4.54
1.00 79.72 48.78 4.26

Note: Each series consists of 512 observations. The number of replications is 5000
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the estimation is done in the frequency domain, this adjustment for seasonality corresponds
to putting the periodogram to zero at the seasonal frequencies (see Ooms & Hassler (1997)).
The timing of the breaks corresponds with the oil price shocks (see Table 1), and is taken to
be equal for all countries.

We aim to consider an ARFIMA model. Several settings with different degrees in the
AR and MA polynomials are tried. Our specification search results in a model with AR
parameters ¢1, @12 and ¢13 together with the degree of integration d and residual variance o2.
This model appears to capture the short and long run correlations quite well, as is indicated
by the Beran (1994) test for white noise. Specifically, adding moving average parameters
often leads to root cancellation, and hardly improves the residual variance.

In Table 3 the results of the estimations are presented. For each country we consider three
models. First, the pure ARFIMA model is considered. The parameter $13 is significant only
in the case of German inflation rates. For the other countries, the parameter can be omitted.
The fractional integration parameter d is estimated around the commonly found value of
0.4. For the U.S., we find d = 0.501. Theoretically, the approximative Whittle estimator is
only consistent in the range of d € [—0.5,0.5), although it is known to be little biased if the
degree of integration lies just outside the stationary region. The Beran test for the absence of
residual correlation, which is reported along with its corresponding p-value, does not indicate
strong correlation in the residuals. The &, reported is the estimated standard deviation of
the disturbances. The &, denotes the standard deviation of the ARFIMA process, which in
this no break case equals the standard deviation of the process z; itself.

Allowing for a level shift in July 1973 and July 1982 leads to parameter estimates as
reported in the second panel of Table 3. Apart from the ARFIMA parameters, the sizes of
the level shifts u, are estimated as well. Subtracting the estimated level shifts from the data
leads to the underlying process z; as in Section 3. The empirical standard deviation &, of this
underlying process is used to calculate the relative break sizes (3, as defined in equation (3).
Reported standard deviations of the estimates of 3, are calculated from the original standard
deviations of the level shifts fi,, taking &, is given. As &, is not a given, fixed parameter,
the true uncertainty about the (§’s is likely to be somewhat larger. Significant values of ﬂAT
are found in all countries except for Germany and Japan. For most countries, a considerably
lower degree of fractional integration is found compared with the no break case. Also, the
standard deviation of the residuals &, and of the underlying process &, is smaller, as expected
after inclusion of extra parameters.

We also calculate the LM and Wald test statistics for the absence of level shifts. For
each country, the value of the statistic and the corresponding p-value are reported. For the
calculation of the p-value, it is assumed that the statistic follows a x% distribution, with k
the hypothesized number of structural mean shifts. The LM and Wald test both point in the
same direction. The hypothesis of no breaks seems to be rejected convincingly for five out
of seven countries. Finally, notice that for the U.S. and the U.K., the Beran test statistic is
getting worse. However, adding AR or MA components to our maintained model does not
yield improvement.

The final panel of Table 3 concerns two more breaks, in July 1976 and January 1979.
For Canada or France, no dramatic changes occur (as compared to the two break case). For
Germany it is interesting to see that a temporally higher inflation seems to be found between
1979 and 1982. The Wald and LM tests however do not reject the null of no breaks against
the alternative of four breaks. For Italy and the U.K. these extra breakpoints do not lead
to a strong change. Japan, however, seems to have undergone higher inflation in the period
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from 1973 until 1976, which is the first oil crisis period. The breaksizes at those moments are
about equal in absolute size and opposite in sign. Both tests point out that allowing for four
breaks should be preferred to the assumption of no level shifts. For U.S. inflation the four
breaks do seem to matter. The degree of fractional integration decreases a little further, and
both LM and Wald test statistics obtain larger values, indicating strong evidence for level
shifts. On the other hand, the problems indicated by the Beran test statistic for residual
serial correlation increase.

Allowing for level shifts is seen to have a huge effect on the degree of fractional integra-
tion. In Canada, two breaks suffice to have the degree of integration diminish to a level that
is no longer significant. In Japan, the first two breakpoints chosen do not seem to fit well the
moments at which the mean level of inflation underwent a change. However, in the setting of
four breakpoints, a high inflation period is neutralized, and the resulting z; series displays no
significant fractional integration. In France and Germany, d decreases to a level that usually is
considered as not a strong indication of the presence of long memory, although the parameter
itself is still significantly different from zero. In Italy, the estimate of d in a model with two
level shifts is notably lower than in the pure ARFIMA model. This also holds true for the
U.K. and U.S.

6 Conclusions

In this paper we investigated the effect a level shift can have on the apparent long memory
characteristics. Especially for inflation rates, where long memory seems to exist, level shifts
because of exogenous shocks may also have occurred. A framework for combining level shifts
and long memory was put forward. In Section 4, a simulation study was performed to inves-
tigate the possible effects of a level shift on the estimate of the long memory parameter d in
the ARFIMA model. A shock of only one standard deviation of the underlying series already
could lead to the erroneous impression that long memory was present in the data. Encouraged
by the results of the simulations, an investigation of the inflation rates in the countries of
the G7 was performed. Where a pure ARFIMA model replicates previous results, that is, a
significant value of d is found in several countries, addition of a set of level shifts did decrease
the degree of fractional integration in various countries.

The results of the simulations indicated a size distortion for the LM test. In the controlled
environment of a simulation, adjusting for this distortion is possible. Even if the size is
controlled, the power of the test is not impressive. This is a problem that is hard to escape.
Fractional integration and the occurrence of level shifts can be quite hard to distinguish in
samples of medium size. Indeed, an unreported investigation using a larger sample did lead to
better results for the size and power of the test, though improvement was slow. A possible way
of improving the small sample results would be to work with the exact Maximum Likelihood
method, as propagated by Sowell (1992).

In our empirical work, timing of the breakpoints was taken to be fixed exogenously. This
may be seen as a drawback, and hence, endogenizing the breaks would be an interesting path
of further research.
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A Calculating the likelihood and the test statistics

In the calculation of the likelihood and the test statistics, several elements are combined. In
this appendix the way the elements of these functions were calculated, are given.
In equation (11), the power spectrum was given as

: _iw2ﬂ@Wﬂf

FnT) = 2 , 10)+(11
(o) = 2 p (10)+(11)
The factors in this formula are calculated using
e”™ =cosA—isin\ & e =cosA+isin\ (21)
‘1 —et T = |1 — cos A — isin A~
= (1 —2cos A + cos® A + sin® /\)_d =(2—2cos \) ¢ (22)
2
2 1 g
‘@(e”‘)‘ = 1—1—29]-6”)‘ —1—20 cos jA)? ZO sin j\)? (23)
7=1
» 2
2 g
‘@(e’)‘)‘ =|1- Zqﬁje”)‘ (1— Zqﬁj cos j\)? Z pjsinjA)? (24)
j=1 j=1

Before calculating the periodogram, the data following the underlying ARFIMA process
are calculated from y;,t = 1,..,7, the moments of the k breaks 7., = 1, .., k, and the sizes
of the corresponding level shifts p,,r = 1,..,k. Assuming d lies in the stationary realm (see
remarks in section 3), and reiterating a slightly adjusted version of equations (6)-(8), we have

k
Z?(ua d) = Z?(,U,, d) =Yt — Z /'LT‘I{t>T7-T} (6’)
r=1
b

2y, d) =20 — 2P (8)

Of this transformed data set, the periodogram is calculated as

2

T
1
L(Asp) = o—

T Z e
= orT ( Z 2t COS t)\ Z zesint) ) (25)

Defining T* = [T/2],\; = 2% and weights §; as in section 3,

1 fi_T _|T
@:{2 ifj=3 =3l j=1,.,T* (16")

1 else
all elements in the likelihood function are known:

In L(y|®, d, 0, pu,07) = In L(y|¥, )
T e
I, 3
= —TanW—Zéjlnf(/\j;‘IJ) —Z@M (15%)
f(g;0)

=1 =1
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The analytical gradient of the loglikelihood with respect to the parameters of the model
was used, during the optimization routine for the model and in the calculation of the test
statistics. Separating the vector of ARFIMA parameters U and the level shifts u, we find

T*

Oln L(y|¥, p) 1 of(\39) L) 0F (N3 9)
o4, ‘Z‘Sff VT R TP DLy ek 7 26)
dln L(y|T, p) = 1 OL(\jsp)
ZEIIEE NS 7
Optr ]z:; ]f()‘j;\ll) Optr (2 )

The derivatives of the power spectrum w.r.t. the ARFIMA parameters in ¥ are

af(N ) _ —1 9|a(eM]
afnT) 1 oo

06, FA¥) x |0(e)> 96, (29)
of (;d‘l’) FOND) x (= In(2 — 2c0s A)) (30)
D) _ yrwyx 2 (31)

Two derivatives are left unspecified in the equations (28) and (29). These follow, after some
tedious but simple algebra, as

a|e(e™)|? P r

— = -2 (1- Z O cos kA) cosrA — Z o sin kAsinr (32)
o 2 >

|\ 2 4 q

% =2 ((1 + Z Oy cos k) cos A\ + Z O sin kA sinrA (33)

' k=1 k=1

The last element that was left unknown in these equations was the derivative of the
periodogram of z w.r.t. the value of the breaks. This last derivative is found to be

T
BIa(;\T 1) ( (Z 2t COS t/\) (Zl cos t)\)
£l 8zt
Z; ¢ sin t)\) (; o, sin b\)) (34)

}ﬂ

with

0z T—71T
=171 ~ 1 1-— 35
o, T + T {r.T>t} + Tr (35)

Constructing the gradient is done by combining the equations. Although it is possible to
derive the analytical second derivative as well, this would become even harder. For calculation
of the hessian, the numerical first derivative of the (analytical) gradient is used.
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B Generating an ARFIMA process

Beran (1994) describes a method, originating from Davies & Harte (1987), to generate T
observations from a stationary Gaussian model, given the autocovariances v(0),..,v(T — 1).
The following steps are taken:

1. Calculate the autocovariances of the model, v(0),~(1),..,v(T —2),y(T — 1), and define

PN I 0) ifj <T-1 - _
MJ)‘{%T—]’) #T-1<j<ar—3 =0 od (36)

2. Calculate the fourier transform of the v*(-),

273 -
gk =Y 7 () (37)
§j=0
for k=0,..,2T —3 and \; = 2%?_’“2. These g should all result to be positive.

3. Generate random normals Uy, .., Up_o and V7, .., V_s all independent and with variance
1; simulate Uy and Up_4 as independent of all other values and eachother, with variance
2. Define Vy = Vp_1 = 0. Construct random variables Z; in the complex plane as

B U +1iVg k=0,.,T—1
2 = { Usr——2 —tVor_g—2 k=1T,.,2T -3 (38)
4. The observations y; are now calculated as
;23 .
Yp = ——— gre N 7z, (39)
JT=T & Vo

The procedure for generating an ARFIMA (p, d, q) start with generating a ARFIMA (0,d,0)
as described above, using the autocovariance function of the process as follows (Gradshteyn
& Ryzhik 1965, p. 372):

—1)k —
(k) = 2 (CVT( = 20)

Tk —d+ D1 —k—d) 40

for the covariances needed in (36). Then, the y; that are generated should be used instead of
the usual disturbances in a routine generating an ARMA(p, ¢). The result will be a series y;
distributed as a ARFIMA(p, d, q).
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