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Abstract
A major problem in applying neural networks is specifying the size of the network. Even
for moderately sized networks the number of parameters may become large compared
to the number of data. In this paper network performance is examined while reducing
the size of the network through the use of multiple correlation coe�cients and graphical
analysis of network output per hidden layer cell and input layer cell.
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1 Introduction

The fame to handle complex data, may have contributed considerably to the di�usion
and implementation of neural network models, also in economics and econometrics; see
e.g. Hecht-Nielsen [4], Hertz, Krogh & Palmer [5], Gallant & White [3] and White [13].

In this paper only one type of neural network is considered: a feed-forward 3-layer network
with an input layer of I cells (nodes), a hidden layer with H cells (nodes) and an output
layer with O cells; the network will be denoted as nn(I;H;O). The functional form of
this network is

y = C G(Ax+ b) + d; (1)

with A an I � H matrix, b a H vector, C a H � O matrix and d a O vector; G is a
multi-valued non-linear (activation) function.
It is assumed that this neural network is an approximation of the data generating process:

xt = F (xt�1; � � � ; xt�N ) + �t�1; (2)

where xt 2 R, F the data generating function and �t�1 represents an unknown noise
term. Hence the size O (dimension) of the output layer is a priori given and equal to 1.
An upperbound N on the size of the input layer is given by nonlinear data analysis (e.g.
embedding dimension, see Takens [11]) but the size H of the hidden layer is unknown
and has to be determined.

The exibility of a neural network makes that over�tting, i.e. �tting the noise process,
and consequently bad prediction behaviour can easily occur, see Bishop [1].

A two fold procedure is applied in reducing the network size. The starting-point is what
is called by Theil (see Theil [12]): the incremental contribution of variables. That is,
how much more of the variance of the dependent variable y is explained by inclusion of
e.g. the hth explanory variable given that all other variables are used. In Theil (o.c) the
incremental contribution is measured in terms of the multiple correlation coe�cients. A
variable with a low incremental contribution will be a candidate to be excluded from the
model. Secondly, graphical analysis of network output with exclusion of network nodes
is used as justi�cation for in- or exclusion of variables with low incremental contribution.
As a node pruning method, this approach is similar to the one proposed by Mozer and
Smolensky [7]. The approach of Theil however has the advantage that the quantities
used are based on the outcome of one optimization procedure with all variables included.

The paper is organized as follows. In the �rst part the term incremental contribution
and multiple correlation coe�cients are briey explained. In the second part pruning of
a network based on incremental contribution of variables is introduced.
In the third part the procedure is applied to two examples; in the �rst one the data
are generated by a completely deterministic process while the second example concerns
actual economic data: the logarithm of Yen-US Dollar real exchange rates.
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2 Incremental contribution of variables

Consider a linear model:

y = X A+ b+ �; (3)

with y 2 R, A a vector of unknown parameters with length H, b a constant term and �

some stochastic process. The multiple correlation coe�cient R associated with the least
squares regression of y on (X 1) is given as:

R2 = 1�
e0e

(y � y)0(y � y)
(4)

where e represents the residuals of the least squares regression and y the mean of y.
Now regress again with the hth variable not included; the residuals obtained in this way
are denoted as eh and the multiple correlation coe�cient Rh is de�ned by

R2

h = 1�
e0heh

(y � y)0(y � y)
: (5)

The quantityR2�R2
h is called the incremental contribution of the variable h in explaining

the variance of y, see Theil [12]. The two regressions will , in general, not give equal
estimates of A and b; only if the hth column of X is orthogonal to all other columns the
two regression give equal estimates. If all columns of X are pair wise orthogonal then
the following relation holds:

HX
h=1

(R2 �R2

h) = R2: (6)

Now consider the regression with all variables included; this gives the residual e and the
multiple correlation coe�cient R. By putting the hth variable to zero, one gets residuals
eh and multiple correlation coe�cient Rh as in equation (5). The contribution of the
variable with index h in explaining the variance of y is measured as R2 �R2

h.

R2 �R2

h =
e0heh � e0e

(y � y)0(y � y)
(7)

The discrepancy between R2 and the sum over all incremental contributions is called the
multicollinearity e�ect. The inclusion or exclusion of variables in the �nal model is now
based on their incremental contributions R2 �R2

h. Variables with low contributions are
the �rst candidates to be excluded.

By means of the multiple correlation coe�cients Rh the partial correlation coe�cient rh
is de�ned as:

rh =

s
R2 �R2

h

1�R2
h

(8)
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Note that rh is the correlation coe�cient of the regression model

eh = XhAh + e (9)

where Xh is hth column of X and Ah is hthe parameter. So rh measures how much of the
unexplained variance in y with inclusion of all variables except hth variable, is explained
by the hth variable. The disadvantage of using rh as a measure for inclusion or exclusion
is that with R2 � 1 , rh � 1 independent of the value of R2

h. So Theil is followed (see
Theil [12]) and the incremental contributions R2 � R2

h, see equation (7) are used as a
measure.

3 Network pruning using multiple correlation coef-

�cients

The functional form of the network used is given as:

y =cG(Ax+ b) + d;

A =[ahi]; H � I matrix of connection weights,

b =(b1; � � � ; bH)
0; vector of internal thresholds,

c =(c1; � � � ; cH)
0; vector of connection weights,

d = output constant.

G(x1; � � � ; xH) =(g(x1); � � � ; g(xH))
0; G : RH ! R

H;

(10)

Denoting the output of layer cells with h = (h1; � � � ; hH)0 then the network can be written
as

y =c h + d (11)

hk =g((Ax)k + bk); k = 1; � � � ;H: (12)

where g is an activation function; e.g. g(x) = 1

1+e�x
.

Suppose some time series fy(t); x(t)g are �tted to the network given by (10). After some
optimization procedure, for each hidden layer cell the incremental contribution to R2 can
be calculated (given A, b and d). Let ŷ be the network output with inclusion of all cells,
ŷh network output with hidden layer cell excluded, then the incremental contribution of
hidden cell h is again:

R2 �R2

h =
e0e� e0heh

(y � y)0(y � y)

e =y � ŷ;

eh =y � ŷh:

(13)
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If the value in (13) is low for some h compared to all other values, then this cell is a can-
didate for exclusion from the network. This decision can be con�rmed by some graphical
analysis.
The graphs of ft; ŷh(t)g compared to the graph of ft; y(t)g will give evidence of the
contribution of each hidden cell h in explaining the variance of y(t). The best way for
comparison is to adjust all series fytg and fŷh(t)g; h = 1; � � � ;H for mean. Which the
network con�guration given by equation (10) this is no problem as the constant d can
always take care of mean di�erences.

If some cell h is excluded from the network and corresponding parameters are deleted,
the optimization procedure is prolonged with all other parameters unchanged except the
parameter d which is adjusted for mean di�erences between original data fytg and net-
work output fŷh(t)g1.

The same procedure can be applied to reduce the number of input layer cells. In general,
economic considerations will determine which variables are to be included; in the case
of a time series model as in (2) the number of input cells equals the number of lagged
variables used. For instance in the case of pure deterministic time series, the number
of input cells is bounded from above by the embedding dimension of the observed series
fxtg, see e.g. Takens [11]. However, even if this embedding dimension can be determined,
it is only an upperbound and further econometric analysis can be applied which can lead
to a reduction of the number of input cells.

4 Two examples

In this section two examples are given which illustrate the pruning method explained
above.

4.1 Deterministic data

The �rst example has to do with data generated by the following deterministic process:

xt = 0:95xt�1 + (�t�1 � 0:5)

�t = 4 �t�1(1 � �t�1)
(14)

So, the series xt is an AR-process with disturbances �t�1 � 0:5 generated by the logistic
map; as is well-known, the series �t is chaotic.
The observed data are the series fxtg only. The number of data used is 200. The data
set is called by ARCH .

1Apart from consistency in the de�nition of multiple correlation coe�cients, which are de�ned in
deviation of means, the inclusion of the constant d in the network de�nition is motivated by the possibility
to adjust easily network output fŷh(t)g for di�erences in mean.
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The process (14) is to be reconstructed using a neural network. From non-linear data
analysis it follows that an upperbound on the embedding (number of lags) is given by
2N + 1 where N is the dimension of the original data generating process; in our case
N = 2. Hence our starting point is the unknown relation:

xt = F (xt�1; � � � ; xt�5) (15)

and F is to be approximated by a neural network with input dimension I equal to 5.

The dimension of the hidden layer is taken to be 5; hence H = 5.

As "learning" method a non-linear optimization procedure is applied; to be more speci�c,
a variable metric method known as Davidon-Fletcher-Powell, see Press e.a.,[8] with ob-
ject function the sum of squared residuals. The results of the optimization can be found
in table 1. The �rst column of the table gives the cells which are excluded: jH means
cell j of the hidden layer; jI similar but now for the input layer. Apart from the multi-
ple correlation coe�cients and their incremental contribution, the so-called information
criterion, SIC, are reported in the tables.

SIC = ln(MSSR) +
np

2T
ln(T ); (16)

where np is the number of parameters, T is the length of data set and MSSR is the mean
sum of squared residuals; see Schwartz [10]. The value of SIC measures abundance of
parameters.

Table 1: Multiple correlation coe�cient and incremental contribution

Network (5; 5; 1) Data: ARCH

Cell excluded Multiple correlation Incremental contribution SIC

None 0.9999 . �6.6921
H1 0.0060 0.9939 0.3145
H2 0.9981 0.0018 �3.0753
H3 0.9570 0.0429 �0.6824
H4 0.3712 0.6287 0.1107
H5 0.9945 0.0054 �1.7397
I1 0.4881 0.5119 1.0926
I2 0.7318 0.2681 1.0537
I3 0.9826 0.0173 �2.6704
I4 0.9998 0.0001 �5.8035
I5 0.9998 0.0001 �5.4982
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From table 1 it is obvious that hidden layer cells 2, 3 and 5 can be excluded. No graphs
are supplied because the values of the incremental contribution (and also the SIC-values)
don't need further illustration.
So hidden cells 2, 3 and 5 are excluded from the net; the constant term d is adjusted for
mean di�erence between actual data and network output and a further optimization run
is applied to the reduced network. The results are reported in table 2.

Table 2: Multiple correlation coe�cient and incremental contribution

Network (5; 2; 1) Data: ARCH

Cell excluded Multiple correlation Incremental contribution SIC

None 0.9999 . �6.9101
H1 0.0460 0.9530 2.5508
H2 0.1176 0.8823 3.2589
I1 0.7881 0.2451 2.2912
I2 0.8318 0.1538 1.8880
I3 0.9998 0.0001 �6.0045
I4 0.9999 0.0000 �6.5175
I5 0.9999 0.0000 �6.6974

As the contribution of each hidden layer cell is almost equal, no further reduction in
hidden layer cells is applied. However, input cells 3, 4 and 5 are obvious candidates for
exclusion. So the network is reduced to 2 input cells and 2 hidden layer cells. After
optimization the results are those reported in table 3.

Table 3: Multiple correlation coe�cient and incremental contribution

Network (2; 2; 1) Data: ARCH

Cell excluded Multiple correlation Incremental contribution SIC

None 0.9999 . �7.2000
H1 0.0504 0.9495 2.5543
H2 0.1200 0.8799 3.1321
I1 0.7572 0.2427 2.1733
I2 0.8438 0.1561 1.8609

No attempts of further reduction are applied: the contribution of each cell in a layer is
similar.
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Two graphs show the performance of the �nal network nn(2; 2; 1). The �rst graph gives
the time series of the actual data fxtg and the neural network estimates fx̂tg, the one
period ahead prediction, see �gure (1).

Figure 1: ARCH data (dots) and neural network estimates (continuous curve)

The second graph compares the series fxtg with a series nnt which is generated as follows:
the initial value is given as nnt = xt; t = 1; � � � 2, and from that all other values nnt; t > 2
are generated by the neural network. This time series is denoted as "a neural network
generated orbit". Since such a "neural network generated orbit" may start at any value
(= time index) and can be prolonged for any time period, it shows the prediction capa-
bility of the network function over any period at any time; see �gure (2).

Figure 2: ARCH data (thick dots) and orbit generated by neural network (continuous
curve)

The orbit generated by the network function deviates from the actual data after 5 time
steps. Note that the "error" �t�1 � 0:5 in equation (14) is generated by a structural
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unstable (and chaotic) system: small deviations in the original function form of �t can
result in considerable and essential deviations in orbits; see e.g. Devaney,[2]. As the
neural network approximates the original system, such deviations in prediction are not
surprising.

4.2 Economic data

The data used in this section are the logarithm of Yen-US dollar real exchange rates,
period December 1972 to June 1988, denoted as JPUS; for more details on the data,
see Schotman and van Dijk [9] who �tted a linear autoregressive model of order one, AR1.

The initial network is rather large: nn(5; 7; 1). In Kaashoek and van Dijk [6] it is shown
that the series JPUS has an embedding dimension of 5 at the most; this means that
only variables with a lag of 5 or less needs to be included.

The results of optimization are summarized in table 4.

Table 4: Multiple correlation coe�cient and incremental contribution

Network (5; 7; 1) Data: JPUS

Cell excluded Multiple correlation Incremental contribution SIC

None 0.9810 . �2.9997
H1 0.0075 0.9735 1.7740
H2 0.1722 0.8088 �0.3818
H3 0.9377 0.0433 �1.3314
H4 0.6236 0.3574 �0.2242
H5 0.2578 0.7232 0.0876
H6 0.9698 0.0112 �2.5207
H7 0.0028 0.9781 1.7461
I1 0.0108 0.9702 �0.9798
I2 0.5728 0.4082 �1.0869
I3 0.4727 0.5083 �1.3049
I4 0.4512 0.5298 �0.9664
I5 0.3641 0.6169 �1.2264

From table 4 one can conclude that hidden layer cells 3 and 6 may be excluded. This is
further illustrated in �gure 3 and �gure 4. In this two �gures, the neural network output
with exclusion of one hidden layer cell each time is compared with actual data JPUS.
In each �gure the neural network output is always adjusted for mean di�erences.
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Figure 3: JPUS data (thick dots) and nn(5; 7; 1) network output without hidden layer
cell 1, 2, 3 and 4.

Figure 4: JPUS data (thick dots) and nn(5; 7; 1) network output without hidden layer
cell 5, 6 and 7.

With respect to the input layer cells, according to the results reported in table 4 all input
variables has to be included (so far). Again, this is illustrated by a �gure: �gure 5 shows
network output with exclusion of each input layer cell separately. Especially, input layer
cell 1, variable xt�1 and input layer cell 5, variable xt�5, have in this con�guration a large
contribution, and can not be excluded.

After exclusion of hidden layer cell 3 and 6, another optimization round is applied. In
table 5 the results of the network nn(5; 5; 1) are summarized.

The results in table 5 are con�rmed by examination of the corresponding graphs; in this
case only the graphs of network output minus one hidden layer cell are shown, see �gure 6.
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Figure 5: JPUS data (thick dots) and nn(5; 7; 1) network output without input layer
cell 1, 2, 3 and 4.

The only candidates for exclusion based on small incremental correlation contributions,
are hidden layer cell 3 and 4. A similar conclusion can be conceived from the graphs of
�gure 6. Hence the process is continued after exclusion of hidden layer cells 3 and 4; the
results of optimization are reported in table 6.
As table 6 gives no evidence for exclusion of hidden layer cells, only the graphs of network
output minus one input layer cell are reported; see �gure 7.

Figure 7 is conform table 6 in the sense that the incremental contributions of input cells
2, 3, 4 and 5) are low; so a network nn(2; 3; 1) with only two input cells, the variables
xt�1 and xt�2 should be a proper guess. The results after optimization are reported in
table 7; it shows a low contribution of the variable xt�2, input cell 2. Figure 8 show
actual data and network estimates. As a performance test of this network, the graphs of
network prediction, called network orbit, see page 9, and actual data is shown in �gure 9.

The performances of networks nn(5; 3; 1) and nn(2; 3; 1) di�er not much: based on SIC

value the choice would be the network nn(2; 3; 1). Although the input variable xt�2 has a
very low contribution in explaining the variance of xt, no further reduction is applied; in
Kaashoek and van Dijk [6] it is shown that the data JPUS have an embedding dimension
of at least 2; that is, the data are to be modeled by at least xt�1 and xt�2.
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Table 5: Multiple correlation coe�cient and incremental contribution

Network (5; 5; 1) Data: JPUS

Cell excluded Multiple correlation Incremental contribution SIC

None 0.9745 . �3.0521
H1 0.0119 0.9626 0.7563
H2 0.1873 0.7872 �0.6145
H3 0.9189 0.0556 �1.1956
H4 0.8718 0.1027 �1.0324
H5 0.0495 0.9250 0.6569
I1 0.0113 0.9632 �1.2504
I2 0.2371 0.7374 �1.0855
I3 0.6999 0.2746 �1.8611
I4 0.7731 0.2014 �1.4533
I5 0.4070 0.5675 �1.2454

Figure 6: JPUS data (thick dots) and nn(5; 5; 1) network output without hidden layer
cell 1, 2, 3, 4 and 5.
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Table 6: Multiple correlation coe�cient and incremental contribution

Network (5; 3; 1) Data: JPUS

Cell excluded Multiple correlation Incremental contribution SIC

None 0.9705 . �3.1786
H1 0.1704 0.8001 1.2493
H2 0.1636 0.8069 �0.4931
H3 0.0199 0.9506 �1.1974
I1 0.1946 0.7759 �0.9046
I2 0.8672 0.1033 �2.1275
I3 0.9048 0.0657 �2.5196
I4 0.8609 0.1096 �2.2962
I5 0.8318 0.1387 �1.1524

Figure 7: JPUS data (thick dots) and nn(5; 3; 1) network output without input layer
cell 1, 2, 3, 4 and 5.
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Table 7: Multiple correlation coe�cient and incremental contribution

Network (2; 3; 1) Data: JPUS

Cell excluded Multiple correlation Incremental contribution SIC

None 0.9673 . �3.2547
H1 0.8525 0.1148 2.7181
H2 0.3826 0.5847 �0.8744
H3 0.7030 0.2643 1.2156
I1 0.1156 0.8516 2.4523
I2 0.9636 0.0036 �2.5416

Figure 8: JPUS data (thick dots) and network nn(2; 3; 1) estimates.

Figure 9: JPUS data (thick dots) and orbit (prediction) generated by nn(2; 3; 1) network.
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5 Summary

In this paper a well known procedure in reducing the number of parameters of a linear
model is applied as pruning tool for neural networks. The applied neural network con�g-
uration where output is linearly connected to hidden layer cells, seems to be appropriate
for applying this procedure on reducing the number of hidden layer cells as is shown
in the two examples exposed above. Further examination, e.g. F -statistics of partial
correlation coe�cients (given estimates of parameters not involved) may provide further
evidence.

Inclusion of input variables is based on economic analysis and non-linear data analysis;
however in most cases one has only an upperbound (and may be a lowerbound) on the
number of variables to be included. So reduction of input layer cells may also be possible
in this case and, also in this case with nonlinear connections between input and output
layer, incremental contribution of correlation coe�cients and graphical analysis provide
an easy tool to examining neural network performance and reduction of parameters.
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