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Abstract

In this paper we rederive some well known results for continuous time Markov

processes that live on a �nite state space. Martingale techniques are used

throughout the paper. Special attention is paid to the construction of a con-

tinuous time Markov process, when we start from a discrete time Markov chain.

The Markov property here holds with respect to �ltrations that need not be

minimal.

1 Introduction

In many classical treatments of the theory of Markov processes it is not always easy

to distinguish in lines of thought in a proof of a theorem hard analysis from heuristic

reasoning. The purpose of the present paper is to give rigorous proofs {of well known
results{ based on martingale methods and by paying more attention to the essentials
in the structure of the various possible underlying �ltrations. Thus we apply results

from the theory of multivariate point processes, which serves as a convenient vehicle,

and leads to an elegant formulation of issues about Markov chains, which ought to
be considered as an alternative to the classical approaches.

The rest of the paper is organised as follows. In section 2 we start with a continuous
time process, which is assumed to be Markov with respect to a certain �ltration.

By application of stochastic calculus one can straightforwardly derive properties of

the embedded chain (sampled at the jump times). In section 3{that constitutes the
bulk of the paper{we start with discrete time �ltrations and stochastic processes
and study the construction of a related continuous time process. We allow for a

generalization of similar work in Doob [6] in that we consider arbitrary �ltrations

(that make all the processes involved adapted, but need not be generated by these

processes) and that the sampled continuous time process is not necessarily the same

as the discrete time process from which it was constructed. We also discuss in detail
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the construction of (various) �ltrations in continuous time. This is a relative novelty

in the present approach. Usually one encounters in the literature (see e.g. Br�emaud

[3]) only properties, like a characterization of a pre-stopping time �- algebra, of the

�ltration generated by a point process, whereas here we put the emphasis on on

discrete time objects as building blocks for a continuous time theory.

An application to marked point processes is also presented, which slightly di�ers from

certain well known results. Finally we prove the Markov property in continuous time

by means of a measure transformation.

The paper is essentially self-contained and readers are assumed to be familiar with

some basic notions from the general theory of stochastic processes only.

2 Markov chains in continuous time

Let (
;F ; IF; P ) be a �ltered probability space. Assume that the �ltration IF satis�es

the usual conditions in the sense of Dellacherie & Meyer [5]. Let X be a cadlag IF-

Markov process with a �nite state space. Without loss of generality we can assume
that the state space is the standard orthogonal basis of the Euclidian space IRm. Call
this set Bm = fb1; : : : ; bmg. (Indeed, if � is a stochastic process with values in a set
fz1; : : : ; zmg, where all the zi are di�erent, then we can de�ne the process X with

values in Bm by Xt = bi i� �t = zi. Hence the probabilistic structure of � determines
that of X and vice versa). By X is IF-Markov it is meant that for all t � s and for
all b 2 Bm one has P (Xt = bjFs) = P (Xt = bj�(Xs)). Denote by �(t; s) the m�m

matrix with elements �ij(t; s) = P (Xt = bijXs = bj) and let (the limit is assumed
to exist) A(t) = limh#0

1
h
[�(t+ h; t)� I]. In this paper we assume that actually A(t)

is independent of t, so we write A instead. We call A the generating matrix of X.

Notice that the column sums of �(t; s) are all equal to one and that all the column

sums of A equal zero.
The advantage of working with the state space Bm can be illustrated with the follow-

ing observation (and also the formulation of all the results below): X is IF-Markov if
and only if E[XtjFs] = �(t; s)Xs for all t � s.

Necessity of this equality can be shown as follows. First we note that P (Xt = bijFs) =Pm
j=1 P (Xt = bijXs = bj)1fXs=bjg = bTi �(t; s)Xs. Hence E[XtjFs] =

Pm
i=1 biP (Xt =

bijFs) =
Pm

i=1 bib
T
i �(t; s)Xs = �(t; s)Xs, since

Pm
i=1 bib

T
i = I.

In order to show su�ciency we use that Xt = bi i� bTi Xt = 1. So we obtain

P (Xt = bijFs) = E[1fXt=bigjFs] = bTi E[XtjFs] = bTi �(t; s)Xs.

The main result of this section is theorem 2.3 below. Its content can be found in
many textbooks on Markov chains for the situation where the �ltration IF is gener-

ated by X itself (see e.g. C� inlar [4], section 8.3. We provide alternative proofs based
on stochastic calculus.

The following result (which can be generalized to the time varying case without the
di�erentiability assumption, see the appendix, proposition A.3) is fundamental for

this section and can be found in e.g. [17]. It gives a convenient equivalent repre-

sentation of an IF-Markov process with values in Bm as the solution of a stochastic
di�erential equation.
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Proposition 2.1 A stochastic process X : 
 � [0;1) ! Bm is IF-Markov with

generating matrix A i� X satis�es the stochastic di�erential equation

dXt = AXtdt+ dMt; X0 (2.1)

with M : 
 � [0;1)! IRn a n-dimensional IF-martingale.

The rest of this section is mainly devoted to proving some basic results of the process

that is obtained by sampling X at its jump times. The main tool used in our proofs

is the stochastic calculus rule.

We need some notation. De�ne N as the counting process that counts the number

of transitions of X. So Nt =
P

s�t 1fXs 6=Xs�g. Let � be the row vector whose i-th

element �i = �Aii. Then we have the following

Proposition 2.2 The intensity process of N is �X.

PROOF: Notice �rst that XT
t Xt � 1. Since X is a process of bounded variation, the

optional quadratic variation process [XT ;X] is such that [XT ;X]t =
P

s�t�X
T
s �Xs.

But �XT
s �Xs = 2:1fXs 6=Xs�g = �Ns, so [X

T ;X] = 2N .
Apply now the product rule for di�erentials and equation (2.1) to get

d(XT
t Xt) = XT

t�dXt + dXT
t Xt� + d[XT ;X]t

= XT
t AXtdt+XT

t�dMt +XT
t A

TXtdt+ dMT
t Xt� + 2dNt:

Use now that d(XT
t Xt) = 0;XT

t AXt = XT
t A

TXt = ��Xt and write dmt for the
martingale terms in this equation to get dNt = �Xtdt+ dmt. 2

Introduce the following notation. For k 2 f0; 1; 2; : : :g let Tk = infft > 0 : Nt = kg,
the time of the k-th transition of X and Sk+1 = Tk+1�Tk. Let furthermore � be the
diagonal matrix with elements �ii = �i = �Aii. Assume that the �i > 0, then � is
invertible, and the Tk are �nite a.s. We have the following well known result.

Theorem 2.3 (i) For all k � 0 we have that Sk+1 has, conditionally on FTk , an

exponential distribution with mean 1
�XTk

.

(ii) For all k � 0 it holds that E[XTk+1jFTk] = [ 1
�XTk

A+ I]XTk = [A��1 + I]XTk.

(iii) XTk+1 and STk+1 are conditionally independent given FTk .

PROOF: (i) One possibility is to use formula (2.12) on page 63 in Br�emaud [3], which

actually only refers to the case where IF is generated by X. We give an alternative

proof. Let gt = exp(iuNt + ivt). An application of the stochastic calculus rule gives

dgt = gt�((iu�t + iv)dt+ iudmt) + gt�(e
iu � 1 � iu)�Nt

So

exp(iuNTk+1 + ivTk+1)� exp(iuNTk + ivTk) =

Z
(Tk;Tk+1]

gt�((iu�t + iv)dt+ iudmt) +
Z
(Tk;Tk+1]

gt�(e
iu � 1� iu)dNt =
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Z
(Tk;Tk+1]

exp(iuNTk + ivt)((iu�XTk + iv)dt+ iudmt)+

exp(iuNTk + ivTk+1)(e
iu � 1� iu)

Since NTk = k, this formula reduces to

exp(iu(k + 1) + ivTk+1)� exp(iuk + ivTk) =

Z
(Tk;Tk+1]

exp(iuk + ivt)((iu�XTk + iv)dt+ iudmt)+

exp(iuk + ivTk+1)(e
iu � 1� iu)

Take now conditional expectations given FTk to get

E[exp(iu(k + 1) + ivTk+1)� exp(iuk + ivTk)jFTk] =

E[
Z
(Tk;Tk+1]

exp(iuk + ivt)(iu�XTk + iv)dtjFTk]+

E[exp(iuk + ivTk+1)jFTk](e
iu � 1 � iu)

Since Tk is FTk-measurable, multiplication by exp(�iuk � ivTk) yields

E[exp(iu+ ivSk+1)jFTk] =

1 + (iu�XTk + iv)E[
Z
(Tk;Tk+1]

exp(iv(t� Tk))jFTk ]+

E[exp(ivSk+1)jFTk ](e
iu � 1 � iu)

= 1 +
iu�XTk + iv

iv
E[exp(ivSk+1)� 1jFTk] + E[exp(ivSk+1)jFTk ](e

iu � 1 � iu)

Write now h(v) = E[exp(ivSk+1)jFTk]. Then we obtain that h(v) satis�es for all u

the equation

eiuh(v) = 1 +
u�XTk + v

v
[h(v)� 1] + h(v)(eiu � 1 � iu):

Solving this equation, we obtain that h(v) = (1� iv

�XTk

)�1. So h(v) is the characteristic

function of the exponential distribution with mean (�XTk)
�1. This proves the �rst

assertion of the theorem.

(ii) From equation (2.1) we get

XTk+1 �XTk =
Z
(Tk;Tk+1]

AXtdt+MTk+1 �MTk

AXTk(Tk+1 � Tk) +MTk+1 �MTk :
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Take now conditional expectations, use that XTk is FTk - measurable, that (see asser-

tion (i) of this theorem) E[Sk+1jFTk ] = (�XTk)
�1 and that on the events fXTk = big

it holds that 1
�XTk

AXTk = A��1XTk . Then the result follows.

(iii) We have to prove that for all uT = [u1; : : : ; un] 2 IR1�n and for all v 2 IR the fol-

lowing factorization holds: E[e
iuTXTk+1

+ivSk+1 jFTk] = E[e
iuTXTk+1 jFTk ]E[e

ivSk+1jFTk].

But since eiuXTk+1 = [eiu1; : : : ; eiun]XTk+1 it is su�cient to prove that the following

holds:

E[XTk+1e
ivSk+1 jFTk ] = E[XTk+1jFTk]E[e

ivSk+1 jFTk]: (2.2)

Use the product rule and equation (2.1) to get

d(Xte
ivt) = (AXtdt+ dMt)e

ivt +Xtive
ivtdt:

From this equation we get by integrating over (Tk; Tk+1] and by taking conditional

expectations

E[XTk+1e
ivTk+1jFTk ]�XTke

ivTk =

(A+ ivI)XTkE[
eivTk+1 � eivTk

iv
jFTk ]

Multiplication by e�ivTk yields

E[XTk+1e
ivSk+1 jFTk ]�XTk = (A+ ivI)XTkE[

eivSk+1 � 1

iv
jFTk] =

(A+ ivI)XTk

(1 � iv

�XTk

)�1 � 1

iv
= (A+ ivI)XTk

1

�XTk � iv
:

Here we used the expression for h(v) used in the proof of part (i). From this equation

we obtain E[XTk+1e
ivSk+1 jFTk] =

1
�XTk

�iv
(A + �XTkI)XTk . The factorization (2.2)

now follows from assertions (i) and (ii). 2

REMARK: The assertions of theorem 2.3 can be modi�ed to take into account the

situation where X has absorbing states, in which case some of the Aii = ��i are

zero. This leads to degenerate exponential distributions for the Sk+1. Incorporation

of such a situation leads to some subtle changes in the proofs, since it may happen

that the Tk become in�nite. For instance assertion (ii) of theorem 2.3 should be
replaced by E[XTk+11fTk+1<1gjFTk] = (A + �)�+XTk1fTk<1g, where �+ stands for

the Moore-Penrose inverse of �. We omit a detailed treatment.

Corollary 2.4 The embedded process x : 
 � f0; 1; 2; : : :g ! Bm, de�ned by xk =

XTk , is a Markov chain w.r.t. the discrete time �ltration fGngn�0, de�ned by Gn =

FTn, and has transition matrix ~A given by ~A = A��1 + I.
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PROOF: We show that the conditional probability P (xk+1 = bijGk) only depends

on the conditioning �-algebra Gk through xk: P (xk+1 = bijGk) = E[1fxk+1=bigjGk] =

E[bTi xk+1jGk] = bTi E[XTk+1jFTk ] = bi(A�
�1+ I)XTk = bi(A�

�1+ I)xk, where we used

(i) of theorem 2.3. From this relation it also follows that ~A is the transition matrix

of x. 2

REMARK 1: It follows from theorem 2.3 (i) that the process �m, de�ned by

�mk = xk � ~Axk�1 is a martingale di�erence sequence w.r.t. the �ltration fGngn�0.

The proof of corollary 2.4 shows that this property is su�cient for x with state space

Bm to be Markov. But this property is also su�cient. If x is Markov with tran-

sition matrix ~A, then E[�mk+1jGk] = E[xk+1jGk] � ~Axk = E[xk+1j�(xk)] � ~Axk =Pm
i=1E[bi1fxk=bigj�(xk)] �

~Axk =
Pm

i=1 biP (xk = bij�(xk)) � ~Axk =
Pm

i=1 bib
T
i
~Axk �

~Axk = 0, because
Pm

i=1 bib
T
i = I.

In this remark we actually proved the discrete time analog of proposition 2.1. Again

we refer to the appendix (proposition A.3) for a more general result.

REMARK 2: Observe that for an embedded Markov chain x necessarily the ~Aii = 0,
and hence P (xk+1 = xk) = 0 for all k.

REMARK 3: Trivially we have

8n; t : FTn \ fTn � t < Tn+1g � Ft \ fTn � t < Tn+1g (2.3)

Consider the following problem. Find the smallest �ltration, fF0
t g say, such that for

given fFTng the following inclusion holds

8n; t : FTn \ fTn � t < Tn+1g � F0
t \ fTn � t < Tn+1g: (2.4)

Then for instance also the following question arises: Is X adapted to fF0
t : t �

0g? This problem can be answered by the results of the next section from which it
also follows that for the resulting �ltration actually equality holds and that X is an

adapted process w.r.t. this �ltration.

In general the inclusion (2.3) is strict, which follows e.g. from a result in a recent
paper by Jacod and Skorohod [14] where it is shown that equality in (2.3) is equivalent

to the assertion that all (adapted) martingales are a.s. of �nite variation. For the
�ltration with which we started this section this does not necessarily hold.

3 From discrete to continuous time

3.1 Introduction

In the previous section we obtained in theorem 2.3 and in corollary 2.4 the distribution
of the embedded chain and the distribution of the jump times of the Markov chain.

The purpose of the present section is to follow the road in the opposite direction.
That is, starting from a Markov chain in discrete time (w.r.t. to some �ltration) and

a sequence of conditionally exponentially distributed random variables, we construct
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a Markov chain in continuous time. One of the questions we address is to what

�ltration the Markov property here refers.

A similar construction based on another approach can be found in Doob [6], section

VI.1 and Gihman & Skorohod [7] sections III.1 and III.3, with the restrictions that the

�ltrations are generated by the processes involved. Also an elementary treatment can

be found in chapter 8 of C� inlar [4]. Here we allow more general �ltrations. In Jacod

[12], section III.2b properties of �ltrations like the one that is introduced below are

described, for the case where these are generated by a multivariate point process. We

also mention the paper [1] by Boel, Varaiya and Wong for results on jump processes,

[9], [10], [15] for some results on �ltrations similar to the one that will be discussed

in the next subsection and Jacobsen [11] for some results on Markov chains. As a

consequence there is some duplication with the existing literature (although we treat

in some sense a more general situation), but we prefer to give full proofs to make this

paper self contained and also because the methods we use are di�erent.

The basic assumptions are the following. Let (
;F ; jG; P ) be a �ltered probability

space. jG is a �ltration in discrete time, jG = fGkgk2f0;1;2;:::g. Furthermore we assume
that we have a stochastic process x : 
�f0; 1; 2; : : :g ! Bm, which is assumed to be
jG-Markov with generating matrixA0, that does not necessarily have the property that
all its diagonal elements are zero. (see also at the end of this section). As observed
in remark 1 of the previous section, the Markov property in this case is equivalent

with saying that the process m, de�ned by �mk = xk �A0xk�1, is a jG-martingale.
Let � be a m � m diagonal matrix with all its entries on the diagonal �ii = �i
positive. De�ne � = [�1; : : : ; �m]. Assume that we also have a sequence of random
variables Sk, that are Gk-measurable, Sk+1 has, given Gk, an exponential distribution
with mean (�xk)

�1. This entails that the conditional density (on (0;1)) of Sk+1

given Gk takes the form

1T�exp(��s)xk (3.1)

(Here 1T is the vector [1; : : : ; 1] 2 IR1�m).
Furthermore xk+1 and Sk+1 are assumed to be conditionally independent given Gk.
(Cf. the assertions of theorem 2.3). Write Tk =

Pk
l=0 Sl.

The main purpose of this section is to show that the continuous time process X :


� [0;1)! Bm, de�ned by

Xt =
1X
k=0

xk1fTk�t<Tk+1g (3.2)

has the Markov property w.r.t. the �ltration IH, that will be de�ned in the next
subsection. The basic assumptions will be introduced step by step, at the stages

where they are needed, while all the assumptions made before remain valid.

3.2 The �ltration

Consider the �ltered probability space (
;F ; jG; P ), where jG is a �ltration in discrete
time, jG = fGkgk2f0;1;2;:::g. Denote by G1 the �-algebra

W
n�0 Gn. Let Tn : 
! [0;1]

for each n 2 f0; 1; 2; : : :g be a random variable. Assume moreover that for all n
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Tn+1 � Tn and that strict inequality holds if Tn < 1 and that the Tn are Gn-

measurable. Then a �ltration in continuous time is de�ned in

De�nition 3.1 Let for each t 2 [0;1) the set Ht be de�ned as follows: Ht = fF 2

F : 8k : 9Gk 2 Gk such that F \ fTk+1 > tg = Gk \ fTk+1 > tgg.

Then we have the following (like in Jacod [12], proposition (3.39))

Proposition 3.2 The collection IH = fHtgt2[0;1) is a right continuous �ltration on


.

PROOF: First we will show that each Ht is a �-algebra. Clearly, both ; and 
 belong

to Ht. Let A1; A2; : : : belong to Ht. Fix k, then there are sets Aik 2 Gk such that

Ai \ fTk+1 > tg = Aik \ fTk+1 > tg. But then
S
iAi \ fTk+1 > tg =

S
i(Ai \ fTk+1 >

tg) =
S
i(Aik \ fTk+1 > tg) =

S
iAik \ fTk+1 > tg, and

S
iAik 2 Gk.

The same way of reasoning gives that also countable intersections of elements of Ht

again belong to Ht.
Let now A 2 Ht and Ak 2 Gk such that A \ fTk+1 > tg = Ak \ fTk+1 > tg. Then
Ac \ fTk+1 > tg = fTk+1 > tg n (A\ fTk+1 > tg) = fTk+1 > tg n (Ak \ fTk+1 > tg) =

Ac
k \ fTk+1 > tg. Hence Ac 2 Ht, because A

c
k 2 Gk. So we have proved that Ht is a

�-algebra.
The proof that IH is an increasing family follows from the fact that for s < t it holds
that fTk+1 > tg \ fTk+1 > sg = fTk+1 > tg. Finally we have to show that IH is right
continuous. This follows from lemma L29 on page 306 in Br�emaud [3]. We give this

result in the appendix (lemma A.1).
Let H 2 Ht+. Then H 2 Ht+" for all " > 0. Hence for all k we have H \ fTk+1 >

t + "g 2 fG \ fTk+1 > t + "g : G 2 Gkg. Apply now lemma A.1 to obtain that
H \ fTk+1 > tg 2 fG \ fTk+1 > tg : G 2 Gkg, which means that H 2 Ht. 2

REMARK: Notice that in the proof of the previous proposition we have not used the

fact that the Tn are Gn- measurable.

Another characterization of the �ltration IH is given in the next

Proposition 3.3 Let a family fKt : t � 0g of subsets of 
 be de�ned by Kt = fF 2

F : 8k : 9Gk 2 Gk such that K \ fTk+1 > t � Tkg = Gk \ fTk+1 > t � Tkgg. Then

each Kt is a �-algebra. Moreover, Kt = Ht.

PROOF: The fact that the Kt are �-algebras can be proved in the same way as in

the proof of proposition 3.2. So we only need to prove that Kt = Ht for each t, from
which it also follows that the Kt are �-algebras, of course.

Let H 2 Ht. Then it follows immediately from the de�nition of Ht that H \fTk+1 >

t � Tkg = Gk \ fTk+1 > t � Tkg by taking intersections with fTk � tg. This shows

that Ht � Kt. In order to prove the converse, we use an induction argument. Let

K 2 Kt and let k = 0. Then K \ fT1 > tg = K \ fT0 � t < T1g = G0 \ fT0 � t <

T1g = G0 \ f� T1 > tg by de�nition of Kt. Suppose now that for a certain k � 1

we know that there is G0
k�1 2 Gk�1 such that K \ ft < Tkg = G0

k�1 \ ft < Tkg. By
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de�nition of Kt there also exists G
0
k 2 Gk such that K\fTk � t < Tk+1g = G0

k\fTk �

t < Tk+1g. But then

K \ fTk+1 > tg = K \ (fTk > tg [ fTk � t < Tk+1g) =

(K \ (fTk > tg) [ (K \ fTk � t < Tk+1g) =

(G0
k�1 \ fTk > tg) [ (G0

k \ fTk � t < Tk+1g) =

(G0
k�1 \ fTk > tg \ fTk+1 > tg) [ (G0

k \ fTk � t < Tk+1g) =

fTk+1 > tg \ ((G0
k�1 \ fTk > tg) [ (G0

k \ fTk � tg)) =

fTk+1 > tg \Gk;

with Gk = (G0
k�1 \ fTk > tg) [ (G0

k \ fTk � tg) 2 Gk. Hence K 2 Ht. 2

REMARK: One can also de�ne �ltrations byH0
t = Ht\G1 and K0

t = Kt\G1. Then it
follows that K0

t = H0
t and moreoverK0

t = fK 2 Kt : K \ft � T1g 2 G1\ft � T1gg.
This corresponds to the �ltration de�ned in Jacod [12] on page 84. Of course the Ht

and H0
t coincide if F = G1.

Proposition 3.4 The Tn are IH-stopping times.

PROOF: We have to show that for all n and for all t the set fTn � tg 2 Ht.

For k � n � 1 we have fTn � tg \ fTk+1 > tg = ; \ fTk+1 > tg, whereas for
k � n the set fTn � tg 2 Gn � Gk. Hence for all k there is Ak 2 Gk such that
fTn � tg \ fTk+1 > tg = Ak \ fTk+1 > tg. 2

Proposition 3.5 For all n one has HTn = Gn \ H1, where H1 = _t�0Ht. and

HTn+1� = HTn _ �(Tn+1).

PROOF: Let G 2 Gn\H1. In order to prove that G 2 HTn, one has to show that for
all t the set G\fTn � tg belongs to Ht. Consider thereto G\fTn � tg\fTk+1 > tg.

For k � n � 1 this set is empty. For k � n one has fTn � tg 2 Gn � Gk. Hence

G \ fTn � tg 2 Gk. It follows that G 2 HTn.
We proceed to prove the converse. Let H 2 HTn. First we notice that H \ fTn =
1g 2 HTn�, by T11 in [3], page 299. It is immediately clear from the de�nition of

HTn� that this �-algebra is a subset of Gn, since HTn� = �fH \ fTn > tg : H 2

Ht; t � 0g � �fG \ fTn > tg : G 2 Gn�1; t � 0g = Gn�1 _ �(Tn) � Gn, by Gn-

measurability of Tn.

So it is su�cient to prove that H \ fTn < 1g 2 Gn. First we observe that
this set also belongs to HTn. Hence for all t there is a set Gt in Gn such that

H \ fTn < 1g \ fTn � t < Tn+1g = Gt \ fTn+1 > tg. Denote by Z the optional
process de�ned by Zt = 1fTn�tg. Then Zt1fTn�t<Tn+1g = Y n

t 1fTn�t<Tn+1g, where the

process Y n is Gn- measurable and rightcontinuous (Take Y n
t = lim infh#0 1Gn

t+h
). Simi-

larly, we can consider the optional process ZH given by ZH
t = 1fTH

n �tg (Recall that for

an IH-stopping time T and a set H 2 HT the random variable TH := T:1H+1:1Hc is

9



an IH- stopping time too). And then there is a Gn-measurable process Y n;H such that

ZH
t 1fTn�t<Tn+1g = Y

n;H
t 1fTn�t<Tn+1g. But ZH

t = 1HZt. So, on fTn � t < Tn+1g we

have Yn;H = 1HY
n. Next 1fTn<1g = 1fTn<1gZTn = 1fTn<1g

P
k�0 Y

k
Tn
1fTk�Tn<Tk+1g =

1fTn<1gY
n
Tn
. Hence 1H1fTn<1g = 1fTn<1gZ

H
Tn

= 1fTn<1gY
n;H
Tn

, which is Gn- measur-

able. So we proved that H \ fTn <1g 2 Gn, which is what we needed.

Consider now HTn+1�. It is generated by the sets of the form Ht \ fTn+1 > tg, with

Ht 2 Ht. By de�nition of Ht such a set belongs to Gn\fTn+1 > tg\H1. Hence it fol-

lows that HTn+1� � HTn_�(T(n+1)). Since Tn+1 is HTn+1�-measurable and Gn\H1 =

HTn we conclude from the �rst part of the proof that actually equality holds here:

HTn+1� � Gn \ H1 _ �(Tn+1) = HTn _ �(Tn+1) � HTn+1� _ �(Tn+1) = HTn+1�. 2

REMARK: It is in general not true that HTn = Gn. Consider for instance the (some-

what degenerate) case where T0 = 0; Tn =1 for n � 1. Then it is easy to check that

Ht = G0 for all t and hence H1 = G0. It also follows that HTn = H1 = G0.

However, if all the Tn are �nite, then G1 � H1 (and consequently HTn = Gn). In-

deed, let G 2 Gn. Then G = [t�0Ht, with Ht = G\fTn � tg. It follows from the �rst
part of the proof of proposition 3.5 that Ht 2 Ht, hence G 2 H1 and consequently
Gn � H1 and G1 � H1.

The opposite inclusion H1 � G1 is (even in the case of �nite Tn) in general not true.
Consider as an example the deterministic Tn = n

n+1
. (So T1 = 1 < 1). Then it is

not di�cult to check that Ht = G[ t
1�t

] for t < 1, and Ht = F for t � 1. Consequently

H1 = F , which is in general bigger than G1. However, under the assumption that
T1 =1 it follows that H1 � G1, because Ht \ fTn > tg � G1 \ fTn > tg.

REMARK: We have seen above that in general HTn is a genuine subset of Gn. So

one can also construct a �ltration �IH by letting the HTn take the place of the Gn.
It trivially follows that �Ht � Ht, but also the opposite inclusion is true, because if
H 2 Ht, then by de�nition of Ht it holds that H \fTn+1 > tg 2 Gn \H1 = HTn and
so H \ fTn+1 > tg 2 HTn \ fTn+1 > tg. So �IH = IH.

Assume furthermore that there is a sequence of random variables xn, n 2 �IN which

take their values in some other measurable space, and that xn is Gn-measurable for

each n 2 IN , x1 is F -measurable. De�ne

Xt =
1X
n=0

xn1fTn�t<Tn+1g + x11ft�T1g (3.3)

Proposition 3.6 The process X de�ned by equation (3.3) is IH-adapted.

PROOF: Let B 2 Bm. We have to show that for all t the set fXt 2 Bg belongs to

Ht. Introduce the sets Ak =
Sk�1
n=0(fxn 2 Bg \ fTn � t < Tn+1g) and Bk = fxk 2

Bg \ fTk � tg. Notice that both these sets belong to Gk.

Consider now

fXt 2 Bg \ fTk+1 > tg =

1[
n=0

(fXt 2 Bg \ fTn � t < Tn+1g \ fTk+1 > tg)[

10



(fXt 2 Bg \ fT1 � tg \ fTk+1 > tg)

k[
n=0

(fxn 2 Bg \ fTn � t < Tn+1g \ fTk+1 > tg) =

(Ak \ fTk+1 > tg) [ (Bk \ fTk+1 > tg) =

(Ak [Bk) \ fTk+1 > tg:

Since Ak [ Bk 2 Gk, the proof is complete. 2

REMARK: Now we return to the question posed in the last remark of the previous

section. The answer is given by taking Gn = FTn and the minimal �ltration one looks

for is nothing else but the resulting IH, for which equality in (2.4) holds and to which

X is adapted.

3.3 Multivariate point processes

In this subsection we discuss an application of the obtained results to multivari-
ate point processes. Consider next to the Tn sequence a sequence of random vari-
ables Z�

n, taking values in some auxiliary measurable space (E; E). De�ne Zn =
Z�
n1fTn<1g, assuming that the product makes sense in E. De�ne then the Gn as

�(Z0; Z1; T1; : : : ; Zn; Tn). Let now x�n = (Tn; Z
�
n), xn = (Tn; Zn) and Xt is de�ned for

t 2 [0;1) by Xt =
P1

n=0 xn1fTn�t<Tn+1g =
P1

n=0 x
�
n1fTn�t<Tn+1g. Then X can be con-

sidered as a multivariate point process with the Zn-sequence as marks. Following the
usual convention all the events of X take place before T1. We claim the following:

Proposition 3.7 The �ltration IH, as de�ned in the previous subsection with the Gn
as above, is identical with IFX, the �ltration generated by X.

PROOF: Since X is IH-adapted, one trivially has FX
t � Ht. The Tn are the jump

times of X and hence stopping times for IFX . Consequently FX
Tn

� HTn. But

xn1fTn<1g = (Tn1fTn<1g; Zn) = XTn1fTn<1g 2 FX
Tn
. Hence we obtain the follow-

ing chain of inclusions: Gn � FX
Tn
� HTn = H1 \ Gn � Gn. It follows that F

X
Tn

= Gn.

Using this identity, one easily veri�es that the traces of Ht and F
X
t coincide on the

sets fTn � t < Tn+1g. Let now H 2 Ht. Then there exist sets Fnt 2 F
X
t such that

H \ ft < T1g =
S1
n=0(H \ fTn � t < Tn+1g) =

S1
n=0(Fnt \ fTn � t < Tn+1g) 2 F

X
t ,

by the fact that the Tn are IF
X -stopping times.

Furthermore we know that FX
T1

=
W1
n=0 F

X
Tn

=
W1
n=0 Gn = G1 � H1 � Ht. So

H 2 FX
T1
, from which it follows that H \ ft � T1g 2 FX

t . So we proved that
Ht � FX

t , and hence Ht = FX
t . 2

REMARK: Notice that there is a little di�erence with for instance T30 in Br�emaud

[3], page 307, where (in our notation) FX
Tn

= �fZ�
0 ; T1; Z

�
1 ; : : : ; Tn; Z

�
ng. We can-

not have this result here, since if for instance T1 = 1, then for all n � 1 one has

FX
Tn

= Gn = �fZ�
0g 6= �fZ�

0 ; T1; Z
�
1 ; : : : ; Tn; Z

�
ng. Of course the di�erence disappears

if all the Tn are �nite.
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Finally we observe that the constructions in this section allow for a generalization of

the notion of a multivariate or marked point process as a sequence of pairs of random

times and �-algebras f(Tn;Gn)g, where the Tn and the Gn satisfy the assumptions of

the previous subsection.

3.4 The Markov property

In addition to the assumptions made in the previous two subsections we impose

the following conditions on the random variables xn and Tn. Each xn assumes

its values in the set Bm (see the introduction) and the sequence fxng is Markov

w.r.t. the �ltration jG. Denote by A0 the matrix of transition probabilities of x, so

P (xn+1 = bijxn = bj) = A0
ij. Unlike Jacobsen [11] we do not assume that the A0

ii are

zero, which is a necessary property of an embedded Markov chain (see the previous

section).

De�ne Sn+1 = Tn+1 � Tn and assume that Sn+1 has, conditionally on Gn, an expo-
nential distribution with density on (0;1)

1T�exp(��s)xn;

where � is a diagonal matrix with entries �ii = �i and all �i � 0. Furthermore Sn+1

and xn+1 are assumed to be conditionally independent given Gn.

The main result of this subsection is that the process X is a continuous time Markov
process w.r.t. the �ltration IH. In order to show that we use the following two lemmas.
The �rst of these tells us how to compute certain conditional expectations given Ht

in terms of conditional expectations given Gn.

Lemma 3.8 Let Z be an integrable random variable. Then, with the convention
0
0
= 0,

E[Z1fTn�t<Tn+1gjHt] = 1fTn�t<Tn+1g
E[Z1fTn�t<Tn+1gjGn]

E[1fTn�t<Tn+1gjGn]
; (3.4)

with

E[1fTn�t<Tn+1gjGn] = 1fTn�tgx
T
n exp(��(t� Tn))1: (3.5)

PROOF: Introduce another measure Q, which is absolutely continuous with respect
to P by its Radon-Nikodym derivative

dQ

dP
= � =

1n(t)

P (fTn � t < Tn+1g)
;

where 1n(t) = 1fTn�t<Tn+1g. Denote (conditional) expectations under Q by EQ.

Then we have by the Kallianpur-Striebel formula (see equation (3.5') on page 171 of

12



Br�emaud [3] or lemma A.5 in the appendix) for the conditional expectation P and Q

a.s. on fTn � t < Tn+1g

EQ[Z1n(t)jGn] =
E[Z1n(t)�jGn]

E[�jGn]
=
E[Z1n(t)jGn]

E[1n(t)jGn]
: (3.6)

Let H 2 Ht. Then there is a G 2 Gn such that H \ fTn � t < Tn+1g = G \ fTn �

t < Tn+1g. Abbreviate 1fTn�t<Tn+1g by 1n(t) and consider the following string of

equalities:Z
H
E[Z1n(t)jHt]dP =

Z
H
Z1n(t)dP =

Z
H\fTn�t<Tn+1g

ZdP =

Z
G\fTn�t<Tn+1g

ZdP =

P (fTn � t < Tn+1g)
Z
G\fTn�t<Tn+1g

ZdQ =

P (fTn � t < Tn+1g)
Z
G
1n(t)ZdQ =

P (fTn � t < Tn+1g)
Z
G
EQ[1n(t)ZjGn]dQ =

P (fTn � t < Tn+1g)
Z
G\fTn�t<Tn+1g

EQ[1n(t)ZjGn]dQ =

Z
G\fTn�t<Tn+1g

EQ[1n(t)ZjGn]dP =

Z
H\fTn�t<Tn+1g

EQ[1n(t)ZjGn]dP =

Z
H
1n(t)EQ[1n(t)ZjGn]dP:

By construction ofHt the last integrand isHt-measurable. Equation (3.4) now follows

from equation (3.6). Finally equation (3.5) results from the assumption that Sn+1

has an exponential distribution given Gn. 2

Lemma 3.9 The following equation holds for n; k � 0, t � s � 0:

E[xn+k1n+k(t)1n(s)jHs] = pk(t� s)xn1n(s); (3.7)

where the matrix valued functions pk are recursively de�ned by

p0(t) = e��t (3.8)

pk(t) =
Z t

0
pk�1(u)A

0�e�(u�t)du; (3.9)

for k � 1.

13



PROOF: Consider �rst the case where k = 0. Use lemma 3.8 to write

E[xn1n(t)1n(s)jHs] = 1n(s)E[xn1n(t)1n(s)jGn]x
T
ne

�(s�Tn)1 =

1n(s)1fTn�sgE[1fTn+1>tgjGn]xnx
T
ne

�(s�Tn)1 =

1n(s)E[1fTn+1>tgjGn]e
�(s�Tn)xn =

1n(s)1
Te��(t�Tn)xne

�(s�Tn)xn =

e�(s�Tn)xnx
T
n e

��(t�Tn)1 =

1n(s)e
�(t�s)xn = 1n(s)p0(t� s)xn:

We repeatedly used the fact that xnx
T
n , e

�(s�Tn) etc. are diagonal matrices and that

hence their products commute.

Before proceeding to the case k � 1 we introduce some auxiliary functions. De�ne
recursively the functions Fk : IR! IRm�m for k � 0 by (I is the identity matrix)

F0(t) = 1ft�0gI

Fk(t) = 1ft�0g

Z t

0
e�uFk�1(t� u)A0�e��udu;

for k � 1. Notice that all the Fk are zero for negative arguments. Then the following
statement is true for all n; k; j � 0:

E[e��(t�Tn+k)Fj(t� Tn+k)xn+kjGn] = e��(t�Tn)Fj+k(t� Tn)xn: (3.10)

Equation (3.10) can be proved as follows. Assume that k � 1, otherwise there is
almost nothing to prove. Recall that Sk+1 given Gk has an exponential distribution
with density 1T�e��sxk, that xk+1 and Sk+1 are conditionally independent given Gk
and that diagonal matrices (as above) commute.

E[e��(t�Tn+k)Fj(t� Tn+k)xn+kjGn+k�1] =

E[e��(t�Tn+k�1�Sn+k )Fj(t� Tn+k�1 � Sn+k)xn+kjGn+k�1] =

e��(t�Tn+k�1)
Z t�Tn+k�1

0
e�s1T�e��sxn+k�1Fj(t� Tn+k�1 � s)dsA0xn+k�1 =

e��(t�Tn+k�1)
Z t�Tn+k�1

0
e�sFj(t� Tn+k�1 � s)dsA0�e��sxn+k�1ds =

e��(t�Tn+k�1)Fj+1(t� Tn+k�1)xn+k�1:

Iterate this procedure (and use repeated conditioning) another k � 1 times to obtain

equation (3.10).
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Consider now E[xn+k1n+k(t)1n(s)jHs] for k � 1. In view of lemma 3.8 we can write

this as the product

E[xn+k1n+k(t)1n(s)jGn]1n(s)x
T
ne

�(s�Tn)1: (3.11)

Consider the last conditional expectation. It equals

E[xn+k1n(s)E[1n+k(t)jGn+k]jGn] =

E[xn+k1n(s)1fTn+k�tgx
T
n+ke

��(t�Tn+k)1jGn] =

E[1n(s)1fTn+k�tge
��(t�Tn+k)xn+kjGn] =

E[1n(s)e
��(t�Tn+k)F0(t� Tn+k)xn+kjGn] =

E[1n(s)E[e
��(t�Tn+k)F0(t� Tn+k)xn+kjGn+1jGn] = (by equation (3.10))

E[1n(s)e
��(t�Tn+1)Fk�1(t� Tn+1)xn+1jGn] =

E[1n(s)e
��(t�Tn�Sn+1)Fk�1(t� Tn � Sn+1)xn+1jGn] =

E[1n(s)e
��(t�Tn�Sn+1)Fk�1(t� Tn � Sn+1)jGn]E[xn+1jGn] =

1fTn�sg

Z t�Tn

s�Tn

e��(t�Tn�u)Fk�1(t� Tn � u)1T�e��uxnduA
0xn =

1fTn�sg

Z t�Tn

s�Tn

e��(t�Tn�u)Fk�1(t� Tn � u)A0�e��uxndu =

1fTn�sg

Z t�s

0
e��(t�s�v)Fk�1(t� s� v)A0�e��vdve��(s�Tn)xn =

1fTn�sge
��(t�s)Fk(t� s)e��(s�Tn)xn:

Use this result together with equation (3.5) to obtain that equation (3.11) becomes

1n(s)e
��(t�s)Fk(t� s)e��(s�Tn)xnx

T
n e

�(s�Tn)1 =

1n(s)e
��(t�s)Fk(t� s)e��(s�Tn)xn:

De�ne then for k � 0 the functions pk by pk(t) = e��tFk(t). Then one obtains from
the de�nition of the Fk that pk(t) =

pk(t) = e��t
Z t

0
e�uFk�1(t� u)A0�e��udu =

Z t

0
e��(t�u)Fk�1(t� u)A0�e��udu =

Z t

0
pk�1(t� u)A0�e��udu =
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Z t

0
pk�1(s)A

0�e��(t�s)ds;

which proves the lemma for k � 1.

REMARK: Actually we proved by other methods in a slightly more general setting

equation (1.14) in section VI.1 of [6]. The di�erence in approach is that we started

from discrete time processes, whereas in [6] use is made of the fact that X is Markov

process in continuous time, which we still have to prove. This is the content of the

next

Theorem 3.10 For t � s � 0 it holds that

E[XtjHs] = eA(t�s)Xs; (3.12)

with A = (A0 � I)�. So X is a Markov process with respect to the �ltration IH with

transition intensities given by A.

PROOF: De�ne P (t) =
P1

0 pk(t). Then P (0) = I, and from lemma 3.9 it follows

that P satis�es the linear di�erential equation _P = PA. So P (t) = exp(At). (This
equation is actually equivalent to equation (4) on page 203 in [7]).
Consider now

E[XtjHs] =
1X
j=0

E[xj1j(t)jHs] =
1X
j=0

1X
n=0

E[xj1j(t)1n(s)jHs] =

1X
n=0

1X
j=n

E[xj1j(t)1n(s)jHs];

because 1j(t)1n(s) = 0 for j < n if s < t. Use lemma 3.9 to write the last expression
as

1X
n=0

1X
k=0

pk(t� s)xn1n(s) =

P (t� s)Xs = eA(t�s)Xs;

from the �rst part of the proof. This establishes the theorem. 2

Notice that the Markov process X constructed here has jump times that in general

di�er from the Tk, since it is not explicitly assumed that the diagonal elements of A0

are zero. Denote by ~Tk the jump times of X. Then of course for almost all ! the
sequence f ~Tk(!)g is a subsequence of fTk(!)g and ~Tk(!) = infft > ~Tk�1 : xt 6= x ~Tk�1

g.

In order to avoid uninteresting complications, we assume that x has no absorbing
states, so all the A0

ii 6= 1. If we denote in this case the embedded Markov chain by

~x, then it follows from the results of the previous section, that ~x has the transition

matrix ~A and the interarrival times ~Sk+1 = ~Tk+1 � ~Tk are exponentially distributed
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given H ~Tk
with mean 1T ~��1~x ~Tk

, where the matrix ~A has as its entries zeros on the

diagonal and outside it

~Aij =
A0
ij

1 �A0
jj

;

and the diagonal matrix ~� has entries ~�ii = �i(1 � A0
ii). (Notice that ~� = � and

~A = A0 if all the A0
ii are zero).

By letting the H ~Tn
play the role of the Gn, one can together with the ~Tn sequence

instead of the Tn, construct a �ltration ~IH. The following statement is true: 8t � 0 :
~Ht � Ht.

This can be proved as follows. Let H 2 ~Ht. Then H \ f ~T1 � tg 2 Ht, because
~T1 � T1. Furthermore, for all n there is Hn 2 H ~Tn

such that H \ f ~Tn � t <
~Tn+1g = Hn \ f ~Tn � t < ~Tn+1g which belongs to Ht, because of the fact that the ~Tn
are IH-stopping times and the de�nition of H ~Tn

. By taking the union over all n we

obtain that H \ f ~T1 > tg 2 Ht. So we conclude that H 2 Ht.
Since we can alternatively write Xt =

P1
n=0 ~xn1f ~Tn�t< ~Tn+1g

, it follows that X is also
~IH-Markov. This �ltration ~IH enjoys some minimality properties, but is in general
still bigger than the �ltration generated by X itself.

References

[1] R. Boel, P. Varaiya, E. Wong, Martingales on Jump Processes. I: Representation
Results, SIAM J. Control vol. 13, no. 5, pp 999-1021.

[2] R. Boel, P. Varaiya, E. Wong, Martingales on Jump Processes. II: Applications,
SIAM J. Control vol. 13, no. 5, pp 1022-1061.

[3] P. Br�emaud, Point processes and queues, Springer.

[4] E. C� inlar, Introduction to stochastic processes, Prentice Hall.

[5] C. Dellacherie, P.A. Meyer, Probabilit�es et Potentiel, Hermann.

[6] J.L. Doob, Stochastic Processes, Wiley.

[7] I.I. Gihman, A.V. Skorohod, The Theory of Stochastic Processes II, Springer.

[8] R.D. Gill, S. Johansen, A survey of product-integration with a view toward ap-

plication in survival analysis, Ann. Stat., Vol. 18, No. 4, pp 1501-1555.

[9] S.W. He, J.G. Wang, Some results on jump processes, S�em. Prob. XVIII, Springer
LNM 1059, pp. 256-267.

[10] M. Itmi, Processus ponctuels marqu�es stochastiques, S�em. Prob. XV, LNM 850,
pp. 618-626.

17



[11] M. Jacobsen, A characterization of minimal Markov jump processes, Z.

Wahrscheinlichkeitstheorie ver. Geb. 23, pp 32-46.

[12] J. Jacod, Calcul Stochastique et Probl�emes de Martingales, Springer LNM 714.

[13] J. Jacod, A.N. Shiryaev, Limit Theorems for Stochastic Processes, Springer.

[14] J. Jacod, A.V. Skorohod, Jumping �ltrations and martingales with �nite varia-

tion, Pr�epublication 164 du laboratoire de probabilit�es de l'universit�e Paris VI.

[15] D. L�epingle, P.A. Meyer, M. Yor, Extr�emalit�e et remplissage de tribus pour cer-

taines martingales purement discontinus, S�em. Prob. XV, Springer LNM 850,

pp. 604-617.

[16] R.S. Liptser, A.N. Shiryaev, Theory of Martingales, Kluwer.

[17] P.J.C. Spreij (1990), Self-exciting counting process systems with �nite state space,

Stoch. Proc. Appl. 34, pp. 275-295.

A Appendix

If F is a �-algebra on a set 
 and A an arbitrary subset of 
, then we denote by
F \A the induced trace �-algebra on A. So F \A is the collection fF \A : F 2 Fg.

Lemma A.1 Let F and G be two �-algebras on a set 
. Let Ai � 
 for each i 2 IN

such that Ai � Ai+1 and
S1
i=0Ai = 
. If for all i 2 IN the inclusion F \Ai � G \Ai

holds, then also F � G.

For a proof see Br�emaud [3], lemma L29. Notice that no measurability properties
of the Ai are required. Essential in this lemma is however the fact that the Ai

are nested. Without this property the assertion of the lemma is in general false

as is shown by the next example. Take 
 = f1; 2; 3; 4; 5; 6g, F1 = f1; 2; 4g; F2 =

f3; 5; 6g; G1 = f1; 4; 5g; G2 = f2; 3; 6g, F = f;; F1; F2;
g and G = f;; G1; G2;
g.
De�ne A1 = f1; 4g, A2 = f2; 5g and A3 = f3; 6g. Then for i = 1; 2; 3 the equality

F \ Ai = G \ Ai holds, which is easy to check. But clearly there is no inclusion

relation between F and G.

The next proposition below generalizes proposition 2.1 . So let (
;F ; IF; P ) be a
�ltered probability space and X : 
�[0;1)! Bm be an IF-adapted cadlag stochastic

process. Denote by �(t; s) the matrix with entries �ij(t; s) = P (Xt = bijXs = bj).

The following holds true.

Lemma A.2 If X is IF-Markov, then there is a function of bounded variation Q with

values in IRm�m such that �(t; s) = E(Q(s + :))t�s for all t � s, where E means the

Dol�eans exponent.
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PROOF: This follows from Gill & Johansen [8]. Using their theorem 15, we have

Q(t) =
R
(0;t] d(� � I), and �(t; s) =

Q
(s;t](I + dQ), where the

Q
here stands for the

product-integral de�ned as a limit of matrix products, in which the ordering of the

product is the opposite of the one in [8]. As a consequence their formula (40) now

takes the form

�(t; s) = I +
Z
(s;t]

dQ(u)�(u�; s) (A.1)

from which the assertion follows. 2

REMARK: The form of the function Q follows from results on product-integration.

However, in two extreme cases it is easy to de�ne Q without the theory of product-

integration. Consider �rst the case in which �(:; 0) is di�erentiable. Then �(t; 0) is

invertible and Q(t) is simply
R t
0
_�(u; 0)�(u; 0)�1du.

In the other case we assume that X is a Markov chain in discrete time on the integers

with �(t+ 1; t) = A(t). Then Q(t) =
Pt�1

k=0(A(k)� I).

Proposition A.3 If X is IF-Markov, then there is a bounded variation function Q

such that M de�ned by

Mt = Xt �X0 �
Z
(0;t]

dQ(s)Xs� (A.2)

is an IF-martingale.

Conversely, if there is a martingale M and a bounded variation function Q such that

X is a solution of equation (A.2), then X is IF-Markov with transition probabilities

as in lemma A.2.

PROOF: Using the fact that E[XtjFs] = �(t; s)Xs, the de�nition of M and lemma
A.2 we compute the conditional expectation

E[MtjFs] = E[XtjFs]�X0 �

Z
(0;s]

dQ(u)Xu� � E[
Z
(s;t]

dQ(u)Xu�jFs]

= �(t; s)Xs +Ms �Xs �

Z
(s;t]

dQ(u)�(u�; s)Xs

= Ms + [�(t; s)� I �
Z
(s;t]

dQ(u)�(u�; s)]Xs

and the result follows from equation (A.1).
For the proof of the converse statement we compute

E[XtjFs] = X0 +
Z
(0;s]

dQ(u)Xu� + E[
Z
(s;t]

dQ(u)Xu�jFs] +Ms

= Xs +
Z
(s;t]

dQ(u)E[Xu�jFs]

So, E[XtjFs] satis�es a Volterra in equation t which has a unique solution given by

E[XtjFs] = �(t; s)Xs in view of the fact that �(t; s) satis�es equation (A.1). 2

A closer inspection of the second part of this proof yields that if the process X is

IF-Markov, it also satis�es the Strong Markov property:
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Proposition A.4 Let X be IF-Markov and T an a.s. �nite IF-stopping time. Then

E[XT+tjFT ] = �(T + t; T )XT for all t � 0.

PROOF: Since we know that X satis�es equation (A.2) we �nd by application of

Fubini's theorem for conditional expectations that E[XT+tjFT ] =

XT + E[
R
(T;T+t] dQ(u)Xu�jFT ] = XT + E[

R
dQ(u)1fT<u�T+tgXu�jFT ] =

XT +
R
dQ(u)E[1fT<u�T+tgXu�jFT ] = XT +

R
(T;T+t]E[Xu�jFT ]. So we obtain again

a Volterra equation, the solution of which is the desired expression. 2

For convenience we here state what is also known under the name Kallianpur-Striebel

formula.

Lemma A.5 Let (
;F ; P ) be a probability space. Let Q be another probability mea-

sure which is assumed to be absolutely continuous w.r.t. P . Let � be a version of the

Radon-Nikodym derivative dQ

dP
. Let Z be a random variable that is integrable w.r.t. Q

and let G be a sub �-algebra of F . Then Q-a.s.

EQ[ZjG] =
EP [Z�jG]

EP [�jG]

PROOF: Let G 2 G and use the de�nition of conditional expectation and Radon-
Nikodym derivative to verify the following string of equalities.R
GEP [Z�jG]dP =

R
G Z�dP =

R
G ZdQ =

R
G EQ[ZjG]dQ =

R
G EQ[ZjG]�dP =R

GEP [EQ[ZjG]�jG]dP =
R
G EQ[ZjG]EP [�jG]dP .

Since this holds for all G 2 G, we obtain EP [Z�jG] = EQ[ZjG]EP [�jG], P -a.s. The
assertion follows by noting that Q(EP [�jG] = 0) = 0. 2
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