
Post-Sample Prediction Tests for the Efficient Method of

Moments

Pieter J. van der Sluis�

Department of Actuarial Science and Econometrics

University of Amsterdam

and

Tinbergen Institute

April 21, 1997

Abstract

In this paper a post-sample prediction test is derived for estimators based on the Efficient Method of Mo-

ments. The main advantage of this particular test over other stability tests is that no time-consuming estimation

of the structural parameters for the post-sample is needed. The asymptotic properties of the test and local power

properties against certain alternatives are deduced. Using the Efficient Method of Moments methodology, an

application is made to stochastic volatility models for the British pound versus Canadian dollar exchange rates.

The breakpoint for the stability test is a priori set at September 16th 1992, when Britain was forced to leave

the European Monetary Union Exchange Rate System.

Keywords: Efficient method of moments; Exchange rates; Specification testing; Stochastic volatility mod-

els.
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1 Introduction

In case the likelihood of a model is intractable one may resort to simulation techniques such as indirect inference

(Gourieroux et al. (1993)) and the Efficient Method of Moments (EMM) (Gallant and Tauchen, (1996)). Both
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methods may be seen as minimum chi square estimators. Therefore the post-sample prediction (PSP) statistic

for GMM estimators, as given in Hoffman and Pagan (1989) and Ghysels and Hall (1990a), may be transcribed

to these type of simulation-based estimators. In this paper we will do so for the EMM estimation technique.

We believe that EMM is superior to the original indirect inference technique of Gourieroux et al. (1993) from a

viewpoint of efficiency and stability; see Van der Sluis (1996) for details. Although the results in this paper can

easily be applied to the indirect inference case, it is doubtful whether this will ever be necessary for substantial

models. Because of the lack of efficiency of indirect inference.

The PSP test is based on an evaluation of the moment conditions at a sample-based parameter estimate and

data from the post-sample. Like the PSP test for GMM, the PSP test for EMM may detect parameter instability.

The test may be used in cases where there is prior knowledge about switches in regime or as a specification test

for sample and post-sample chosen of the same size. Whether the latter procedure provides reliable conclusions

is questionable in the light of recent results of Hall and Sen (1996) for the GMM case. The underlying principle

of this test is different from that of the LM, Wald or LR based statistics for structural stability for GMM estimators

as developed by Andrews and Fair (1988). In Ghysels and Hall (1990a) it is argued that the PSP test has several

advantages over these Wald, LR and LM based statistics. Three advantages are mentioned, for which the first one

is even more important for simulation based estimators than for GMM estimators: (i) we do not need an estimate

of the structural parameter over the post-sample; (ii) all orthogonality restrictions are used over the post-sample;

(iii) no subset of orthogonality restrictions is set equal to zero in the post-sample. The latter two advantages are

reflected in the number of degrees of freedom and its local power properties against certain alternatives.

This paper is organised in the following manner. Section 2 describes the EMM method as proposed by Gal-

lant and Tauchen (1996). This method often provides an algorithm that is computationally more stable and at-

tractive than the indirect inference procedure. Moreover, this method will provide full maximum-likelihood

efficiency of the estimators, see Gallant and Tauchen (1996), Gallant and Long (1996) and Tauchen (1996).

This section is merely intended to provide some notation. The reader is advised to consult the original paper

in case of nonfamiliarity with EMM. In section 3 the PSP statistic for GMM is discussed. In section 4 the

PSP statistics for EMM are proposed. Its asymptotic properties and local power against certain alternatives

are deduced in section 5. In this paper applications will be made in the context of stochastic volatility models.

Stochastic volatility models are models for which the likelihood has no tractable expression. These models are

mainly used to describe the heteroskedasticity process of financial time-series, replacing ARCH-type models.

The implementation of the test in the context of stochastic volatility models will be considered in section 6.

In this section the choice of the auxiliary model, which is needed in EMM, is motivated. Also the problem of

determining the number of moment conditions for sample and post-sample is assessed. In section 7 exchange

rates are investigated using these stochastic volatility models. Parameter instability is associated with periods

of different volatility. Section 8 concludes.

2 Efficient Method of Moments

Indirect inference techniques are based on some connection between the auxiliary model and the structural

model. In the original indirect inference procedure of Gourieroux et al. (1993) this link is established through

the parameters of the auxiliary model (parameter calibration). No strict guidelines are given for the choice of

the auxiliary model. Gallant and Tauchen (1996) propose the efficient method of moments (EMM). Here the
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connection between the auxiliary model and the dynamic model is achieved by means of the expected scores of

the auxiliary model under the structural model (score calibration). Since scores are better comparable over dif-

ferent models than parameters, this will typically yield more stable optimization problems. More importantly,

strict guidelines are given for the choice of the auxiliary model such that maximum likelihood efficiency is at-

tained. Another advantage is that the score has to be evaluated only once per optimization round, whereas for

indirect inference per optimization round a dozen of auxiliary models has to be estimated.

In short, EMM goes as follows. Consider the structural model (1) below. Several regularity conditions must

be met by the dynamic model and the auxiliary model. For details see Gallant and Tauchen (1996). Here it

suffices to note that the original results in Gallant and Tauchen (1996) were presented for Markovian models,

however recent results of Gallant and Long (1996) justify the use ofnon-Markovian auxiliary models. However,

the EMM framework is up till now limited to stationary and ergodic structural models. The structural model is

defined as
yt = r(yt�1; xt; ut; �)

ut = �(ut�1; �t; �)
(1)

where � is a parameter, � 2 � � Rp . The sequence of densities for the structural model (1) will be denoted

fp1(x1 j �); fpt(yt j xt; �)g1t:=1g

The sequence of densities for the auxiliary process will be denoted as

ff1(w1 j �); fft(yt j wt; �)g1t:=1g

where xt and wt are observable endogenous variables. Let us define

m(�; �) :=

Z Z
@

@�
ln f(y j w; �)p(y j x; �)dyp(x j �)dx

the expected score of the auxiliary model under the dynamic model. The simulation approach solely consists of

calculating this function as

mN (�; �) :=
1

N

NX
� :=1

@

@�
ln f(y� (�) j w� (�); �)

for N very large. The EMM estimator b�n(In) is defined as

b�n(In) := argmin
�2�

m
0

N (�; b�n)(In)�1mN (�; b�n)
where In is a weighting matrix and b�n is a consistent estimator of the parameters in the auxiliary model.

In the notation of this section we have

In = V0[
1p
n

nX
t:=1

(
@

@�
ln ft(yt j wt; b�n)]

and obviously

lim
n!1

In = I0
One can also prove for the estimates for the structural model

p
nmN (�0; b�n) d! N(0; I0)
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and consistency of � : p
n(b�n(I0)� �0)

d! N(0; [M0

0(I0)�1M0]
�1)

whereM0 :=
@
@�
0m(�0; �

�). For notational convenience b�n will denote the estimator based on the optimal In:
In order to justify the full efficiency of EMM, one needs to employ for example the SemiNonParametric

(SNP) density of Gallant and Nychka (1987)1. Gallant and Long (1996) show that if we use a SNP approach

to select the auxiliary model, the full efficiency can be achieved when the SNP model is rich enough such that

the structural model lies in the SNP hierarchy. To improve the finite sample properties of EMM one should

add a parametric part to the SNP density. The polynomial part of the SNP density will now be relieved from

some of its tasks. In the literature this parametric part is referred to as the leading term of the SNP expan-

sion. The process yt(�0) is the process under investigation, �t(�0) := Et�1[yt(�0)]; is the conditional mean,

�t(�0) := yt(�0)� �t(�0); �
2
t (�0) := Vart�1[�t(�0)] = Et�1[�

2
t (�0)] is the conditional variance and zt(�0) :=

�t(�0)(�
2
t (�0))

�1=2 is the standardized process. The SNP density now takes the following form

f(zt(�)) =
1p
�2t

[PK(zt; xt)]
2�(zt)R

[PK(u; xt)]2�(u)du

where � denotes the standard normal density, x := (yt�1; :::; yt�M ) and the polynomials

PK(z; xt) :=

KzX
i:=0

ai(xt)z
i :=

KzX
i:=0

[

KxX
j:=0

aijx
j
t ]z

i

For identification we set a00 = 1:A specific form for the polynomials is taken, viz. orthogonal Hermite polyno-

mials (see Gallant et al. (1991), Fenton and Gallant (1996a) and Andersen and Lund (1996)). Relevant formulas

can be found in Abramowitz and Stegun (1972) and Fenton and Gallant (1996a). For an assessment of the prop-

erties of SNP density estimators see Fenton and Gallant (1996a+b). In Gallant et al. (1991) and Tauchen (1996)

a very general SNP hierarchy of models is considered. Since in our set-up xt is a vector of lagged values of yt

the polynomials in terms of xt become so-called monomials forM > 1: In this case the analysis becomes much

more complicated and hardly relevant with a proper parametric leading term. Therefore in this paper only the

case M = 0 and M = 1 are considered.

In this paper structural stability is of interest, therefore the following nomenclature is introduced: n1will

denote the number of observation in the sample and n2 will denote the number of observations in the post-

sample. The auxiliary estimator that employs sample data only, will be denoted b�n1 : The estimator that employs

post-sample data only will be denoted b�n2 : Likewise the EMM estimators b�n1 and b�n2 are denoted. Furthermore

estimators that are based on both sample and post-sample data are denoted b�n1+n2 and b�n1+n2 : In this paper we

will take p := dim(�); q1 := dim(�1) and q2 := dim(�2): The number of moment conditions q1 and q2 will be

determined using several criteria. For important results regarding EMM to hold it is necessary that the number of

moment conditions in the sample q1 increases with n1 and the number of moment conditions in the post-sample

q2 increases with n2:Note in this respect the conceptual difference with GMM. It will automatically happen that

q1 and q2 will increase with n1 and n2, respectively, using any of the criteria such as the Akaike Information

Criterion (AIC, Akaike (1973)), the Schwarz Criterion (BIC, Schwarz (1978)) or the Hannan-Quinn Criterion

(HQC, Hannan and Quinn (1979) and Quinn (1980))2. In section 4 we will see that the power properties depend

on the number and type of moment conditions. Some guidelines will be given for optimal results in practice.

1Building on earlier work of Phillips (1983)
2AIC= T lnL+ j�j

BIC= T lnL+ 0:5j�j lnT
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3 PSP-statistic for GMM

Hoffman and Pagan (1989) and Ghysels and Hall (1990a) constitute for GMM an analogy to OLS where the

average prediction error over a post-sample prediction period of n1 + 1; :::; n1 + n2, i.e.

n�12

n1+n2X
i:=n1+1

bei,
is sometimes considered3; here bei denotes the standard OLS residual evaluated at b�n1 For GMM this becomes

b� := n�12

n1+n2X
i:=n1+1

bgi
where bgi is a vector of first order conditions g evaluated at b�n1 : This test may thus indicate parameter instability

over the post-sample area. Let T1 := f1; : : : ; n1g and T2 := fn1 + 1; : : : ; n1 + n2g: In Ghysels and Hall

(1990a) the asymptotic distribution of
p
n2b� is given. It turns out that

p
n2b� is asymptotically normal:

p
n2b� d! N(0; S2 + k eD2(D

0

1S
�1
1 D1)

�1 eD0

2)

where Si := limni!1 E[nignig
0

ni ], Di = plimni!1

@gn
i

@�
0 and eD2 := plimn2!1

@gn
i
(b�n1)

@�
0 ; i = 1; 2: Under

stationarity we have S1 = S2:

Following Newey (1985), Ghysels and Hall (1990b) and Ahn (1995) the following individual null hypothe-

ses are identified in the context of structural stability and GMM estimation

H
1
0 : Efn1(yt; �0) = 0; 8 t 2 T1

H
2
0 : Efn2(yt; �0) = 0; 8 t 2 T2

H
3
0 : �0 = �0

where the function f represents the moment restrictions. The subscripts n1 and n2 refer to the sample and post-

sample respectively. In case of using this test as a general stability test the role of sample and post-sample may

be reversed.

The stability hypothesis Hs
0 is defined as

H
s
0 : H

1
0;H

2
0 and H3

0 hold

The asymptotic power of the test depends on which of the individual null-hypotheses is violated. Define the

following alternative hypotheses

H
A
A : At least one of H1

0;H
2
0 and H3

0 does not hold

H
B
A : H

1
0 holds, at least one of H2

0 and H3
0 does not hold

H
C
A : H

1
0 and H2

0 hold, H3
0 does not hold

HQC= T lnL+ j�j ln lnT

In this context, L denotes the loglikelihood of the auxiliary model in the optimum, T denotes the number of observations and j�j the

number of freely estimated auxiliary parameters. For some properties see Lütkepohl (1990).

3Another analogy may be constituted by n�1
2

n1+n2P
i:=n1+1

xibei
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This leads to the following local alternatives

H
1
n :

p
n1Efn1(yt; �0) = �1 + o(1)

H
2
n :

p
n2Efn2(yt; �0) = �2 + o(1)

H
3
n : Efn2(yt; �0;n) = 0;

p
n2(�0;n � �0) = �

Let HA
l := f(H1

n;H
2
n)g1n:=1; HB

l := f(H1
0;H

2
n)g1n:=1 and HC

l := f(H1
0;H

3
n)g1n:=1: The usual Hansen J�test

may be used to test Hs
0: However, Ghysels and Hall (1990b) show that this test has low power against local

alternatives that are of the form HC
l . In Ghysels and Hall (1990a) a modification of the Hansen test is proposed.

It should be noted that recently Hall and Sen (1996) and Sowell (1996) proposed a different decomposition of

the stability hypothesis for GMM. However, considering the different nature of the moment conditions between

GMM and Indirect Inference/EMM, the present decomposition will be used in the next sections to construct a

stability hypothesis in the context of simulation techniques.

Ahn (1995) shows, building on earlier work of Newey (1985) that the PSP test for GMM is an optimal

GMM test that has maximum power toward HB
l : Several interesting asymptotic equivalencies are described for

the tests for structural stability proposed by Andrews and Fair (1988). The upshot is that any of their statistics has

maximum local power against alternatives of the form HC
l : In the context of EMM these statistics are investigated

in an accompanying paper Van der Sluis (1996).

4 PSP-statistic for EMM

Define �i = plimni!1
b�ni then for the EMM case the following individual null hypotheses are identified

H
1
0 : m(�0; �1) = 0; 8 t 2 T1

H
2
0 : m(�0; �2) = 0; 8 t 2 T2

H
3
0 : �0 = �0

where the function m is the expected score of the auxiliary model under the dynamic model as defined in the

previous section. The stability hypothesis and alternative hypotheses are as in the previous section.

Let b�n1+n2 denote a root-n consistent estimator of the combined sample and post-sample. The following

local alternatives are defined for EMM

H
1
n :

p
n1m(�0; �1) = �1 + o(1)

H
2
n :

p
n2m(�0; �2) = �2 + o(1)

H
3
n : m(�0;n; �2) = 0;

p
n2(�0;n � �0) = �

Let HA
l := f(H1

n;H
2
n)g1n:=1; HB

l := f(H1
0;H

2
n)g1n:=1 and HC

l := f(H1
0;H

3
n)g1n:=1: In an accompanying paper,

Van der Sluis (1996), different types of stability tests are investigated. These tests have optimal asymptotic

power against HA
l and HC

l : In this paper we only consider local alternatives of the formHB
l . Since the PSP test in

the GMM case is optimal against HB
l ; it is tempting to propose aPSP-statistic for EMM based onmN (b�n1 ; b�n2):

In the next section the asymptotic properties of the statistics based on this quantity will be deduced.
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5 Asymptotic Properties and Local Power

In this section some theorems on the asymptotic distributions and local power properties of the PSP-test will

be provided. The results in this section are basically transcriptions from results known in the GMM literature

to the realm of EMM. A proof of the following theorem can be found in the appendix.

Theorem 1 Let

PSPEMM := n2m
0

N (b�n1 ; b�n2)fbIn2 + kM2(b�n1 ; b�n2)[M0

1(
b�n1 ; b�n1)bI�1n1M1(b�n1 ; b�n1)]�1 �
M0

2(
b�n1 ; b�n2)g�1mN (b�n1 ; b�n2)

under HB
l PSPEMM has a noncentral �2q2 distribution with noncentrality parameter �PSPEMM ; given by

�PSPEMM := �
0

2I�12 [I2 � c2M2(�0; �2)[

2X
i:=1

M0

i(�0; �i)I�1i Mi(�0; �i)]
�1M0

2(�0; �2)]I�12 �2

where c2 := limn1;n2!1
n2

n1+n2
:

Of course the role of the sample and post-sample may be reversed, this leads to a backward post-sample

prediction or ante-sample prediction test,
 ��
PSPEMM test.

Theorem 2 Let

 ��
PSPEMM := n1m

0

N (b�n2 ; b�n1)fbIn1 + k�1M1(b�n2 ; b�n1)[M0

2(
b�n2 ; b�n2)bI�1n2

M2(b�n2 ; b�n2)]�1 �
M0

1(
b�n2 ; b�n1)g�1mN (b�n2 ; b�n1)

under eHB
l := f(H1

n;H
2
0)g1n:=1

 ��
PSPEMM has a noncentral�2q1 distribution with noncentrality parameter� ��

PSPEMM
;

given by

� ��
PSPEMM

:= �
0

1I�11 [I1 � c1M1(�0; �1)[

2X
i:=1

M0

i(�0; �i)I�1i Mi(�0; �i)]
�1M0

1(�0; �1)]I�11 �1

where c1 := limn1;n2!1
n1

n1+n2
:

A different role is played by the moment conditions in GMM than EMM and indirect inference: for esti-

mation purposes it may be desirable to vary the number of moment conditions with the size of the sample and

post-sample. This will be done automatically by a criterion such as the BIC. Particularly, a high dimensional

auxiliary which is needed for EMM to work, may not be of use for small post-samples. For the post-sample the

high-dimensional auxiliary model may not converge at all. Note however that changing the auxiliary model for

the post-sample induces different null and alternative hypotheses. In Van der Sluis (1996b) it is shown that in

the case of LM/LR/Wald/ tests for structural stability it is optimal4 to change the number of moment conditions.

To the author’s knowledge, in case of PSP tests no such property can be established. This leads to a choice

of the same moment conditions in the post-sample as in the sample. Other optimality properties of the PSP

test-statistics follow from straightforward application of results known in the GMM literature, see Ahn (1995)

and Newey (1985).

It should be noted that Tauchen (1996) shows that certain misspecifications of the structural model can lead

to the failure to reject the overidentifying restrictions. The same possibility can also lead to the failure to reject

the stability hypothesis.
4Optimal in the sense of yielding a uniformly most powerful test
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6 Implementation of the test

Recently it is reported that stochastic volatility models may provide better estimates for the volatility parameters

than the ARCH-GARCH class of models. A nice reference on stochastic volatility models is Ghysels et al.

(1996). Examples of the estimation of stochastic volatility models by EMM can be found in Gallant et al. (1994)

and Andersen and Lund (1995). The stochastic volatility model in its ASARMAV(p; q)5 form reads

yt = �t�t

ln�2t = ! +
Pp

i=1 �i ln�
2
t�i + �t + ��(1 +

Pq
i=1 �jL

j)�t

�t � NID(0; 1); �t � NID(0; 1);Corr(�t; �t+1) = �; � 1 � � � 1

t = 1; : : : ; T

Just as for ordinary ARMA models for covariance-stationarity the roots of 1 � �1z � : : : � �pz
p must lie

outside the unit circle. Since the latent variables �t must be integrated out, the log-likelihood of this model

cannot be written down in a tractable form. Using EMM we may efficiently estimate the parameters � :=

f!; �1; : : : ; �p; �1; : : : ; �q ; �� ; �g of this model. This may be done with EmmPack (Van der Sluis (1997)).

As mentioned in section 2 the auxiliary model is taken from the class of SemiNonParametric (SNP) models

introduced by Phillips (1983) and later developed by Gallant and Nychka (1987). To relieve the SNP density

from its task, a parametric model is added to the SNP density. There is reported evidence that this will improve

the finite sample performance of EMM. Our candidate parametric model is taken from the ARCH class of mod-

els. We will successively consider two branches of the ARCH class of models: the ARCH-GARCH (Engle

(1982), Bollerslev (1986)) models and the EGARCH models (Nelson (1991)).

The ARCH-GARCH class of models reads

yt = �t�t

�2t = �0 +
Pq

i:=1 �i�
2
t�i +

Pp
j:=1 j�

2
t�j

�t � NID(0; 1)

t = 1; : : : ; T

This model is usually called GARCH(p; q) model. If we set p = 0; we obtain a pure ARCH(q) model as intro-

duced in Engle (1982). These models may be used as auxiliary models in the applications of the next sections.

For the ARCH(q) model the restrictions on the parameters are �0 > 0 and �i � 0 for i > 0 for the model to be

well-defined and
Pq

i:=1 �i � 1 for covariance stationarity. Experimenting with these type of models show that

in order to capture all heteroskedasticity in the data the number of parameters in the pure ARCH models gets

rather high. This may cause the same problems as occur with estimating stochastic volatility models with GMM

using a high number of moment conditions as reported in Andersen and Sørensen (1996). One suggestion may

be to use GARCH models. However a practical problem arises. For the GARCH(p; q) model to be well defined

we need that all the coefficients in the infinite power series expansion for �(x)=(1 � (x)) are non-negative.

Here �(L) and (L) are the usual polynomials with L the lag-operator and provided �(L) and (L) have no

common roots and that the roots of the polynomial (x) = 1 lie outside the unit circle. The model is covariance

stationary if and only if all the roots of �(x) + (x) lie outside the unit circle. Various other stationarity con-

cepts and restrictions are discussed in Kleibergen and Van Dijk (1993) or Nelson and Cao (1992). References

can be found in Bollerslev et al. (1994). The problem is that in practice often estimates are obtained that fall

5Asymmetric Stochastic AutoRegressive Moving Average Volatility
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into the strict stationarity region, but outside the covariance stationarity region. This is not a problem per se,

but for EMM it is, since EMM hinges on concepts as ergodicity and stationarity, it must be guaranteed that the

simulated series generates a stable score-generator. For parameter values outside the most stringent parameter

space this cannot be guaranteed. For a more extensive discussion of this issue, reference is made to Andersen

and Lund (1996a) and Van der Sluis (1996). Moreover, for GARCH models parameter estimates will often turn

out to be on this most stringent IGARCH boundary. On this IGARCH boundary the error variances become in-

finite. Because of this property a comparison of a long simulated IGARCH series with real financial data shows

that IGARCH models are rather far from realistic.

Consequently, the EGARCH models of Nelson (1991) are considered6. The EGARCH(p; q) model reads

yt = �tzt

�2t = expf�0 +
Pp

j:=1 j ln�
2
t�j + (1 +

Pq
i:=1 �iL

i)(�1zt�1 + �2[jzt�1j �Ejzt�1j])g
zt � NID(0; 1)

t = 1; : : : ; T

The stationarity restrictions for the pure EGARCH can be derived in a similar way to those in ARMA models à la

Box-Jenkins. Therefore only the  parameters play a role in the stationarity restrictions: the model is stationary

(strict and weak) in case the roots of (x) lie outside the unit circle. Thus the stationarity problems that arise in

GARCH models vanish for EGARCH models

In the next section an application to exchange rates will be made. The class of auxiliary models that will be

considered is the EGARCH(p; q)-H(Kx;Kz) class. The order of the auxiliary model will be determined using

several criteria, as BIC, AIC and HQC. The vector of auxiliary parameters � has dimension p+ q+3+ (Kx+

1)(Kz + 1): The moment conditions all represent a salient feature of the model. For the EGARCH model we

have in particular that the moment conditions associated with the  parameters give us a idea of the persistence

in the data. In particular,
Pp

i=1 i will serve as a measure of persistence. The �0 parameter is a measure of the

unconditional variance. The term 1 +
Pq

i=1 �i reflects the short-run sensitivity to innovations. The term �1

reflects the asymmetric volatility effect that is often present in financial time series. The �2 parameter measures

the changes in zt in reaction with the conditional heteroskedasticity. In case Kx = 0, letting Kz > 0 induces a

time-homogeneous non-Gaussian error structure. The case Kx > 0 induces heterogeneous innovation densities

beyond the EGARCH model. Since the EGARCH model captures all this heterogeneity, Kx > 0 will not

be necessary. To the author’s knowledge there are no guidelines provided yet for assessment of the individual

coefficients of the Hermite polynomial.

Starting values may be obtained by using the quasi maximum likelihood technique of Harvey et al. (1993).

The following was done7

(i) Determine the order of the ARCH process. For this particular ARCH process estimate b�: Set the

corresponding weighting matrix bIn equal to 1
n

Pn
t:=1[

@
@�

ln ft(ytjwt; b�n)][ @@� ln ft(ytjwt; b�n)]0
(ii) Determine a value for � : b�

6For more motivation see Van der Sluis (1996)
7Calculations were performed on a P90 with 16Mb RAM and a P133 with 24 Mb RAM and on some of the 76 RS/6000 nodes of the SP2

computer at SARA (Stichting Academisch Rekencentrum Amsterdam) using programs in Ox (Doornik (1996)) combined with programs

in C/C++ written by the author himself. See Van der Sluis (1996 and 1997) for more on practical issues. The programs for the PC and for

the RS/6000 will be made available as EmmPack 1.0, see Van der Sluis (1997).

Also PcGive (Hendry and Doornik (1996)) was sometimes used and some analysis was done in Gauss 3.14.
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(iii) Simulate yN1 (b�) and yN2 (b�) using antithetic variables

(iv) Calculate mN (b�; b�n) = 1
2N

PN
t:=1[

@
@�

ln ft(y
N
1 (b�)jwt; b�n) + @

@�
ln ft(y

N
1 (b�)jwt; b�n)]

(v) Repeat (ii) till (iv) until the quantity m
0

N (b�; b�n)(bIn)�1mN (b�; b�n) is minimised

We setN = 50; 0008 and as explained in Van der Sluis (1996 and 1997) for this specific stochastic volatility

model no starting values have to be used9. In this context antithetic variables as a variance reduction technique

are also successfully applied in Andersen and Lund (1996). See Ross (1990), among others, for a review of vari-

ance reduction techniques. To obtain standard errors for the elements of b�n we need to determineM(b�n; b�n).
This can be done efficiently using trial values. Gallant and Tauchen (1996) advise to fit the local quadratic

regressions

mi = b0i + b
0

i(� � b�n) + (� � b�n)0Bi(� � b�n); i := 1; :::; j�j:

for points near b�n and then to takeM(b�n; b�n) to be the matrix with rows equal to b
0

i:

Under the null that the structural model is true one may deduce.

n �m0

N (b�n; b�n)(bIn)�1mN (b�n; b�n) d! �2
j�j�j�j

also the direction of the misspecification may be indicated by the quasi-t ratios

bTn := bS�1n

p
nmN(b�n; b�n)bSn := [diag(bIn � cMn(cM0

n
bI�1n

cMn)
�1cM0

n)]
1=2

Here bTn is distributed as tj�j�j�j:

The PSP test is implemented analogously; we have under the null

n2m
0

N (b�n1 ; b�n2)fbIn2 + kM2(b�n1 ; b�n2)[M0

1(
b�n1 ; b�n1)bI�1n1

M1(b�n1 ; b�n1)]�1M0

2(
b�n1 ; b�n2)g�1 �

mN (b�n1 ; b�n2) d! �2q2

Here we must determineM2 numerically by simulation since no trial values are available. This may take

some time, but only a fraction of the time needed to calculate b�n2 : Note that we have no loss of degrees of

freedom since no restrictions are posed on the data to obtain estimates. The direction of misspecification may

also be indicated by the quasi t-ratios

bDn2 :=
p
n2diag[bIn2+kM2(b�n1 ; b�n2)[M0

1(
b�n1 ; b�n1)bI�1n1

M1(b�n1 ; b�n1)]�1M0

2(
b�n1 ; b�n2)]�1=2mN (b�n1 ; b�n2)

The
 ��
PSP test is implemented in a parallel way to the PSP test.

8Two antithetic series are used, each of size 50,000
9The model is started up in

y0 = �0�0;

ln �2
0

� N(!=(1 �

pX
i=1

�i); �
2

�(1 +

qX
j=1

�2
j
)(1 �

pX
i=1

�2
i
)�1)

�0 � N(0; 1); Corr(�0; ln�
2

0
) = �=

vuut(1 +

qX
j=1

�2
j
)(1 �

pX
i=1

�2
i
)�1

10



7 Application to exchange rates

The data set under investigation are daily spot prices in Canadian dollar of the British pound, see figure 1. The

data are taken from the Pacific Exchange Rate Server10. The available daily data ranges from January 1971 till

August 1996. The interesting breakpoint lies at what is known as Black Wednesday11 when Britain had to leave

the European Monetary System (EMS) and its Exchange Rate Mechanism (ERM). The price-movement series

are analysed so we consider 100[ln(ExchangeRatet)� ln(ExchangeRatet�1)]: The post-sample range is set

to start at Black Wednesday, consequently the post-sample consists of 1019 daily observations. We decided to

perform the PSP test on sample of the same size. Therefore the sample is started at the beginning of Septem-

ber 1988. Some preliminary descriptive statistics can be found in table 1. We observe that both skewness and

kurtosis are slightly higher in the post-sample than they are in the sample.

It is reported that exchange rates at a daily rate often do not show autocorrelation in the mean. A correlogram

of sample and post-sample, as given in figure 2a and figure 2b, shows that there is some correlation between

lags present in the sample and post-sample. However there is no systematic autocorrelation in sample and post-

sample except for lag 5 which might represent the day of the week effect. The author chooses not to model this

effect since his interests are in the volatility process and the effect is weak. This effect will have virtually no

impact on the estimation of the volatility process. Moreover simulated series of ARCH or Stochastic Volatility

models show the same kind of autocorrelation in the yt. It would worry us only in case zt;which are unobserved

in the stochastic volatility case, would show this kind of autocorrelation.

The class of auxiliary models is the SNP class of models with an EGARCH leading term. We specified a

model using BIC, AIC and HQC. Tables 2, 3, 4 and 5 provide the values of these model selection criteria for the

EGARCH(1,1)-H(kz,0), EGARCH(1,2)-H(kz,0), EGARCH(1,3)-H(kz,0) and EGARCH(1,1)-H(kz,1) auxil-

iary models, respectively. As can be seen from table 5, convergencewas hard for the model with kx > 0; because

the likelihood does not monotonically decrease with the number of parameters included. Other models where

estimated such as the EGARCH(2,1)-H(kz,0) and the EGARCH(1,4)-H(kz,0) but they showed no increase in

log likelihood that justifies their use by any standards. For the EGARCH(2,1)-H(kz,0) it was also observed that

it is hard to discern between the two AR parameters 1 and 2: For the British Pound (BP) sample we find the

EGARCH(1,3)-H(4,0) model to be a winner. The parameter estimates for the EGARCH(1; 3)-H(4; 0) model

can be found in table 6.

Three different SV models were estimated: SARMAV(1; 0), SARMAV(2; 0) and SARMAV(3; 0). Using

the EGARCH(1; 3)-H(4; 0) model we obtain the following estimates for the structural SARMAV(1; 0) model:

10This is a real goldmine of exchange rates. Many historical exchange rate series are freely available from

http://pacific.commerce.ubc.ca/
11September 16th 1992
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yt = �t�t

ln�2t = �:103
(�4:20)

+ :894
(34:9)

ln�2t�1+ :270
(17:4)

�t

Table 8 provides the Hansen J-test for overidentifying restrictions and its individual t-values. The J test has

a value of 13.4 with 8 degrees of freedom, we have a P -value of .100 which permits acceptance of this model

at a .05 level. Quasi-t ratios for the elements of the score indicate that the elements that belong to �3,�1; a20

and a40 are somewhat big. This indicates for the �3 and �1 that improvement of the structural model can be

made by including more lagged terms in the specification and by introducing some asymmetry in the model.

The parameters a20 and a40 indicate that there is something more to be found in the data. More study of the

SNP density may reveal this. Although none of these quasi-t values are significant at a .05 level.

For the SARMAV(2; 0) model we obtained the following estimates

yt = �t�t

ln�2t = �:160
(�9:32)

+ :268
(58:5)

ln�2t�1+ :570
(127)

ln�2t�2+ :415
(34:4)

�t

In table 8 we find about the same results for the Hansen J test as for the SARMAV(1; 0) model. The quasi-t

values are of the parameters of the Hermite polynomial are somewhat closer to zero, indicating that some of

the features of the data that where not captured in the SARMAV(1; 0) model, but were captured by the Hermite

terms in the auxiliary model, are somewhat more captured by the SARMAV(2; 0) model, but not completely.

The J test has a value of 11.6 with 7 degrees of freedom, we have a P value of .113. Since a P value is a

monotonic function of the actual evidence against H0; it is very dangerous to choose the best model of these

specifications on basis of the P -values (see Berger and Delampady (1987)). A Likelihood Ratio (LR) test for

nested hypotheses is easily deduced from the difference in J tests (see Van der Sluis (1997) for details). This

difference has a �2p0 distribution where p0 denotes the number of parameters in the restricted model. For a test

of SARMAV(1,0) against SARMAV(2,0) we obtain LR = 1:784; with 3 degrees of freedom we get a P -value

of :618: Which leads to acceptance of H0:

For the SARMAV(3; 0) we obtained the following estimates

yt = �t�t

ln�2t = �:094
(�5:84)

+ 1:20
(311)

ln�2t�1� 1:14
(�335)

ln�2t�2+ :851
(108)

ln�2t�3+ :267
(31:9)

�t

From table 8 we now see that the quasi t ratio corresponding to �3 is much closer to zero. The quasi t�ratios

corresponding to the parameters in the Hermite polynomial are also closer to their neutral value. This is reflected

in the value of the J test which is now 6.87 with 6 degrees of freedom we obtain a P -value of .333. A LR test of

SARMAV(1,0) against SARMAV(3,0) has a value of 6.54 which means with 3 degrees of freedom a P -value of

.088, which still means acceptance of H0 at a .05 level: Note that typically the LR test becomes more stringent

with an expansion of the alternative. For completeness, the LR test of SARMAV(2,0) against SARMAV(3,0)

has a value of 4.7565, with 4 degrees of freedom, this results in a P -value of .313.

We also used the auxiliary EGARCH(1; 3)-H(4; 0) model for the post-sample (1019 observations). This

model is not BIC-optimal for the post-sample. This in contrast with Van der Sluis (1996) where the specifica-

tion of the post-sample was also chosen BIC optimal. In Van der Sluis (1996) however test statistics for struc-

tural stability were considered for which an optimality property can be proven in case the post-sample model is
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modelled according to AIC, BIC or HQC. To the author’s knowledge for the PSP test no such property exists.

For interpretational reasons the same model was specified for the post-sample as for the sample. The moment

conditions that were used for estimation of the sample are now evaluated under the post-sample. However there

are no urgent reasons to take either a post-sample model that is optimal for some model selection criterion or to

take a post-sample model that equals the sample model. The only thing that changes is the null and alternative

hypothesis. In principle any model can be used, the only question that matters is whether there are interesting

new insights gained by a rejection of the test based on such moment conditions.

For the PSP test, results are provided in table 9. The PSP-test for the SARMAV(1; 0) (n1 = 1019; n2 =

1019) has a value of 48.0 which means that on basis of this PSP-test we reject the null hypothesis of structural

stability at any reasonable level. Inspection of the t�values of the individual components of the PSP test reveals

that the elements of the leading term are causing the rejection, not the elements of the SNP density. We may

conclude that the asymmetry which became more prominent in the post-sample than it was in the sample is one

of the causes of the rejection. The other cause will be a change of the long run volatility !=(1 � �), which is

captured by the parameters �0 and 1 in the EGARCH term. For the SARMAV(2; 0) and SARMAV(3; 0) the

conclusions are virtually the same.

8 Conclusion

In this paper the post-sample prediction tests for GMM based methods are applied to EMM based methods. One

advantage of the PSP test is that this may not only detect parameter instability but it may also serve as a guide in

the determination of the dimension of the auxiliary model in case more data becomes available. That is the PSP

test enables us to test whether the moment conditions used for estimation are still valid. Generally, the choice of

an in-some-sense-optimal auxiliary model for EMM procedures needs more study. This is not only a question

of dimensionality since for non-linear models the concept of dimensionality is blurry. At this moment the best

way may be to follow the BIC criterion. Another advantage of the PSP-test is its ability to expand the auxiliary

model with the expansion of the post-sample. A more practical advantage of this test is that it is computationally

attractive. We have an estimate of b�n1 and simulations from the last run fy� (b�n1)gNt:=1 at our disposal. Only an

estimate b�n2 of the parameters in the auxiliary model for post-sample, the score of the auxiliary model in b�n2
and fy� (b�n1)gNt:=1 and the matricesM1(b�n1 ; b�n1) andM2(b�n1 ; b�n2) must be determined. However this will

take only a fraction of the time needed to determine b�n2 : This is even more important for EMM based techniques

than it is for GMM based techniques.

The application is made to the British pound versus Canadian dollar exchange rates. The structural brakpoint

was set at September 16th 1992 where Britain was forced to leave the European Monetary Union, Exchange Rate

Mechanism. The null hypothesis of structural stability was clearly rejected. Recently Britain has returned to

the ERM. Therefore it may be interesting to investigate another structural breakpoint when more data becomes

available as time progresses. PSP tests may be also be applied to multiple breakpoints, in case the asymptotics

provide good approximations for finite sample sizes.

Besides the tests for structural stability this paper gives a successful application of the EMM methodology

to several stochastic volatility models.

A standard drawback of the PSP test is the fact that the breakpoint is assumed known. This yoke may be

shed following work of Ghysels et al. (1995). However with the current state of computing power, computing
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times will be very high, so it will take some years before this could be applied as a standard test procedure.
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A Appendix

For the proof to be correct, regularity conditions as those in Ghysels and Hall (1990a) must be met. The proof

hinges on the �-method, this may not be the most subtle method, for other methods see Gallant and White (1988).

Proof of theorem 1. For EMM the rationale goes along the same lines. Under stationarity we have p
n1mN (�0; b�n1)p
n2mN (�0; b�n2)

!
d! N(

 
0

�2

!
;

 
I1 0

0 I2

!
) as n1 !1; k =

n2

n1
<1 (2)

The �-method yields,

p
n2mN (b�n1 ; b�n2) d! pn2mN(�0; �2) +

p
n2M2(b�n1 ; b�n2)(b�n1(I0)� �0) + op(1)

so
p
n2mN (b�n1 ; b�n2) d! pn2mN (�0; �2) +

p
k
p
n1M2(b�n1 ; b�n2)(b�n1(I0)� �0) + op(1)

and because
p
n1(b�n1(I)� �0)

d! N(0; [M0

1(�0; �1)I�11 M1(�1; �1)]
�1)

we obtain using (2)

p
n2mN (b�n1 ; b�n2) d! N(�2; I2 + kM0

2(�0; �2)[M
0

1(�0; �1)I�11 M1(�0; �1)]
�1M2(�0; �2))

the noncentrality parameter�PSPEMMcan be found by applying theorem 1 in Newey (1985). Here�i = plimni!1
b�ni :

Proof of theorem 2.

As above with the subscripts n1 and n2 reversed.
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Figure 1: Sample and post-sample

sample post-sample

Mean -.005 .003

Std.Dv. .695 .664

Skewness .269 .316

Excess Kurtosis 1.81 2.49

Minimum -2.61 -2.83

Maximum 3.12 3.04

Normality Chiˆ2 85.7 137

Table 1: Some preliminary statistics of the sample and of the post-sample
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Figure 2a: Correlogram of the sample
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Figure 2a: Correlogram of the post-sample
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Kz Log Likl AIC HQC BIC

1 -1049.2 -1055.2 -1060.8 -1070.0

2 -1049.2 -1056.2 -1062.7 -1073.4

3 -1047.5 -1055.5 -1063.0 -1075.2

4 -1026.5 -1035.5 -1044.0 -1057.7

5 -1026.5 -1036.5 -1045.8 -1061.1

6 -1026.5 -1037.5 -1047.8 -1064.6

7 -1024.5 -1036.5 -1047.7 -1066.1

8 -1024.1 -1037.1 -1049.3 -1069.1

9 -1023.5 -1037.5 -1050.6 -1071.9

10 -1023.5 -1038.5 -1052.5 -1075.4

Table 2: Various model selection criteria for the EGARCH(1; 1)-H(Kx; 0) model for the sample

Kz Log Likl AIC HQC BIC

1 -1046.2 -1053.2 -1059.8 -1070.4

2 -1046.2 -1054.2 -1061.7 -1073.9

3 -1044.6 -1053.6 -1062.0 -1075.7

4 -1024.0 -1034.0 -1043.3 -1058.6

5 -1024.0 -1035.0 -1045.3 -1062.1

6 -1023.9 -1035.9 -1047.2 -1065.5

7 -1021.9 -1034.9 -1047.1 -1066.9

8 -1021.2 -1035.2 -1048.3 -1069.7

9 -1020.0 -1035.0 -1049.0 -1071.9

10 -1017.9 -1033.9 -1048.9 -1073.3

Table 3: Various model selection criteria for the EGARCH(1; 2)-H(Kz; 0) model for the sample

Kz Log Likl AIC HQC BIC

1 -1039.6 -1047.6 -1055.1 -1067.3

2 -1039.6 -1048.6 -1057.0 -1070.8

3 -1038.2 -1048.2 -1057.5 -1072.8

4 -1018.7 -1029.7 -1039.9 -1056.7

5 -1018.7 -1030.7 -1041.9 -1060.2

6 -1018.7 -1031.7 -1043.8 -1063.7

7 -1016.9 -1030.9 -1044.0 -1065.4

8 -1016.4 -1031.4 -1045.4 -1068.3

9 -1015.6 -1031.6 -1046.6 -1071.0

10 -1015.2 -1032.2 -1048.0 -1074.0

Table 4: Various model selection criteria for the EGARCH(1; 3)-H(Kz; 0) model for the sample
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Kz Log Likl AIC HQC BIC

1 -1045.0 -1053.0 -1060.4 -1072.7

2 -1044.8 -1054.8 -1064.2 -1079.4

3 -1042.7 -1054.7 -1065.9 -1084.2

4 -1021.9 -1035.9 -1049.0 -1070.4

5 -1028.5 -1044.5 -1059.5 -1083.9

6 -1024.6 -1042.6 -1059.4 -1086.9

7 -1019.7 -1039.7 -1058.4 -1089.0

8 -1030.7 -1052.7 -1073.3 -1106.9

9 -1025.2 -1049.2 -1071.6 -1108.3

10 -1018.4 -1044.4 -1068.7 -1108.4

Table 5: Various model selection criteria for the EGARCH(1; 1)-H(Kz; 1) model for the sample

parameters t-values

�0 -.088 -8.72

�1 -.550 -2.50

�2 .157 .635

�3 .827 2.95

1 .883 77.6

�1 .042 1.90

�2 .158 4.29

a10 -.015 -.949

a20 .006 -.414

a30 .018 1.09

a40 .089 5.64

Table 6: Sample estimates for the parameters of the EGARCH(1; 3)-H(4; 0) model.
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parameters t-values

�0 -.010 -6.82

�1 -.568 -7.70

�2 .409 5.35

�3 -.272 3.45

1 1.00 1012

�1 -.050 -2.98

�2 .102 6.85

a10 -.016 -.977

a20 .101 6.30

a30 .007 .457

a40 .126 8.15

Table 7: Post-sample estimates for the parameters of the EGARCH(1; 3)-H(4; 0) model.

SARMAV(1,0) SARMAV(2,0) SARMAV(3,0)

J-test J-test J-test

X 13.4 11.6 6.87

df 8 7 6

Pr(X > �2) .100 .113 .333

�0 -.846 .847 -.259

�1 .397 .435 -1.43

�2 -.754 -.950 -1.17

�3 -2.28 -2.22 -1.31

1 -.271 .258 -.333

�1 -1.79 -1.78 -1.95

�2 .030 -.755 -.220

a10 .951 .942 .914

a20 -1.71 -1.38 -.649

a30 -1.17 -1.14 -1.25

a40 -1.84 -1.37 -.433

Table 8: Individual t values of the elements of the J statistic. We have Pr(jt6j � 2:447) = 0:05;

Pr(jt7j � 2:365) = 0:05 and Pr(jt8j � 2:306) = 0:05.
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SARMAV(1,0) SARMAV(2,0) SARMAV(3,0)

PSP-test PSP-test PSP-test

X 48.0 46.3 42.0

df 11 11 11

Pr(X > �2) .000 .000 .000

�0 2.54 2.72 2.94

�1 1.90 2.10 2.25

�2 1.72 1.94 2.32

�3 1.72 1.96 2.41

1 -2.86 -3.01 -3.20

�1 3.40 3.58 3.59

�2 3.08 3.17 3.36

a10 1.02 .997 1.01

a20 1.85 1.66 1.47

a30 -.568 -.568 -.606

a40 -1.53 -.995 -.551

Table 9: Individual t values of the elements of the PSP statistic. We have Pr(jt11j � 2:201) = 0:05
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