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Abstract

In this paper a post-sample prediction test is derived for estimators based on the Efficient Method of Mo-
ments. The main advantage of thisparticular test over other stability testsisthat no time-consuming estimation
of thestructural parametersfor the post-sampleisneeded. Theasymptotic propertiesof thetest and local power
properties against certain alternatives are deduced. Using the Efficient Method of Moments methodol ogy, an
application ismade to stochastic volatility model s for the British pound versus Canadian dollar exchange rates.
The breakpoint for the stability test isa priori set at September 16th 1992, when Britain was forced to leave
the European Monetary Union Exchange Rate System.
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es.
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1 Introduction

In casethelikelihood of amodel isintractable one may resort to simulation techniquessuch asindirect inference
(Gourieroux et al. (1993)) and the Efficient Method of Moments (EMM) (Gallant and Tauchen, (1996)). Both
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methods may be seen as minimum chi square estimators. Therefore the post-sample prediction (PSP) statistic
for GMM estimators, as given in Hoffman and Pagan (1989) and Ghyselsand Hall (1990a), may be transcribed
to these type of simulation-based estimators. In this paper we will do so for the EMM estimation technique.
We believe that EMM is superior to the original indirect inference technique of Gourieroux et al. (1993) froma
viewpoint of efficiency and stability; see Van der Sluis (1996) for details. Although the resultsin this paper can
easily be applied to the indirect inference case, it is doubtful whether thiswill ever be necessary for substantial
models. Because of the lack of efficiency of indirect inference.

The PSP test isbased on an evaluation of the moment conditions at a sample-based parameter estimate and
datafromthe post-sample. Likethe PSP test for GMM, the PSP test for EMM may detect parameter instability.
Thetest may be used in cases where thereis prior knowledge about switchesin regime or as a specification test
for sample and post-sample chosen of the same size. Whether the latter procedure providesreliable conclusions
isquestionablein thelight of recent results of Hall and Sen (1996) for the GMM case. The underlying principle
of thistest isdifferent fromthat of the LM, Wald or LR based statisticsfor structural stability for GMM estimators
asdeveloped by Andrewsand Fair (1988). In Ghyselsand Hall (19904) it isargued that the PSP test has several
advantagesover these Wald, LR and LM based statistics. Threeadvantagesare mentioned, for which thefirst one
iseven moreimportant for simulation based estimatorsthan for GMM estimators: (i) we do not need an estimate
of the structural parameter over the post-sample; (ii) al orthogonality restrictionsare used over the post-sample;
(iii) no subset of orthogonality restrictionsis set equal to zero in the post-sample. Thelatter two advantages are
reflected in the number of degrees of freedom and its local power properties against certain alternatives.

This paper is organised in the following manner. Section 2 describesthe EMM method as proposed by Gal-
lant and Tauchen (1996). This method often provides an algorithm that is computationally more stable and at-
tractive than the indirect inference procedure. Moreover, this method will provide full maximum-likelihood
efficiency of the estimators, see Gallant and Tauchen (1996), Gallant and Long (1996) and Tauchen (1996).
This section is merely intended to provide some notation. The reader is advised to consult the original paper
in case of nonfamiliarity with EMM. In section 3 the PSP statistic for GMM s discussed. In section 4 the
PSP satistics for EMM are proposed. Its asymptotic properties and local power against certain aternatives
are deduced in section 5. In this paper applications will be made in the context of stochastic volatility models.
Stochastic volatility models are models for which the likelihood has no tractable expression. These models are
mainly used to describe the heteroskedasticity process of financial time-series, replacing ARCH-type models.
The implementation of the test in the context of stochastic volatility models will be considered in section 6.
In this section the choice of the auxiliary model, which is needed in EMM, is motivated. Also the problem of
determining the number of moment conditions for sample and post-sample is assessed. In section 7 exchange
rates are investigated using these stochastic volatility models. Parameter instability is associated with periods
of different volatility. Section 8 concludes.

2 Efficient Method of Moments

Indirect inference techniques are based on some connection between the auxiliary model and the structural
model. Inthe original indirect inference procedure of Gourieroux et al. (1993) thislink is established through
the parameters of the auxiliary model (parameter calibration). No strict guidelines are given for the choice of
the auxiliary model. Gallant and Tauchen (1996) propose the efficient method of moments (EMM). Here the



connection between the auxiliary model and the dynamic model is achieved by means of the expected scores of
the auxiliary model under the structural model (score calibration). Since scores are better comparable over dif-
ferent models than parameters, this will typically yield more stable optimization problems. More importantly,
strict guidelines are given for the choice of the auxiliary model such that maximum likelihood efficiency is at-
tained. Another advantage is that the score has to be evaluated only once per optimization round, whereas for
indirect inference per optimization round a dozen of auxiliary models has to be estimated.

In short, EMM goes asfollows. Consider the structural model (1) below. Several regularity conditions must
be met by the dynamic model and the auxiliary model. For details see Gallant and Tauchen (1996). Here it
suffices to note that the original results in Gallant and Tauchen (1996) were presented for Markovian models,
however recent results of Gallant and Long (1996) justify the use of non-Markovian auxiliary models. However,
the EMM framework is up till now limited to stationary and ergodic structural models. The structural model is
defined as

Ye = r(Ye—1, ¢, us,0)
up = ¢(ug—1,€,0)
where f isaparameter, # € © C RP. The sequence of densitiesfor the structural model (1) will be denoted

)

{p1(z1 | 0), {pe(vs | :vtﬁ)}ff’:l}
The sequence of densities for the auxiliary processwill be denoted as

{f1(w1 | B)a{ft(yt | wtvﬂ)}:;ozl}

where x; and w; are observable endogenousvariables. Let us define

m(9, ) = / / % o f(y | w, B)ply | . 8)dyp(z | 6)dx

the expected score of the auxiliary model under the dynamic model. The simulation approach solely consists of
calculating this function as

1 o 0
my(6,8) = 7 > 550 F @ (0) | wr (), B)

for N very large. The EMM estimator ,,(Z,, ) is defined as
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n(Zn) —argrenelgmzv(@ Ba)(Zn) tmn (8, Bn)
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where 7,, isaweighting matrix and Bn is aconsistent estimator of the parametersin the auxiliary model.
In the notation of this section we have

S\

2.9
Z _ﬁlnft Yt | wtaﬂn)]

and obvioudy
lim Z, = 7,

n— o0

One can also provefor the estimates for the structural model

Vamn (6o, B,) % N(0,Zo)



and consistency of 6 :
V(0 (Zo) — o) > N(0,[Mo(Zo) ™ Mo] ™)

where Mg := %m(eo, (3*). For notational convenience@n will denote the estimator based on the optimal Z,, .
In order to justify the full efficiency of EMM, one needs to employ for example the SemiNonParametric
(SNP) density of Gallant and Nychka (1987)!. Gallant and Long (1996) show that if we use a SNP approach
to select the auxiliary model, the full efficiency can be achieved when the SNP model is rich enough such that
the structural model liesin the SNP hierarchy. To improve the finite sample properties of EMM one should
add a parametric part to the SNP density. The polynomial part of the SNP density will now be relieved from
some of its tasks. In the literature this parametric part is referred to as the leading term of the SNP expan-
sion. The process y;(6y) is the process under investigation, u:(fy) := E¢—1[y:(6p)], is the conditiona mean,
€:(00) := y:(00) — p(6o), 02(0o) := Var,_1[e:(6p)] = Es—1[e?(6p)] isthe conditional variance and z;(fp) :=
€:(00)(c2(80)) '/ isthe standardized process. The SNP density now takes the following form

_ L [Pr(na)PPé(z)
\/(T_t2 f[PA'(ll/,xt)Pgb(u)du

where ¢ denotes the standard normal density, = := (y;—1, ..., y:—» ) @nd the polynomials

f(z(0))

K. K. K. _
Pr(z,24) := Z ai(z)z" = Z[Z a;jz;)z"
2:=0 2:=0 7:=0

For identificationweset ago = 1. A specific form for the polynomiasistaken, viz. orthogonal Hermite polyno-
mials(seeGallant et al. (1991), Fenton and Gallant (1996a) and Andersen and Lund (1996)). Relevant formulas
can befound in Abramowitz and Stegun (1972) and Fenton and Gallant (19964). For an assessment of the prop-
ertiesof SNP density estimators see Fenton and Gallant (1996a+b). In Gallant et al. (1991) and Tauchen (1996)
avery general SNP hierarchy of modelsis considered. Sincein our set-up z; is avector of lagged values of
the polynomialsin termsof x; become so-called monomialsfor M > 1. Inthiscasethe analysisbecomesmuch
more complicated and hardly relevant with a proper parametric leading term. Thereforein this paper only the
case M = 0 and M = 1 are considered.

In this paper structural stability is of interest, therefore the following nomenclature is introduced: nqwill
denote the number of observation in the sample and n, will denote the number of observations in the post-
sample. Theauxiliary estimator that employs sampledataonly, will be denoted Bnl . Theestimator that employs
post-sampledataonly will be denoted an . Likewisethe EMM estimators 5n1 and 5n2 aredenoted. Furthermore
estimators that are based on both sample and post-sample data are denoted Bn1+n2 and §n1+n2 . Inthis paper we
will takep := dim(0), ¢; := dim(B;) and ¢z := dim(52). The number of moment conditions¢; and ¢» will be
determined using several criteria. For important resultsregarding EMM to hold it isnecessary that the number of
moment conditionsin the sample ¢; increaseswith n; and the number of moment conditionsin the post-sample
¢= increaseswith ns . Notein thisrespect the conceptual differencewith GMM. It will automatically happen that
q1 and g» will increase with n; and no, respectively, using any of the criteria such as the Akaike Information
Criterion (AIC, Akaike (1973)), the Schwarz Criterion (BIC, Schwarz (1978)) or the Hannan-Quinn Criterion
(HQC, Hannan and Quinn (1979) and Quinn (1980))2. In section 4 we will seethat the power propertiesdepend
on the number and type of moment conditions. Some guidelineswill be given for optimal resultsin practice.

LBuilding on earlier work of Phillips (1983)
2AIC=TIn L + |B|

BIC=T'In L + 0.5/3|InT



3 PSP-statistic for GMM

Hoffman and Pagan (1989) and Ghysels and Hall (1990a) congtitute for GMM an analogy to OLS where the
average prediction error over a post-sample prediction period of ny + 1, ...,n1 + no, i.€.

ni+mnz

—1 ~
U2} E €;,

2:=n1+1

is sometimes considered?; here &; denotes the standard OLS residual evaluated at §n1 For GMM this becomes

ni+n2

~._ —1 -~
T i =n, g Ji

ii=ni+1

whereg; isavector of first order conditions g evaluated at §n1 . Thistest may thusindicate parameter instability
over the post-samplearea. Let T} := {1,...,n1} andT> := {ny + 1,...,n1 + na}. In Ghysels and Hall
(1990a) the asymptotic distribution of /n,7 isgiven. It turnsout that |/n»7 is asymptotically normal:

Ja7 5 N(0, So + kD (DS, Dy) ' D,y)

Agn; (0ny)
a0’

Ogn;
a0’

where S; := lim,, .« E[nignig;i], D; = plim,,._ and Dy := plim,, ,4 = 1,2. Under
stationarity we have S; = Ss.
Following Newey (1985), Ghysels and Hall (1990b) and Ahn (1995) the following individual null hypothe-

ses are identified in the context of structural stability and GMM estimation
H(l) : Efnl(yt,Oo) = 0, Vit € Tl
H(Z) : Efng(yt 50) = 0, Vi € T2
Hg : 90 =

|

0

wherethefunction f representsthe moment restrictions. The subscriptsn; and n, refer to the sample and post-
sample respectively. In case of using thistest as a general stability test the role of sample and post-sample may
be reversed.

The stability hypothesisHj is defined as

Hj : H3, H3 and H3 hold

The asymptotic power of the test depends on which of the individual null-hypothesesis violated. Define the
following alternative hypotheses

H4 : Atleast oneof H}, H2 and H doesnot hold
HE . H} holds, at least one of H2 and H3 does not hold
HS @ HJ and H2 hold, H3 does not hold

HQC=TInL+ |3|InlnT
In this context, L denotes the loglikelihood of the auxiliary model in the optimum, 7" denotes the number of observations and | 3| the
number of freely estimated auxiliary parameters. For some properties see L utkepohl (1990).
ni+4ng
3 Another analogy may be constituted by ny ! Z zie;
i=ni+1



Thisleads to the following local aternatives

Hy © VniEfa, (ye,60) = 61+ o(1)
H2 ¢ Vn2Efa,(ye,00) = 62 + o(1)
H2 ¢ Efn,(ye,00,0) =0, vVn2(0on —00) =6

Let H? = {(HL,H2)}oo_,, HP = {(H§,H2)}2_, and HY := {(H},H3)}°°_,. The usual Hansen J—test
may be used to test H§. However, Ghysels and Hall (1990b) show that this test has low power against local
aternativesthat are of theform HY . In Ghyselsand Hall (1990a) amodification of the Hansen test is proposed.

It should be noted that recently Hall and Sen (1996) and Sowel | (1996) proposed adifferent decomposition of
the stability hypothesisfor GMM. However, considering the different nature of the moment conditions between
GMM and Indirect Inference/EMM, the present decomposition will be used in the next sections to construct a
stability hypothesisin the context of simulation techniques.

Ahn (1995) shows, building on earlier work of Newey (1985) that the PSP test for GMM is an optimal
GMM test that has maximum power toward HZ . Several interesting asymptotic equivalencies are described for
thetestsfor structural stability proposed by Andrewsand Fair (1988). The upshotisthat any of their statisticshas
maximum local power against alternativesof theform HY . Inthe context of EMM these statistics areinvestigated
in an accompanying paper Van der Sluis (1996).

4 PSP-gtatistic for EMM
Define 3; = plim,,, Bn,. then for the EMM case the following individual null hypotheses are identified

H[l) : m(eo,ﬁl):thETl
H(Q) : m(50762>:0, VtGTQ
H(3) : 90 250

where the function m is the expected score of the auxiliary model under the dynamic model as defined in the
previous section. The stability hypothesis and alternative hypotheses are as in the previous section.

Let §n1+n2 denote a root-n consistent estimator of the combined sample and post-sample. The following
local alternatives are defined for EMM

Hy, : rim(6o,B1) = 61 + o(1)
HZ ' /nam(6o, B2) = 62 + o(1)
H3n : m@o,n7ﬁ2) =0, \/71_2(50,n o 00) =46

Let H' == {(H},, H2) 3oy, HP := {(Hg, H2) ooy and HY = {(Hg, H})} 7, Inan accompanying paper,
Van der Sluis (1996), different types of stability tests are investigated. These tests have optimal asymptotic
power against H7* and HE . Inthispaper weonly consider local alternativesof theformHZ. Sincethe PSP testin
the GMM caseisoptimal against H? | itistempting to proposea PSP-statistic for EMM based on mN(@L1 , Enz ).

In the next section the asymptotic properties of the statistics based on this quantity will be deduced.



5 Asymptotic Propertiesand L ocal Power

In this section some theorems on the asymptotic distributions and local power properties of the PSP-test will
be provided. The resultsin this section are basically transcriptions from results known in the GMM literature
to the realm of EMM. A proof of the following theorem can be found in the appendix.

Theorem 1 Let

PSPEMM = n2mlj\](§nlvb\n2){fn2 + kMQ(anang)[M’l(ananl )f;11M1(§n17//8\n1 )]71 :
M;(é\nlvBne)}_lmN(é\nlang)

under H? PSPevm hasa noncentral x2, distribution with noncentrality parameter Apsp.,,, , given by

2
ApsPos 1= 8,75 [To — caMa (o, B2)[>_ Mi(8, Bi)I; Mi(8o, B:)] ™ My (6o, B)]T; 62

=1

— 15 nz
where ¢y := limy, 5, —oco R

Of course the role of the sample and post-sample may be reversed, this leads to a backward post-sample
prediction or ante-sample prediction test, @EMM test.

Theorem 2 Let

—

PSPemm := nlm’]\f(é\nzagnl){fnl + kilMl(é\nzaBru)[MIQ(é\nzvBn2>fr?21M2(é\nzvgnz>]il :

M’I(anz ) B\nl )}71mN(§nz ) Bfn)
under HZ := {(H,H)}22_, PSPewm hasanoncentral 2, distributionwith noncentrality parameter A5SB oy
given by
2

Aspome = 0110 [T = el Mu(6o, B[N Mi(00, BT MiBo, 5)]* M (6, B1)IZ; "6

=1

where ¢y := limp, ny—oo ——

ni+na’

A different role is played by the moment conditionsin GMM than EMM and indirect inference: for esti-
mation purposesit may be desirable to vary the number of moment conditions with the size of the sample and
post-sample. Thiswill be done automatically by a criterion such as the BIC. Particularly, a high dimensional
auxiliary which is needed for EMM to work, may not be of use for small post-samples. For the post-samplethe
high-dimensional auxiliary model may not convergeat all. Note however that changing the auxiliary model for
the post-sample induces different null and alternative hypotheses. In Van der Sluis (1996b) it is shown that in
the case of LM/LR/Wald/ tests for structural stability it isoptimal* to change the number of moment conditions.
To the author’s knowledge, in case of PSP tests no such property can be established. This leads to a choice
of the same moment conditions in the post-sample as in the sample. Other optimality properties of the PSP
test-statistics follow from straightforward application of results known in the GMM literature, see Ahn (1995)
and Newey (1985).

It should be noted that Tauchen (1996) showsthat certain misspecifications of the structural model can lead
to the failure to reject the overidentifying restrictions. The same possibility can also lead to the failure to reject
the stability hypothesis.

4Optimal in the sense of yielding auniformly most powerful test



6 Implementation of thetest

Recently it isreported that stochastic volatility modelsmay providebetter estimates for the volatility parameters
than the ARCH-GARCH class of models. A nice reference on stochastic volatility models is Ghysels et al.
(1996). Examplesof the estimation of stochastic volatility modelshy EMM canbefoundin Gallant et al. (1994)
and Andersen and Lund (1995). The stochastic volatility model inits ASARMAV(p, ¢)° form reads

Yt = Ot€¢

In U;tz =w+ Zf:1 piln Ut2—i + 0+ (777(1 + 23:1 Cij)"Yt

€t ~ NlD(07 1)777t ~ NlD(Ovl)vcorr(Gtvnt-‘rl) = /\7 -1 S )\ S 1
t=1,...,T

Just as for ordinary ARMA models for covariance-stationarity the rootsof 1 — p;z — ... — p,z? must lie
outside the unit circle. Since the latent variables o; must be integrated out, the log-likelihood of this model
cannot be written down in a tractable form. Using EMM we may efficiently estimate the parameters 6 :=
{w,p1,...,pp,C1,...,(q,0n, A} Of thismodel. Thismay be donewith EmmPack (Van der Sluis (1997)).

Asmentioned in section 2 the auxiliary model istaken from the class of SemiNonParametric (SNP) models
introduced by Phillips (1983) and later developed by Gallant and Nychka (1987). To relieve the SNP density
fromitstask, aparametric model is added to the SNP density. Thereisreported evidence that thiswill improve
thefinite sample performance of EMM. Our candidate parametric model istaken from the ARCH class of mod-
els. We will successively consider two branches of the ARCH class of models: the ARCH-GARCH (Engle
(1982), Bollerdev (1986)) models and the EGARCH models (Nelson (1991)).

The ARCH-GARCH class of models reads

Yt = Ot€t

o—t2 = Qo + Eg::l aie%*i + E?;:l ’yJo—t27]
e ~ NID(0,1)

t=1,...,T

Thismodel isusualy called GARCH(p, ¢) model. If weset p = 0, we obtain apure ARCH(q) model asintro-
duced in Engle (1982). These models may be used as auxiliary models in the applications of the next sections.
For the ARCH(¢) model the restrictions on the parametersare ap > 0 and «; > 0 for 4 > 0 for the model to be
well-definedand > _, a; < 1 for covariance stationarity. Experimenting with these type of models show that
in order to capture all heteroskedasticity in the data the number of parametersin the pure ARCH models gets
rather high. Thismay cause the same problemsas occur with estimating stochastic vol atility modelswith GMM
using a high number of moment conditions as reported in Andersen and Sarensen (1996). One suggestion may
beto use GARCH models. However apractical problem arises. For the GARCH(p, ¢) model to be well defined
we need that al the coefficients in the infinite power series expansion for a(z)/(1 — «(z)) are non-negative.
Here o(L) and (L) are the usua polynomialswith L the lag-operator and provided o (L) and v(L) have no
common roots and that the roots of the polynomial v(z) = 1 lie outside the unit circle. The model is covariance
stationary if and only if al theroots of a(x) + v(x) lie outside the unit circle. Various other stationarity con-
cepts and restrictions are discussed in Kleibergen and Van Dijk (1993) or Nelson and Cao (1992). References
can be found in Bollerdev et al. (1994). The problem isthat in practice often estimates are obtained that fall

5 Asymmetric Stochastic AutoRegressive Moving Average Volatility



into the strict stationarity region, but outside the covariance stationarity region. Thisis not a problem per se,
but for EMM it is, since EMM hinges on concepts as ergodicity and stationarity, it must be guaranteed that the
simulated series generates a stable score-generator. For parameter values outside the most stringent parameter
space this cannot be guaranteed. For a more extensive discussion of thisissue, reference is made to Andersen
and Lund (1996a) and Van der Sluis(1996). Moreover, for GARCH models parameter estimateswill oftenturn
out to be on thismost stringent IGARCH boundary. On thisIGARCH boundary the error variances becomein-
finite. Because of this property acomparison of along simulated IGARCH serieswith real financial data shows
that IGARCH models are rather far from realistic.

Consequently, the EGARCH models of Nelson (1991) are considered®. The EGARCH)(p, ¢) model reads

Yt = Ozt

of =explag+ Y0 yinof 4+ (1+ 20 L) (k121 + kallze1] — Elzal])}
= ~NID(0, 1)

t=1,...,T

Thedgtationarity restrictionsfor the pure EGARCH can bederivedin asimilar way to thosein ARMA modelsala
Box-Jenkins. Thereforeonly the v parameters play arolein the stationarity restrictions. the model is stationary
(strict and weak) in case therootsof v(z) lie outside the unit circle. Thusthe stationarity problemsthat arisein
GARCH models vanish for EGARCH models

In the next section an application to exchange rates will be made. The class of auxiliary modelsthat will be
considered isthe EGARCH(p, ¢)-H(K ., K ,) class. The order of the auxiliary model will be determined using
severa criteria, as BIC, AIC and HQC. The vector of auxiliary parameters 8 hasdimensionp + ¢ + 3 + (K, +
1)(K, + 1). Themoment conditions all represent a salient feature of the model. For the EGARCH model we
have in particular that the moment conditions associated with the v parameters give us aidea of the persistence
inthedata. Inparticular, >-?_, ~; will serve asameasure of persistence. The oy parameter is ameasure of the
unconditional variance. Theterm 1 + Y"7_, a; reflects the short-run sensitivity to innovations. The term
reflects the asymmetric volatility effect that is often present in financia time series. The k-, parameter measures
the changesin z; in reaction with the conditional heteroskedasticity. In case K, = 0, letting K, > 0 inducesa
time-homogeneousnon-Gaussian error structure. Thecase K, > 0 induces heterogeneousinnovation densities
beyond the EGARCH model. Since the EGARCH model captures al this heterogeneity, K, > 0 will not
be necessary. To the author’s knowledge there are no guidelines provided yet for assessment of the individual
coefficients of the Hermite polynomial.

Starting values may be obtained by using the quasi maximum likelihood technique of Harvey et al. (1993).
The following was done”

(i) Determinethe order of the ARCH process. For thisparticular ARCH process estimate B Setthe
corresponding weighting matrix 7, equal to £ 7', [22 In fu(ye|wy, Bn)][ 25 In fo(ye|we, Bn)]

(i) Determineavaluefor 6 : §

6 For more motivation see Van der Sluis (1996)
7 Calculations were performed on aP90 with 16Mb RAM and aP133 with 24 Mb RAM and on some of the 76 RS/6000 nodes of the SP2

computer at SARA (Stichting Academisch Rekencentrum Amsterdam) using programs in Ox (Doornik (1996)) combined with programs
in C/C++ written by the author himself. See Van der Sluis (1996 and 1997) for more on practical issues. The programs for the PC and for
the RS/6000 will be made available as EmmPack 1.0, see Van der Sluis (1997).

Also PcGive (Hendry and Doornik (1996)) was sometimes used and some analysis was done in Gauss 3.14.



(iii) Simulate y (A) and y2 (8) using antithetic variables

(iv) Caleulate my (8, B,) = 55 Yr—y[Z In fo(ul O)|we, Bo) + 2 In fu(y (B)we, B)]

(v) Repeat (i) till (iv) until the quantity my (8, 3,,)(Z,,)~“mx (8, B,,) is minimised

Weset N = 50, 000% and as explainedin Van der Sluis (1996 and 1997) for this specific stochastic volatility
model no starting values have to be used®. In this context antithetic variables as a variance reduction technique
arealso successfully appliedin Andersen and Lund (1996). See Ross (1990), among others, for areview of vari-
ance reduction techniques. To obtain standard errors for the elements of §n we need to determine M (@u Bn).
This can be done efficiently using trial values. Gallant and Tauchen (1996) advise to fit the local quadratic
regressions
mi = boi + b;(0 — 0,) + (0 — 0,) Bi(0 = 0,,),i :=1,.... 8.

for points near §n and then to take M (§n, Bn) to be the matrix with rows equal to bZ
Under the null that the structural model is true one may deduce.

- . ~ 5. d
n- mN(enaBn)(In) 1mN(0naBn) - X‘2/3|_|9|

also the direction of the misspecification may be indicated by the quasi-t ratios

; ~ —

S = [diag(Z, — Mo (M, T, M,) M) H2

Here T,, is distributed ast|g|—g|-
The PSP test isimplemented analogoudly; we have under the null

an;V (§n1 ) an ){fnz + kM?(é\nl ; Bne )[M,l (§n1 ) Bm )fr;l/\/h (§n1 ) Bm )]_1M;(§n1 ; Bne )}_1 :
my (é\rn ) an) i) ng

Here we must determine M, numerically by simulation since no trial values are available. This may take
some time, but only a fraction of the time needed to calculate §n2. Note that we have no loss of degrees of
freedom since no restrictions are posed on the data to obtain estimates. The direction of misspecification may
also beindicated by the quasi ¢-ratios

D, = y/madiag[Z,, +kMs (B, , Bus ) IM L Oy s B VI M (8 B T My (B, B )) ™2 By B

The PSP test isimplemented in aparallel way to the PSP test.

8Two antithetic series are used, each of size 50,000
9The mode is started up in

Yyo = €000,

mof o~ N@/(1=D p)e2(1+ Y =D sH7H
i=1 j=1 i=1

q p
e ~ N(0,1), Corr(eo,lnag) = )\/\J 1+ Z(]Q)(l — Zp?)—l
j=1 i=1

10



7 Application to exchangerates

The data set under investigation are daily spot pricesin Canadian dollar of the British pound, seefigure 1. The
data are taken from the Pacific Exchange Rate Server'?. The available daily dataranges from January 1971 till
August 1996. Theinteresting breakpoint lies at what isknown as Black Wednesday!! when Britain had to leave
the European Monetary System (EMS) and its Exchange Rate M echanism (ERM). The price-movement series
areanalysed so we consider 100[In( Exchange Rate,) — In( Exchange Rate,_1)]. The post-samplerangeis set
to start at Black Wednesday, consequently the post-sample consists of 1019 daily observations. We decided to
perform the PSP test on sample of the same size. Therefore the sample is started at the beginning of Septem-
ber 1988. Some preliminary descriptive statistics can be found in table 1. We observe that both skewness and
kurtosis are dightly higher in the post-sample than they arein the sample.

Itisreported that exchangerates at adaily rate often do not show autocorrelationin themean. A correlogram
of sample and post-sample, as given in figure 2a and figure 2b, shows that there is some correlation between
lags present in the sample and post-sample. However there is no systematic autocorrelation in sample and post-
sample except for lag 5 which might represent the day of the week effect. The author chooses not to model this
effect since his interests are in the volatility process and the effect is weak. This effect will have virtualy no
impact on the estimation of the volatility process. Moreover simulated series of ARCH or Stochastic Volatility
models show the same kind of autocorrelationinthey;. It would worry usonly in case z;, which are unobserved
in the stochastic volatility case, would show thiskind of autocorrelation.

The class of auxiliary modelsisthe SNP class of models with an EGARCH leading term. We specified a
model using BIC, AIC and HQC. Tables 2, 3, 4 and 5 provide the values of these model selection criteriafor the
EGARCH(1,1)-H(k.,0), EGARCH(1,2)-H(k.,0), EGARCH(1,3)-H(k.,0) and EGARCH(1,1)-H(%,1) auxil-
iary models, respectively. Ascan beseenfromtable5, convergencewas hard for themodel with .. > 0, because
the likelihood does not monotonically decrease with the number of parametersincluded. Other models where
estimated such as the EGARCH(2,1)-H(k,0) and the EGARCH(1,4)-H(k.,0) but they showed noincreasein
log likelihood that justifiestheir use by any standards. For the EGARCH(2,1)-H(k.,0) it was also observed that
it is hard to discern between the two AR parameters~, and -y-. For the British Pound (BP) sample we find the
EGARCH(1,3)-H(4,0) model to be awinner. The parameter estimates for the EGARCH(1, 3)-H(4, 0) model
can befound in table 6.

Three different SV models were estimated: SARMAV(1,0), SARMAV(2,0) and SARMAV(3,0). Using
the EGARCH(1, 3)-H(4, 0) model we obtain the following estimates for the structural SARMAV(1, 0) model:

10This is a rea goldmine of exchange rates. Many historical exchange rate series are freely avalable from

http://pacific.comerce. ubc. ca/
11 September 16th 1992
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Table 8 provides the Hansen J-test for overidentifying restrictions and its individual ¢-values. The J test has
avaue of 13.4 with 8 degrees of freedom, we have a P-value of .100 which permits acceptance of this model
at a.05 level. Quasi-t ratios for the elements of the score indicate that the elements that belong to as,x1, as
and a4 are somewhat big. Thisindicates for the a3 and «; that improvement of the structural model can be
made by including more lagged terms in the specification and by introducing some asymmetry in the model.
The parameters asp and a4 indicate that there is something more to be found in the data. More study of the
SNP density may reveal this. Although none of these quasi-t values are significant at a.05 level.
For the SARMAV(2, 0) model we obtained the following estimates

Yt = O¢€¢
lno? = —160+ 268 o} i+ 5T0lno? o+ 415
(-9.32)  (58.5) 27) (34.9)

In table 8 we find about the same results for the Hansen J test as for the SARMAV(1, 0) model. The quasi-t
values are of the parameters of the Hermite polynomial are somewhat closer to zero, indicating that some of
the features of the data that where not captured in the SARMAV(1, 0) model, but were captured by the Hermite
terms in the auxiliary model, are somewhat more captured by the SARMAV(2, 0) model, but not completely.
The J test has a value of 11.6 with 7 degrees of freedom, we have a P value of .113. Since a P vaueisa
monotonic function of the actual evidence against Hy, it is very dangerous to choose the best model of these
specifications on basis of the P-values (see Berger and Delampady (1987)). A Likelihood Ratio (LR) test for
nested hypothesesis easily deduced from the differencein J tests (see Van der Sluis (1997) for details). This
differencehasa Xfm distribution where po denotes the number of parametersin the restricted model. For atest
of SARMAV(1,0) against SARMAV(2,0) we obtain LR = 1.784, with 3 degrees of freedom we get a P-value
of .618. Which leads to acceptance of Hy.
For the SARMAV(3, 0) we obtained the following estimates

Yt = Ot€
lng? = —.094 +1.20ln¢2 ,— 114 lno? .+ 851 lno? .+ 267
t (584 | (511) t—1 (~335) t—2 (108) t—3 (31 )77t

From table 8 we now see that the quasi ¢ ratio corresponding to a3 is much closer to zero. The quasi t—ratios
corresponding to the parametersin the Hermite polynomial are also closer to their neutral value. Thisisreflected
inthevalue of the J test which is now 6.87 with 6 degrees of freedom we obtain a P-value of .333. A LR test of
SARMAV(1,0) against SARMAV(3,0) hasavalue of 6.54 which meanswith 3 degrees of freedom a P-value of
.088, which still means acceptance of Hy at a.05 level. Note that typically the LR test becomes more stringent
with an expansion of the alternative. For completeness, the LR test of SARMAV(2,0) against SARMAV(3,0)
has a value of 4.7565, with 4 degrees of freedom, thisresultsin a P-value of .313.

We also used the auxiliary EGARCHY(1, 3)-H(4,0) model for the post-sample (1019 observations). This
model is not BIC-optimal for the post-sample. Thisin contrast with Van der Sluis (1996) where the specifica-
tion of the post-sample was also chosen BIC optimal. In Van der Sluis (1996) however test statistics for struc-
tural stability were considered for which an optimality property can be proven in case the post-sample model is

12



modelled according to AIC, BIC or HQC. To the author’s knowledge for the PSP test no such property exists.
For interpretational reasons the same model was specified for the post-sample as for the sample. The moment
conditionsthat were used for estimation of the sample are now evaluated under the post-sample. However there
are no urgent reasons to take either a post-sample model that is optimal for some model selection criterion or to
take a post-sample model that equals the sample model. The only thing that changesis the null and alternative
hypothesis. In principle any model can be used, the only question that matters is whether there are interesting
new insights gained by arejection of the test based on such moment conditions.

For the PSP test, results are provided in table 9. The PSP-test for the SARMAV(1,0) (ny = 1019, ny =
1019) has avalue of 48.0 which meansthat on basis of this PSP-test we reject the null hypothesis of structural
stability at any reasonablelevel. Inspection of thet—valuesof theindividual componentsof the PSP test reveals
that the elements of the leading term are causing the rejection, not the elements of the SNP density. We may
conclude that the asymmetry which became more prominent in the post-sample than it was in the sampleis one
of the causes of the rejection. The other cause will be a change of the long run volatility w/(1 — p), whichis
captured by the parameters g and v, in the EGARCH term. For the SARMAV(2,0) and SARMAV(3,0) the
conclusions are virtually the same.

8 Conclusion

In this paper the post-sample prediction testsfor GMM based methods are applied to EMM based methods. One
advantage of the PSP test isthat this may not only detect parameter instability but it may also serveasaguidein
the determination of the dimension of the auxiliary model in case more databecomesavailable. That isthe PSP
test enables usto test whether the moment conditions used for estimation are still valid. Generally, the choice of
an in-some-sense-optimal auxiliary model for EMM procedures needs more study. Thisis not only a question
of dimensionality since for non-linear models the concept of dimensionality is blurry. At this moment the best
way may beto follow the BIC criterion. Another advantage of the PSP-test isits ahility to expand the auxiliary
model with the expansion of the post-sample. A more practical advantageof thistest isthat it iscomputationally
attractive. We have an estimate of 6,,, and simulationsfrom thelast run {y. (8., )}\_, at our disposal. Only an
estimate Bng of the parametersin the auxiliary model for post-sample, the score of the auxiliary model in Bng
and {y,(6,,)}_, and the matrices M (6,,,, B,,) and My (B,,,, 3., ) must be determined. However this will
take only afraction of thetime needed to determine §n2 . Thisiseven moreimportant for EMM based techniques
than it isfor GMM based techniques.

Theapplicationismadeto the British pound versus Canadian dollar exchangerates. The structural brakpoint
was set at September 16th 1992 where Britain wasforced to | eave the European Monetary Union, Exchange Rate
Mechanism. The null hypothesis of structural stability was clearly rejected. Recently Britain has returned to
the ERM. Thereforeit may be interesting to investigate another structural breakpoint when more data becomes
available astime progresses. PSP tests may be also be applied to multiple breakpoints, in case the asymptotics
provide good approximationsfor finite sample sizes.

Besides the tests for structural stability this paper gives a successful application of the EMM methodol ogy
to severa stochastic volatility models.

A standard drawback of the PSP test is the fact that the breakpoint is assumed known. This yoke may be
shed following work of Ghyselset al. (1995). However with the current state of computing power, computing
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timeswill be very high, so it will take some years before this could be applied as a standard test procedure.
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A Appendix

For the proof to be correct, regularity conditions as those in Ghysels and Hall (1990a) must be met. The proof
hingeson the $-method, thismay not be the most subtle method, for other methods see Gallant and White (1988).
Proof of theorem 1. For EMM the rational e goes along the same lines. Under stationarity we have

\/mmN(e()’énl) —d>N( 0 , Lo ) asn; — oo, F="2 < 2
\/77/_2mN(007 ﬂne) 62 0 IQ n

The 6-method yields,

VN O, Bry) 2 /ram (80, B2) + ViaMa (B, s By ) (0, (To) — 60) + 0p(1)

Vmn By, Ba,) 5 mam (80, 82) + VT Mo (B, . B, )0, (To) — o) + 0,(1)
and because
VL (B, (T) = 89) % N(0,[M (B0, )T * Ma (61, 8)] )
we obtain using (2)

V2N Brays Bry) % N (82, Tz + kMo (8o, B2) [ M (80, B1)T; " My (8o, 1))~ M2 (60, B2))

thenoncentrality parameter Apsp,,,,, can befoundby applyingtheorem 1in Newey (1985). Here 3; = plim,,, __ 3,,. 1
Proof of theorem 2.
As above with the subscripts n; and no reversed. ll
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Figure 1: Sample and post-sample

sample | post-sample
Mean -.005 .003
Std.Dv. .695 .664
Skewness .269 316
Excess Kurtosis 181 249
Minimum -2.61 -2.83
Maximum 312 3.04
Normality Chi"2 85.7 137

Table 1: Some preliminary statistics of the sample and of the post-sample
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Figure 2a: Correlogram of the sample
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Figure 2a: Correlogram of the post-sample
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K. | LogLikl | AIC HQC BIC

1 -1049.2 | -1055.2 | -1060.8 | -1070.0
2 -1049.2 | -1056.2 | -1062.7 | -1073.4
3 -1047.5 | -1055.5 | -1063.0 | -1075.2
4 -1026.5 | -1035.5 | -1044.0 | -1057.7
5 -1026.5 | -1036.5 | -1045.8 | -1061.1
6 -1026.5 | -1037.5 | -1047.8 | -1064.6
7 -1024.5 | -1036.5 | -1047.7 | -1066.1
8 -1024.1 | -1037.1 | -1049.3 | -1069.1
9 -1023.5 | -1037.5 | -1050.6 | -1071.9
10 | -1023.5 | -1038.5 | -1052.5 | -1075.4

Table 2: Various model selection criteriafor the EGARCH(1, 1)-H(K,, 0) model for the sample

K. | LogLikl | AIC HQC BIC

1 -1046.2 | -1053.2 | -1059.8 | -1070.4
2 -1046.2 | -1054.2 | -1061.7 | -1073.9
3 -1044.6 | -1053.6 | -1062.0 | -1075.7
4 -1024.0 | -1034.0 | -1043.3 | -1058.6
5 -1024.0 | -1035.0 | -1045.3 | -1062.1
6 -1023.9 | -1035.9 | -1047.2 | -1065.5
7 -1021.9 | -1034.9 | -1047.1 | -1066.9
8 -1021.2 | -1035.2 | -1048.3 | -1069.7
9 -1020.0 | -1035.0 | -1049.0 | -1071.9
10 | -1017.9 | -1033.9 | -1048.9 | -1073.3

Table 3: Various model selection criteriafor the EGARCHY(1, 2)-H(K ., 0) model for the sample
", | LogLikl | AIC HQC | BIC

=

1 -1039.6 | -1047.6 | -1055.1 | -1067.3
2 -1039.6 | -1048.6 | -1057.0 | -1070.8
3 -1038.2 | -1048.2 | -1057.5 | -1072.8
4 -1018.7 | -1029.7 | -1039.9 | -1056.7
5 -1018.7 | -1030.7 | -1041.9 | -1060.2
6 -1018.7 | -1031.7 | -1043.8 | -1063.7
7 -1016.9 | -1030.9 | -1044.0 | -1065.4
8 -1016.4 | -1031.4 | -1045.4 | -1068.3
9 -1015.6 | -1031.6 | -1046.6 | -1071.0
10 | -1015.2 | -1032.2 | -1048.0 | -1074.0

Table 4: Various model selection criteriafor the EGARCH(1, 3)-H(K ., 0) model for the sample
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K. | LogLikl | AIC HQC BIC

1 -1045.0 | -1053.0 | -1060.4 | -1072.7
2 -1044.8 | -1054.8 | -1064.2 | -1079.4
3 -1042.7 | -1054.7 | -1065.9 | -1084.2
4 -1021.9 | -1035.9 | -1049.0 | -1070.4
5 -1028.5 | -1044.5 | -1059.5 | -1083.9
6 -1024.6 | -1042.6 | -1059.4 | -1086.9
7 -1019.7 | -1039.7 | -1058.4 | -1089.0
8 -1030.7 | -1052.7 | -1073.3 | -1106.9
9 -1025.2 | -1049.2 | -1071.6 | -1108.3
10 | -10184 | -1044.4 | -1068.7 | -1108.4

Table 5: Various model selection criteriafor the EGARCH(1, 1)-H(K ., 1) model for the sample

parameters | t-values
ag -.088 -8.72
aq -.550 -2.50
Qs 157 .635
Qs .827 2.95
" .883 77.6
K1 .042 1.90
Ko .158 4.29
ao -.015 -.949
a0 .006 -414
aso .018 1.09
a4 .089 5.64

Table 6: Sample estimates for the parameters of the EGARCH(1, 3)-H(4, 0) model.
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parameters | t-values
Qg -.010 -6.82
ay -.568 -7.70
Qs 409 5.35
as -.272 3.45
" 1.00 1012
K1 -.050 -2.98
Ko 102 6.85
aio -.016 -.977
asg 101 6.30
aso .007 457
a4 126 8.15

Table 7: Post-sample estimates for the parameters of the EGARCH(1, 3)-H(4, 0) model.

SARMAV(1,0) | SARMAV(2,0) | SARMAV(3,0)

J-test J-test J-test

X 13.4 11.6 6.87
df 8 7 6
Pr(X > \?) 100 113 333
o -.846 847 -.259
o 397 435 -1.43
s -754 -.950 -1.17
as -2.28 2.22 -1.31
- -271 258 -333
K1 -1.79 -1.78 -1.95
Ko .030 -755 -.220
a1 951 942 914
as0 171 -1.38 -.649
aso0 -1.17 -1.14 -1.25
a4 -1.84 -1.37 -433

Table 8: Individual t values of the elements of the J statistic. We have Pr(|tg| > 2.447) = 0.05,

Pr(|t7] > 2.365) = 0.05 and Pr(Jts| > 2.306) = 0.05.
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SARMAV(1,0) | SARMAV(2,0) | SARMAV(3,0)
PSP-test PSP-test PSP-test

X 48.0 46.3 42.0
df 11 11 11
Pr(X > \?) .000 .000 .000
o 2.54 2.72 2.94
o 1.90 2.10 2.25
s 1.72 1.94 2.32
as 1.72 1.96 2.41
" -2.86 -3.01 -3.20
K1 3.40 3.58 3.59
Ko 3.08 3.17 3.36
a0 1.02 997 1.01
a0 1.85 1.66 1.47
aso0 -.568 -.568 -.606
a4 -1.53 -.995 -551
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Table 9: Individua t values of the elements of the PSP statistic. We have Pr(|t;;| > 2.201) = 0.05




