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Abstract

This paper suggests a unified framework for testing the adequacy of an es-
timated GARCH model. Nothing more complicated than standard asymptotic
theory is required. Parametric tests of no ARCH in standardized errors, symme-
try, and parameter constancy are suggested. Estimating the alternative when
the null hypothesis is rejected may give useful ideas of how to improve the speci-
fication. It is also shown that the recent portmanteau test of Li and Mak (1994)
is asymptotically equivalent to our test of no ARCH in the standardized error
process.
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1. Introduction

When modelling the conditional mean, at least when it is a linear function of param-
eters, the estimated model is regularly subjected to a battery of misspecification tests
to check its adequacy. The hypothesis of no (conditional) heteroskedasticity, no error
autocorrelation, linearity, and parameter constancy, to name a few, are tested using
various methods. In models of conditional variance, such as the popular GARCH
model, testing the adequacy of the estimated model has been much less common in
practice. But then, misspecification tests do exist in the literature also for GARCH
models. For example, Bollerslev (1986) already suggested a score or Lagrange Mul-
tiplier (LM) test for testing a GARCH model of a given order against a higher-order
GARCH model. Li and Mak (1994) derived a portmanteau type test for testing the
adequacy of a GARCH model. Engle and Ng (1993) considered testing the GARCH
specification against asymmetry using the so-called sign-bias test. Chu (1995) de-
rived a test of parameter constancy against a single structural break. This test has a
nonstandard asymptotic null distribution, but Chu provided tables for critical values.

In this paper we provide a unified framework for misspecification testing in GARCH
models. The framework covers the most common alternative hypotheses. The idea is
to make misspecification testing easy without sacrificing power. We suggest tests for
testing the null of no ARCH in the standardized errors, a general test for misspecifi-
cation of the functional form, testing symmetry against a smooth transition GARCH,
and a test of parameter constancy against smoothly changing parameters. A single
structural break is nested in the alternative hypothesis of the parameter constancy
test. A two-regime asymmetric GARCH model such as the so-called GJR model
(Glosten, Jagannathan and Runkle, 1993) is nested in the alternative of smooth tran-
sition GARCH. Note that the test of Bollerslev (1986) fits well into our framework.
Furthermore, we show that the portmanteau test of Li and Mak (1994) is asymptot-
ically equivalent to our test of no remaining ARCH. All our tests are LM-tests and
require only standard asymptotic distribution theory. They may be obtained from
the same "root” by merely changing the definitions of the elements of the score vector
corresponding to the alternative hypothesis. This makes testing easy as the sample
counterparts of the analytical first and second order derivatives of the logarithmic

likelihood function may be computed without difficulty using the results in Fioren-



tini, Calzolari and Panattoni (1996). Our Monte Carlo simulations show that the
tests we propose have reasonable power, that is, they compare favourably with the
tests currently available in the literature.

The plan of the paper is as follows. In section 2 we define the model. In section 3
we discuss testing the null of no ARCH in the standardized errors and compare our
LM-test with the portmanteau test of Li and Mak (1994). Section 4 considers testing
the functional form, symmetry and parameter constancy. Section 5 contains results
of a simulation experiment in which our tests are compared with other tests proposed

in the literature and Section 6 concludes.

2. The model

Consider a conditionally heteroskedastic model where the conditional mean has the

following structure:

ye = f(We; ) + ue (2.1)

where f at least is twice continuously differentiable with respect to ¢ € ®, for all

w; € R* everywhere in ®. The conditional variance is parameterized as:

w = &/hlzs; o.1) (2.2)

where {{,} is a sequence of independent standard normal variables. The normality
assumption is made just for the purpose of defining the likelihood function but is
not needed for the asymptotic results. Existence of a number of moments has to be
assumed, however, for each of the cases considered below. We assume that h; = 1z,

that is, a linear function of the parameters 1. The standard GARCH(p,q) model where

n = (ag, 1, ..., aq, 81, ..., B,)" and the observation vector z; = (1,u2_4, ...,u%_q, hi 1, ...

constitutes an example. Furthermore, us = y¢ — f(wy; ) and ¢ is assumed not to de-
pend on 1. This guarantees that Efu,] = 0 and Efuu,—;] =0, j # 0. We assume that
the maximum likelihood estimators of the parameters of the GARCH process are con-
sistent and asymptotically normal. Lumsdaine (1996) gave the required assumptions
for the GARCH(1,1) process. For more general GARCH processes, see Bollerslev and
Wooldridge (1992). Since the standard GARCH(p,q) model is symmetric and satisfies



the usual regularity conditions, see Engle (1982), the information matrix is block-
diagonal in ¢ and 1. The restrictions ag > 0,0; =2 0,5 =1,...,¢ — 1,04 > 0,5, > 0,
ensure nonnegative conditional variance with probability one but they can be relaxed
as in Nelson and Cao (1992); see also He and Terdsvirta (1999¢). In what follows we
shall mainly focus on the conditional variance and do not consider the conditional
mean. This we do for simplicity, and in cases where the information matrix of the
log-likelihood is block diagonal this approach is justified. Joint modelling of the con-
ditional mean and the conditional variance is discussed, for example, in Lee and Li

(1998) and Lundbergh and Terdsvirta (1998).

3. Testing the null of no ARCH in standardized errors

3.1. LM-Test

We consider the situation where we have estimated a GARCH(p,q) model under the
assumption that the standardized errors £, = uzh, 12 of this model are independent
normal. We want to test this hypothesis against the alternative that these errors

follow an ARCH(m) process. Consider (2.2) but assume that

gt =&t g(zt§90,77a7") (31)

where {g;} is a sequence of independent standard normal variables. The alternative
of higher-order dependence in (3.1) is parametrized as g; = 1 + w'v; where w =
(71, 0oy Tm) and vy = (€2_,,...,€2 ) so that E[{fg?_j] # 0, j # 0. This implies
that {£,} follows an ARCH(m) model. The null hypothesis of no ARCH in {¢,} is
Hg : @ = 0 which in turn is equivalent to ¢; = 1. Under the alternative 7w # 0 the
standard GARCH(p,q) model is misspecified because {{,} is no longer a sequence of

independent variables. For simplicity, rewrite (2.2) as
up = e/ W(zy; w, ) (3.2)

where h(z;w,m) = (0'2:)9(z:; 0,m, 7). Let w = (¢,n’)’ denote the parameters of
the standard GARCH model with the conditional mean specified according to (2.1).
In that case, h(z:;w,a) = (7'z:)(1 + w'v¢). The Lagrange multiplier (or score) test



statistic is defined as

/

LM, =T (@, 7| z=0) " (3.3)

where T is the number of observations. The information matrix I(®,7|z—g) is es-
timated by the estimated negative expectation of the Hessian. FEstimation of the
GARCH model using analytical derivatives, Fiorentini et al. (1996), yields as a by-
product numerically reliable estimates for the elements of the inverse of the informa-
tion matrix and can therefore be recommended.

The first derivative of the log-likelihood of observation ¢ with respect to 7 evalu-

ated under Hp has the form

alt 1 U? 1 aht
Ty = (M) 1y
(97\' 2 ht ht (97\'
1 [u?
)
where v, = (€21, . €2 ) = (Y=b Uiy — L8| o Under the null hypoth-
t 13 St—m Foe 1’ P oy O 7=0- YpoO

esis, the information matrix is block-diagonal in ¢ and 1. The negative (conditional)

expectations of the relevant second order derivatives are

9%l _ / 9%l _ / 9%l _ 1 /
—Ezor lx=0 = 5X¢X —Egron lr=0 = 5ViX; —Ega|r—0 = 5V}

where x; = h%%ﬂ,,:g. The test statistic (3.3) may then be written as

LM, = é > ((%—f - 1)0;) Vi@ Y (ct(%—f — 1)> (3.4)
where Vin () = 57 (X VeV — X vieX, (S %:X;) ™ Y. %,v}). Furthermore, v; and %,
are the sample counterparts of the corresponding derivatives under the null hypoth-
esis and they may be computed iteratively; see Fiorentini et al. (1996) for details.
Assuming that the relevant moments, including the fourth moment of &,, exist, (3.4)
has an asymptotic x? distribution with m degrees of freedom when Hg holds.

This test statistic may also be computed by using an artificial regression. The

F-version of the test is then carried out as follows.



1. Estimate the parameters of the conditional variance model under the null, com-

ﬂz . T az
pute ?L_Z — 1 and the sum of squared residuals, SSRy = t;(ﬁ_z —1)2

~2
2. Regress (%L —1) on X}, v} and compute the sum of squared residuals, SSR; =
t
T
~2
> -
=1

3. Compute the F-version of the test statistic as F' = Ss(;f/l?‘{_iif(igzn).

For the sample sizes relevant in GARCH modelling, there is no essential difference
between the properties of the F-test and its asymptotically correct x? counterpart

X2 = T(SSRO - SSR1)/SSRO

3.2. Comparison with a portmanteau test

The test in the previous section was explicitly derived as an LM-test. Li and Mak
(1994) recently introduced a portmanteau statistic for testing the adequacy of the
standard GARCH(p,q) model. The null hypothesis is that the squared and standard-
ized error process is not autocorrelated. In practice, one tests this hypothesis for the
first m autocorrelations. Let r = (rq, ..., Tm)/ be the m x 1 vector of the first m auto-
correlations so that Hy : r = 0. Li and Mak (1994) showed that under this hypothesis
VTT is asymptotically normally distributed where T is the number of observations.

The vector of autocorrelations is estimated by

= 1%(&% 1i 2,
T=— (A—l)Gﬁ*)/ =) (=-1)
Tt:l hy ' Tt:l hy

~2 ~

~ ~ 7 ~ ~. ~ uy_ u‘7
where @iy =y, — f(wi; @), b = ha(Wi; @) and ¥ =¥y = 1y = (= — 1, =2~ 1)
— —m

— )2H2

Uy

T
with 1,,= (1,...,1)" an m x 1 vector. Note that under normality 4 > (5

2
t=1 "t

in probability as T'— oco. Thus

is asymptotically equivalent to T. Under the null hypothesis, the asymptotic covari-

ance matrix of v/TT is block diagonal in ¢ and 7 and therefore estimated by

Vi(@) =L — Xe(0)' G~ (7) X (D)



kRS

since = > viV;’ — 2L, under Hg as T — oo and

1 1 Oh, 1
Xr fo — A__A’\*/ - o /\*/.
(77) QTZ; (ht o0 v, ) 5T XV,

Furthermore, G1(7) is some consistent estimator of the relevant block of the infor-

mation matrix, evaluated at n =7). The portmanteau statistic becomes

Q(m) =T¥'Vi(n)~'F (3.5)

which is asymptotically x?- distributed with m degrees of freedom under the null

hypothesis. We may now also define
* 1 a% S/ k(S —1 o a%
Q(m)" = (D (-1 ) Vi)™ (D Vi 1) (3.6)
4T hy hy

where Vi(7) = 57 (X Vivy — X Vixi (X %:X;) "t > XV;’). The only difference be-
tween (3.5) and (3.6) is the choice of the consistent estimator of the covariance matrix.
V() makes use of & > V;V;’ whereas its expectation 2I,, appears in V(7). The
two covariance matrices are thus asymptotically equal. As (3.6) is identical to (3.4),
the apparent difference in the expressions being due to centring, it follows that the
Li and Mak (1994) portmanteau statistic and the LM-test (3.4) are asymptotically
equivalent. This means that the portmanteau test of model adequacy is in fact an
LM-test of no ARCH in the standardized errors against ARCH(m). This is analogous
to the McLeod and Li (1983) portmanteau test being asymptotically equivalent to the
classic LM-test of no ARCH of Engle (1982); see, for example, Luukkonen, Saikkonen
and Terdsvirta (1988b) for a discussion. As a matter of fact, when h; = «p, our test

and that of Li and Mak (1994) reduce to the Engle (1982) and McLeod and Li (1983)

tests, respectively.

4. Misspecification of structure

In this section we present three different misspecification tests for an estimated con-
ditional variance model. The first one can be interpreted as a test of the functional

form. The second one is a test against nonlinearity or, in some cases, asymmetry. It



is a modification of a test in Hagerud (1997). Finally we propose a test of parameter
constancy against smooth continuous change in parameters. All three tests may be
viewed as conditional variance counterparts of the tests for the nonlinear conditional
mean in Eitrheim and Teréisvirta (1996). To describe the common features in these

tests we first introduce a general structure and thereby consider each test separately.

4.1. General structure

Consider (2.2) and define

h(ze; . n, ™) = 'z + G245 0,1, ) (4.1)

We assume that h(z; @, n, ) satisfies the regularity conditions mentioned in Sec-
tion 2, and that G(z¢; ¢, m, ) is at least twice differentiable for all 7w everywhere in its
sample space. Furthermore, let G(z:; ¢, m,0) = 0 which does not affect the generality
of the argument. We also assume that the necessary moments of {u,} exists. Let
w = (¢’',n') denote the parameters of the standard GARCH(p,q) model with the
conditional mean specified according to (2.1). In that case, h(zs;w, ) = 'z, and
the null hypothesis of no additional structure in h(z:; w, ) becomes Hy : w = 0. The
Lagrange multiplier (or score) test statistic is again (3.3) which is asymptotically x2-
distributed with dim (7r) degrees of freedom under the null hypothesis and the required

regularity conditions. Due to the fact that the information matrix is block diagonal

1 Ohy

under the null hypothesis it has the expression, (3.4) where v, = % =0 = %~ s |m=0

and x; = %&|ﬂ:0 = h%%ﬂ,rzo. Furthermore v; and X; are the sample counterparts
of the corresponding derivatives under Hy. Thus (3.4) may be computed by using
an artificial regression as described in the previous section. The partial derivatives

required to construct the Hessian needed for the estimation of the information matrix

can be found in Appendix A.

4.2. Testing the functional form

Another way of testing the null hypothesis of no error autocorrelation in the squared
residuals is to lag the linear combination 77'z; and enter it in the conditional variance
process, h;, under the alternative. This may be viewed as a general but possibly parsi-

monious misspecification test along the lines in Bollerslev (1986). The test is obtained



by defining G(z¢; w, ™) = w'vy where w = (71, ...,7,.) and ve = (0’21, ...,0'2¢ ),
in (4.1). The null hypothesis of no remaining serial dependence in the squared residu-
als or no model misspecification is Hy : = 0. The moment condition Eu} < oo must
hold for the asymptotic theory to go through. Under the null hypothesis, the LM-
statistic (3.3) is asymptotically x2- distributed with dim(m) degrees of freedom. On
the other hand, Bollerslev (1986) suggested another test which is obtained by defin-
ing G(z; w, 7) = n'zf where zf = (uf_,_1,...,u_,_,) or 27 = (hy_p_1,.... hi_p_n)"
The alternative is thus a higher-order GARCH model. Note that it is not possible to
test a GARCH(p,q) against a GARCH(p + n,q + m) model using standard procedures

when both m and n are assumed positive.

4.3. Testing linearity (symmetry)

The above test of the functional form offers few hints about what may be wrong
when the null hypothesis is rejected. Bollerslev’s (1986) test is more explicit about
the alternative which is a higher-order GARCH model. Nevertheless, it may also be
useful to consider other parametric alternatives to the symmetric GARCH(p,q) model.
In some cases we may expect the response to be a function not only of the size of
the shock but also of its direction. Engle and Ng (1993), see also references therein,
considered this possibility. We call such a shock response asymmetric and parameter-
ize it by generalizing the GJR-GARCH model of Glosten, Jagannathan and Runkle
(1993). This is done in three ways. First, we make the transition between the extreme
regimes smooth. Second, we incorporate a nonlinear version of the quadratic GARCH
model of Sentana (1995) in our alternative. Finally, while the GJR-GARCH model
is asymmetric, the present generalization may also retain the symmetry although the
model becomes nonlinear. For smooth transition GARCH, see also Hagerud (1997)

and Gonzélez-Rivera (1998). Let

n —1
H,(ss7,¢) = (1 + exp(—yH(st — cl))> v >0,00 <. < ¢y (4.2)

=1
where s; is the transition variable at time ¢, v is a slope parameter, and ¢ a location
vector. When v = 0, Hy(s¢;7y,¢) = 1/2 and when v — o0, Hy(st;7,c¢) becomes a

step function. The logistic function (4.2) is used for parameterizing the maintained



model, and we assume n < 2. The alternative may now be written as

q
hy = oo+ ZOéOan(Ut—j;%C)
=1
q p
+Y {any +ag Hy(we giv, )b up_j+ Y Bk (4.3)
Jj=1 j=1

q

where ag + > ag;H, > 0 and oy + ag;Hy, >0, j =1,...,q, for 0 < H, < 1. This
=1

implies

Zt7 Za()] ut ]a v, C + ZO‘QJ ut .]7 7, C )u?—] (44)

where n = 1 or 2. Assuming that the first sum on the right-hand side of (4.4) is
identically to zero and letting v — oo yields the GJR-GARCH model. The test of the
standard GARCH model against nonlinear GARCH in Hagerud (1997) may be viewed
as a special case of this specification with G (z;;0) = Z o Hy (g g5y, €)ui_j.
Another way of parameterizing the alternative 1sjt_o assume that the transition

variable has a fixed delay. This assumption results in the following conditional vari-

ance model

hy = o+ apaHp(ui—a;7,c)
q p
Z Qg5 + Qa2; n(ut dy7,C ugfj + Z/@jhtfj (45)
j=1 7=1

which gives G(z¢;0) = aqqHy (uz—g;7,¢) + 2042] n(U_a; 7y, €)u? ;- This specifica-
tion is very much in the spirit of Teréiswrtja 1(1994) for the STAR-type conditional
mean. Probably the most common case in practice is d = ¢ = p = 1 so that (4.3) and
(4.5) are equal. We do not impose any nonlinear structure on the h,_j, j =1, ..., p,
as the alternative structure is already very flexible even without such an extension.
These smooth transition alternatives pose an identification problem. The null hy-
pothesis can be expressed as Hyp : v = 0 in (4.2). It is seen that the parameters in
(4.3) or (4.5) assuming a logistic transition function (4.2) are only identified under

the alternative. The classical test procedures thus do not work; see, for example,

Hansen (1996) for discussion. We circumvent the identification problem by following



Luukkonen, Saikkonen and Terdsvirta (1988a). This is done by expanding the transi-
tion function into a Taylor series around y = 0, replacing the transition function with

this Taylor approximation in (4.4) or (4.5) and rearranging terms. This results in

he =1’z + 7'vi + Ry (24w, )

where it can be seen that m = 7 with ™ # 0. This being the case, the new
null hypothesis Hy : # = 0. Thus G(z,;w,w) = 7w'v, + Ry (z;w,m) in (4.1).
Note that under Hy we have Rj(z:;w, ) = 0 so that the remainder does not af-
fect the distribution theory. For the smooth GJR-like alternative (4.3) we have
T = (71, T(14n)g) and vy = (w1, u3 4, ...,uﬁf...,ut,q,uiq, ...,u?jqz)'. For the

alternative with a fixed delay (4.5) there are two possibilities depending on the

delay. If the delay is to be found within ¢ then a = (ai,...,a14nq)" and vy =

2

7_g)'; otherwise 7 = (71, ..., T34 nq)’

2 n 2 2 n
(Ut —dy Ut UGy 5 ooy U qUF_q oy U dUG_ gy ey U g

2

7). For both models the moment

_ 2 3 2 n
and vy = (Ui—d, Uy_ g, Up_ g, Up—qUy 1, .oy UY_4U

condition of Fu?"+?

< oo must hold for the asymptotic theory to go through. Un-
der the null hypothesis the LM-statistic (3.3) is asymptotically x?- distributed with
dim(7) degrees of freedom. If d in (4.5) is assumed unknown a priori, the test may
be generalized to that situation along the lines in Luukkonen et al. (1988a). Note
that if n = 2 and ¢; = —co the alternative is symmetric in that a positive shock
and a negative one of the same magnitude still have the same (mirror) effect on the

conditional variance. The response to the shock, however, is a nonlinear function of

lags of u?.

4.4. Testing parameter constancy

Testing parameter constancy is important in its own right but also because noncon-
stancy may manifest itself as apparent lack of weak stationarity (IGARCH); see, for
example, Lamoureux and Lastrapes (1990). In this paper we assume that the alter-
native to constant parameters in the conditional variance is that the parameters, or

a subset of them, change smoothly over time. Lin and Terésvirta (1994) applied this

10



idea to testing parameter constancy in the conditional mean. We postulate

he =n(t) z (4.6)

where the time-varying parameter is 1 (t) = 9* + AH,,(t; v, ¢). If the null hypothesis
only concerns a subset of parameters then only the corresponding elements in A are
assumed to be nonzero a priori. The transition function H,(t;, c) is assumed to be a
logistic function of order n defined in (4.2) with s; = ¢. If v — oo, Hy(t; 7, c) becomes
a step-function and characterizes a single structural break in the model. Chu (1995)
discussed testing parameter constancy against this alternative. The null hypothesis of
parameter constancy becomes Hy : v = 0 against Hy : v > 0. We can again circumvent
the lack of identification under the null hypothesis by a Taylor approximation of the
transition function. A first-order Taylor-expansion of H,(¢;7,c) around v = 0 yields,

after a reparameterization,

hy = ,36Zt + @'y + Ry(zs;w,m)

where m = (37, ..., 8,,)) = 7 (n,7,¢) and v; = ((zt)’, ..., (z:t™)’)". Thus, G(z;w, ™) =
7'vi+ Ra(z¢; w, 7). Note, however, that Ra(z¢; w, ) = 0 under Hg so that it does not
affect the distribution theory. Our null hypothesis is Hg : # = 0. We note that com-
ponents of w; are trending but modifying a corresponding proof in Lin and Terssvirta
(1994) the asymptotic null distribution of (3.4) can be shown to be a x? distribution
if the fourth moment of u; exists.

An advantage of a parametric alternative such as (4.6) to parameter constancy is
that if the null hypothesis is rejected we can estimate the parameters of the alternative
model. This helps us find out where in the sample the parameters under test seem to
be changing and how rapid the change is. This is useful information if respecification

of the model to achieve parameter constancy is attempted.

5. Simulation experiments

As the above theory is asymptotic we have to find out how our tests behave in finite

samples. This is done by simulation. For all simulations we used the following data

11



generating process (DGP)

Yo = ug (5.1)

Uy = Et\/h_t.

The conditional variance h; varies with the alternative hypothesis we shall be testing
against. Under the null hypothesis h; is the conditional variance of the standard
GARCH(1,1) model. The random numbers, &;, were generated by the random num-
ber generator in GAUSS 3.2.31. The random numbers sampled were all assumed to
be normally distributed with expectation zero and unit variance. The first 200 obser-
vations of each generated series were always discarded to avoid initialization effects.
For the tests against remaining structure, series of 2000 observations were generated.
Series of 1000 observations were used both for the linearity test and parameter con-

stancy test. For each design a total of 1000 replications were performed.

5.1. Test of the functional form

First we consider the test of no ARCH in the standardized errors and the functional
misspecification test of Section 4.2. We define a DGP is such that the conditional
variance either (a) follows a GARCH(1,2) process or (b) follows a GARCH(2,1)

process. Thus,

he = 0.5+0.05u7 ;| +aui 5 +0.9h 4 (5.2a)

hy = 0.5+0.05u7_; +0.9h 1 + Bhi_o (5.2b)

In the experiment the value of o and ( vary within limits such that the conditional
variance of the process remains positive with probability 1, see Nelson and Cao (1992),
and the condition for covariance stationarity holds. For (a) this is the case when
—0.045 < < 0.05 and for (b) when —0.2025 < 5 < 0.1. For a =01in (a) and =0
in (b) the DGP reduces to a standard GARCH(1,1) model. The results for the test
of functional misspecification and for the test of no ARCH in the standardized errors
for (a) and (b), are reported in Figures B.1 and B.2. The nominal significance level

equals 0.1, and we use the test of Bollerslev (1986) as a benchmark. In the simulations

12



these tests were all computed with a single parameter in the alternative, that is, with
either v, = 42 ;/h; 1 (no ARCH) or with V; = njz; | where z; | = (1,17%71,@,1)
(functional form). We also used Bollerslev’s test such that the alternative was in the
DGP. In practice one does not know if the unconditional fourth moment of {u;} exists,
although the estimated model does contain information about this. It is therefore of
interest to investigate how the tests behave when the unconditional fourth moment
does not exist; the existence condition is given in He and Teradsvirta (1999a). This
is the case for parameter values on the right hand side of the dashed vertical line in
Figures B.1 and B.2.

In the experiment where the conditional variance of the DGP is (5.2a) the power
of the functional form test is lower than that of Bollerslev’s test. On the other
hand, for positive values of § when the DGP is (5.2b) the test of the functional
form performs better than Bollerslev’s test. The latter test has no power against
the GARCH(2,1) alternative when the unconditional fourth moment exists. When
the existence condition for the unconditional variance is violated the power of the
functional form test first sharply increases and then decreases as a function of 3. As
to Bollerslev’s test, its power increases as a function of g without dropping again. The
power of our test against remaining ARCH(1), which is asymptotically equivalent to
the test of Li and Mak (1994), is found to be equal to that of the Bollerslev’s test in
both cases (a) and (b).

It may be pointed out already that these tests have no power when the DGP
is a nonlinear GJR-GARCH(1,1) model (5.3) or contains a structural break (5.4).
Simulations of other tests against such alternatives will be discussed in the next two

sections.

5.2. Testing linearity (symmetry)

In this section we consider the small-sample performance of the linearity test. The
test can be expected to be powerful against smooth transition alternatives for which
it is designed. Considering its performance against, say, the GJR-GARCH model
would constitute a tougher trial for our test and make it possible to compare the
performance of the tests with that of the sign-bias test of Engle and Ng (1993). The
DGP is (2.2) with

13



hy = 0.005 4 0.28 [|us—1| + wug_1]% + 0.7hy_1 (5.3)

where w; is assumed conditionally normal. For (5.3), |w| < 0.267 is required for co-
variance stationarity. In this special case the unconditional fourth moment also exists
under this restriction; the relevant moment condition appeared in He and Terisvirta
(1999b). The joint sign-bias test of Engle and Ng (1993) mentioned above is designed
for detecting asymmetry in the conditional variance. We compute the values of the
sign-bias test statistic by using (3.3); the difference between this test and the T R?
version, suggested by Engle and Ng (1993), is negligible at our sample size. Engle
and Ng (1993) used (2.2) and (5.3) with w = —0.23 as the DGP in their evaluation of
the sign-bias test. Note that for w = 0 the DGP reduces to a standard GARCH(1,1)
model. The power curves are reported in Figure B.3 for w < 0. For positive values of
w the results are similar and therefore not reported. OQur smooth transition GARCH
test was computed by assuming 7 = 3 in (4.2). The power of the test compares very
favourably with that of the sign-bias test. This accords with the results in Hagerud
(1997)

5.3. Testing parameter constancy

We consider two cases of parameter nonconstancy: the DGP is a GARCH(1,1) model
with either (a) a single or (b) a double structural break. We did not simulate smooth
parameter change because our test can be expected to perform well against such an
alternative. Our choice of alternative also gives us an opportunity to compare our
test against that of Chu (1995) which is a test against a single structural break. If
T is the total number of observations, the single structural break parametrization
corresponding to alternative (a) is assumed to have a change at time 17" where 7 lies
between 0 to 1. The double structural break parametrization corresponding to (b)
first postulates a change at time 7,7 and a return to the original parameters at 1,7,
0 < n; < ny < 1. The test of Chu (1995) should outperform ours in case (a). We
use the version of Chu’s test that assumes normal errors. Our test is computed with

n =1, case (a), and n = 2, case (b), where n is the order of the logistic function in

(4.6).
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We consider the following model for a change in the constant term:

hy = 0.5+ 0.1u? | +0.8hs 1, (a) t <nT, (b) t <nyT,t > n,T

(5.4)
he = 0.5(1+ A) + 0.1u?_; + 0.8hs—1, (a) t > 0T, (b) ;T <t < n,T

where A = 0.4,0.8. Chu (1995) used (a) in (5.4) as the DGP in his own simulation
experiments. The power curves for the DGPs in (5.4) with a single structural break at
n for A = 0.4 and 0.8 appear in Figures B.4 and B.5. The values n = 0,1 correspond
to the null hypothesis.

For 0.4 < 1 < 0.8 our test has the same as or higher power than the test of Chu
(1995), but otherwise the relationship is the opposite. This occurs for both A = 0.4
and A = 0.8 which includes these DGPs. Thus the Chu test does not dominate ours
as one might expect. We can see that a small change, A = 0.4, is difficult to detect.
As A doubles to 0.8, the change is detected more easily. For comparison, we also
simulated another version of the test in which we assumed that only the constant
term is time-varying under the alternative. In that case our test outperforms that of
Chu (1995) for almost all 7. In yet another experiment we allowed the coefficient of
u? 4 to change once within the sample period. The behaviour of the tests was similar
to the previous case and the details are not reported here.

We turn to the case of a double structural break. The DGP for the experiment is
such that n, = n; + 0.3 where 7, is varied from 0 to 0.7. For n; =0 and n; = 0.7 the
DGP thus has only a single structural break. The power curves of this experiment
for A = 0.4 and 0.8 can be found in Figures B.6 and B.7. In this case the test of Chu
(1995) cannot be expected to be very powerful because the design of the experiment
does not favour it, and our test does have superior power for all double break points
considered. The power of the Chu test is high for n; close to zero and 0.7 because the

test is designed for detecting a single structural break.

6. Conclusions

In this paper we have derived a unified framework for testing the adequacy of an
estimated GARCH model. Our selection contains a number of new tests while some
existing ones fit into this framework as well. Nothing more complicated than standard

asymptotic distribution theory is required. As a result, misspecification of a GARCH
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model may be detected quite easily at low computational cost. Because the test of
symmetry and parameter constancy are parametric, the alternative may be estimated
if the null hypothesis is rejected. This helps the model builder find out what the
weaknesses of his/her estimated specification are and may give useful ideas of how
the current specification could be improved.

We also show that our test of no ARCH in the standardized error process is
asymptotically equivalent to a portmanteau test of Li and Mak (1994). This links
the work of these authors to our framework and indicates that the null hypothesis
of no remaining ARCH can be tested in different ways while the asymptotic theory
remains the same. This article does not contain any applications of these new tests.
Empirical examples can be found instead in the companion paper Lundbergh and

Terésvirta (1998).
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A. Information matrix

Consider the model defined by (2.1) and (2.2):

v = @'wituy

u = en/h(z;m,m)

where hy = h(z;p,m, ) is the parametrization of the conditional variance including
the alternative. The assumed null hypothesis is Hy : @ = 0. If we assume that {e;} is
a sequence of independent standard normal errors, the log-likelihood function at time
t is given by:

1 u?

1
lt = const — §1Hht — §h_t

where u; = y; — @'W; as ¢ is not assumed to depend on ) or 7.

A.1. Partial derivative of [;

The first-order partial derivative (the gradient) of the log likelihood function at time

tis

c _ (O ol O
T\ oy o on

where the corresponding elements are

ANy _ /JrL 1) ok
Oy’ hy Wi 2h \ hy Oy’
o - L u_q) 8k
on’ 2hy \ Iy on’
oy _ 1 ﬁ —1 Ohy
om’ T 2hy \ hy o’

The second-order partial derivative (the Hessian) of the log-likelihood function at

time t is
81, 81, 8%,
OO’ Opon’ Opom’
_ 81, 81, 821,
Hy ondyp’ onon’ onom’ (Al)
9%l 9%l %1,

ow o’ omon’ orow’
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If Hy holds, the expectations of the elements in (A.1) are

el VA - _F|L sy 1 _0h Ohy Ol — _lp |1 9h 0k
E |:B<pc’)<p ‘7’ 0} =-LK |: Wi Wy + 2h7 Op ¢’ E Opon’ |7'r =0| — 2E hZ d¢ on’
8, _ 1 Ohy Ohy &1, _ 1|1 8k Ok
E |:3n817’ |7":0} - E |:h[2 on 311’] E |:3<p3‘rr’ ‘7":0} - 2E |:hf BI2) 871"}
8%, 1 1 8hy Bhy 3%l 1 1 Ohy dhy
E |:B7'rc’)7'r’|‘”:0:| - E |:hf or om' E omon’ ‘”:0 - QE h? 8w on’

A.2. Partial derivative of the multiplicative conditional variance h;.

Assume that the conditional variance under the alternative hypothesis is parameter-

ized as in (3.2). The conditional variance is then

q P
he = (n'ze) (1 + 7'vy) = (ag + Zaiuf_i + Zﬁjht_j)(l +7'vy)
i=1 j=1

which reduces into the standard GARCH model under Hy. To initialize the iterative
computation of h; under null hypothesis the conditional variance is estimated with
the unconditional variance (sample variance) in the pre-sample case. This is done for
all t < 0 by setting hy = u? = % iug where us = ys — @'w.

To compute the test statistiz:(l?).él) we need the first-order partial derivatives of

the conditional variance h; under the null hypothesis.

First-order derivative Pre-sample values (¢t < 0)
T
Bh[ |7r =0 — _QZazut ’wa i + Zﬁj ah[ J |7'r =0 _2utw7lf‘7r:0 Bh, ‘Tr =0 — % Zuswj/f
i=1 s=1
8}”‘77 =0 —Zt+ Zﬂjag;7j\n:0 8}“‘77 =0 =0
o |0 = (n'ze)v, 0 =0

A.3. Partial derivative of the additive conditional variance h;.

Assume that the conditional variance under the alternative hypothesis is parameter-

ized as in (4.1) The conditional variance is then

q P
hi =0z +7've = ap + Zaiuf_i + Zﬁjht_j + 7'vy
i=1 j=1
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which reduces to the standard GARCH model under Hgy. The iterative computation
of h; under null hypothesis is initialized in the same way as for the multiplicative
conditional variance model. The first-order derivatives of the conditional variance
h: under the null hypothesis are required to compute the test statistic (3.3). These

derivatives are given as follows:

First-order derivative Pre-sample values (¢ < 0)
ohy : TR Sy / o, 2 S
D’ |7r:0 = _QZaiutfth,i + Z,Bj By |7T:0 _2utwt‘ﬂ:0 Y ‘ﬂ-:o =—% Zuswt
i=1 =1 s=1
2
dhy;
ng\n:O :Z;‘F Zﬂj#‘ﬂ'zo ng\n:O =0
Jj=1
P
h Ohy_; h
g—,ﬂﬁ:o = V,i, + Zﬁj a,l.r/ |7r:0 g—,ﬁ\ﬁ—o =0
i=1

B. Figures
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Figure B.1: Power curves at significance level 0.1 for the no ARCH test (cross), the
functional form test (circle) and Bollerslev’s test (plus). The DGP is a GARCH(1,2).
The value of av in (5.2a) is given on the x-axis. The null hypothesis is the GARCH(1,1)
model.
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Figure B.2: Power curves at significance level 0.1 for the no ARCH test (cross), the
functional form test (circle) and Bollerslev’s test (plus). The DGP is a GARCH(2,1).
The value of 3 in (5.2b) is given on the x-axis. The null hypothesis is the GARCH(1,1)

model.
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Figure B.3: Power curves at significance level 0.1 for the linearity (symmetry) test
(cross) and the sign-bias test (circle). The DGP is a GJR-GARCH. The value of w
in (5.3) is given on the x-axis. The null hypothesis is the GARCH(1,1) model.
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Figure B.4: Power curves at significance level 0.1 for the parameter constancy test
(cross) and the test of Chu (circle). The DGP is a GARCH(1,1) with a single struc-
tural shift of size A = 0.4 at n. In the figure 7 is given on the x-axis. The null
hypothesis is a constant parameter GARCH(1,1) model.
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Figure B.5: Power curves at significance level 0.1 for the parameter constancy test
(cross) and the test of Chu (circle). The DGP is a GARCH(1,1) with a single struc-
tural shift of size A = 0.8 at . In the figure 7 is given on the x-axis. The null
hypothesis is a constant parameter GARCH(1,1) model.
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Figure B.6: Power curves at significance level 0.1 for our parameter constancy test
(cross) and the test of Chu (circle). The DGP is a GARCH(1,1) process with a double
structural shift in the constant of size A = 0.4. The first shift appearing begin at 7,
and the return to original parameter values occuring at n,. In the figure the value of
7, is given on the x-axis and defined such that 1, = n; + 0.3. The null hypothesis is
a constant parameter GARCH(1,1) model.
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Figure B.7: Power curves at significance level 0.1 for our parameter constancy test
(cross) and the test of Chu (circle). The DGP is a GARCH(1,1) process with a double
structural shift in the constant of size A = 0.8. The first shift appearing begin at 7,
and the return to original parameter values occuring at 7,. In the figure the value of
1y is given on the x-axis and defined such that 1y = n; 4+ 0.3. The null hypothesis is
a constant parameter GARCH(1,1) model.
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