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The Stochastic Volatility in Mean model:

Empirical evidence from international stock markets

Siem Jan Koopman and Eugenie Hol Uspensky

Department of Econometrics, Free University Amsterdam

Department of Accounting and Finance, University of Birmingham

November 11, 1999

Abstract

In this paper we present an exact maximum likelihood treatment for the estimation of a

Stochastic Volatility in Mean (SVM) model based on Monte Carlo simulation methods. The SVM

model incorporates the unobserved volatility as an explanatory variable in the mean equation. The

same extension is developed elsewhere for Autoregressive Conditional Heteroskedastic (ARCH)

models, known as the ARCH in Mean (ARCH-M) model. The estimation of ARCH models is rel-

atively easy compared with that of the Stochastic Volatility (SV) model. However, e�cient Monte

Carlo simulation methods for SV models have been developed to overcome some of these problems.

The details of modi�cations required for estimating the volatility-in-mean e�ect are presented in

this paper together with a Monte Carlo study to investigate the small-sample properties of the

SVM estimators. Taking these developments of estimation methods into account, we regard SV

and SVM models as practical alternatives to their ARCH counterparts and therefore it is of interest

to study and compare the two classes of volatility models. We present an empirical study about the

intertemporal relationship between stock index returns and their volatility for the United Kingdom,

United States and Japan. This phenomenon has been discussed in the �nancial literature but has

proved hard to �nd empirically; we �nd evidence of a negative but weak relationship.

KEYWORDS: Forecasting, GARCH, Simulated maximum likelihood, Stochastic volatility, Stock

indices.

1 Introduction

It is generally acknowledged that the volatility of many �nancial return series is not constant over

time and that these series exhibit prolonged periods of high and low volatility, often referred to as

volatility clustering. Over the past two decades two prominent classes of models have been developed

which capture this time-varying autocorrelated volatility process: the Generalised Autoregressive

Conditional Heteroscedasticity (GARCH) and the Stochastic Volatility (SV) model. GARCH models

de�ne the time-varying variance as a deterministic function of past squared innovations and lagged

conditional variances whereas the variance in the SV model is modelled as an unobserved component

that follows some stochastic process1. The most popular version of the SV model de�nes volatility

as a logarithmic �rst order autoregressive process, which is a discrete-time approximation of the

continuous-time Ornstein-Uhlenbeck di�usion process used in the option pricing literature2.

1For surveys on the extensive GARCH literature we refer to Bollerslev, Chou and Kroner (1992), Bera and Higgins

(1993), Bollerslev, Engle and Nelson (1994) and Diebold and Lopez (1995). SV models are reviewed in, for example,

Taylor (1994), Ghysels, Harvey and Renault (1996) and Shephard (1996).
2See Hull and White (1987), Scott (1987) and Wiggins (1987) and Chesney and Scott (1989).
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Although SV models are seen as a competitive alternative to GARCH models their empirical

application has been limited. This can mainly be attributed to the di�culties that arise as a result

of the intractability of the likelihood function which prohibits its direct evaluation. However, in

recent years considerable advances have been made in this area. The estimation techniques that

have been proposed for SV models can be divided into two groups: those that seek to construct the

full likelihood function and those that approximate it or avoid the issue altogether. The methods

originally suggested by Taylor (1986) and Harvey, Ruiz and Shephard (1994) belong to the latter

category. Recently attention has moved towards the development of techniques that attempt to

evaluate the full likelihood function3. For recent reviews on these full likelihood methods we refer to

Sandmann and Koopman (1998) and Fridman and Harris (1998). The estimation method we adopt

here is based on the Monte Carlo likelihood approach developed by Shephard and Pitt (1997) and

Durbin and Koopman (1997) where the likelihood function is evaluated using importance sampling.

These new techniques enable us to include explanatory variables in the mean equation and estimate

their coe�cients simultaneously with the parameters of the volatility process4. One of the explanatory

variables in our model is the variance process itself, hence its name: Stochastic Volatility in Mean

(SVM). The estimation of such an intricate model is not straightforward since volatility now appears

in both the mean and the variance equation. This requires modi�cation of the simulation maximum

likelihood estimation method, details of which are given in section 3.

The SV models we present are a practical alternative to the GARCH type models that have been

used so widely in empirical �nancial research and which have relied on simultaneous modeling of

the �rst and second moment. For certain �nancial time series such as stock index returns, which

have been shown to display high positive �rst order autocorrelations, this constitutes an improvement

in terms of e�ciency; see Campbell, Lo and MacKinlay (Chapter 2, 1997). The volatility of daily

stock index returns has been estimated with SV models but usually results have relied on extensive

pre-modelling of these series, thus avoiding the problem of simultaneous estimation of the mean and

variance5. The fact that we are able to estimate an SV model that includes volatility as one of the

determinants of the mean makes our model suitable for empirical applications in which returns are

partially dependent on volatility, such as studies that investigate the relationship between the mean

and variance of stock returns. The SVM model can therefore be viewed as the SV counterpart of the

ARCH-M model of Engle, Lilien and Robins (1987). In section 4 we investigate the intertemporal

relationship between daily stock index returns and their volatility for three international stock indices

and compare the resulting parameter estimates with those obtained for GARCH-M models. The stock

indices we examine are the Financial Times All Share (UK), the Standards & Poor Composite (US)

and the Topix Index (Japan).

The remainder of this paper is organised as follows. The speci�cation of time-varying variance

models in general and the SVM model in particular are discussed in section 2. In section 3 we develop

the simulated maximum likelihood estimation method for the SVM model. Further, some Monte

Carlo evidence of small sample consistency of the estimated parameters is given. Section 4 describes

the stock index data and reports on parameter estimation results. In the �nal section we present a

summary and some conclusions.

3See, for example, Jacquier, Polson and Rossi (1994), Kim, Shephard and Chib (1998), Sandmann and Koopman

(1998) and Fridman and Harris (1998).
4Also see Fridman and Harris (1998) and Chib, Nadari and Shephard (1998).
5The same seasonally adjusted S&P Composite stock index series (Gallant, Rossi and Tauchen, 1992) has been used

in a number of studies, see for example: Jacquier et. al. (1994), Danielsson (1994), Sandmann and Koopman (1998),

Fridman and Harris (1998) and Chib et.al. (1998).
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2 Modelling Volatility

2.1 Basic model

The aim is to simultaneously model the mean and variance of a series of returns on an asset denoted

by yt. Both the SV and GARCH model are de�ned by their �rst and second moment which can be

referred to as the mean and variance equation. The most general form of the mean equation for both

models is then de�ned as

yt = �t + �t"t; "t � NID(0; 1); (1)

�t = a+
kX

i=1

bixi;t; (2)

where �t denotes the conditional mean which depends on a constant a and regression coe�cients

b1; : : : ; bk. The explanatory variables xi;t may also contain lagged exogeneous and dependent variables.

The disturbance term "t is independently and identically distributed with zero mean and unit variance.

Usually, the assumption of a normal distribution for "t is added. The positive volatility process is

denoted by �t which remains to be speci�ed in section 2.2 for GARCH and section 2.3 for SV models.

The mean adjusted series is therefore de�ned as white noise multiplied by the volatility process.

2.2 GARCH model

The general form of the GARCH(p; q) model is

�
2
t = ! +

pX
i=1

�i(yt�i � �t�i)
2 +

qX
i=1

�i�
2
t�i;

= ! +

pX
i=1

�i(�t�i"t�i)
2 +

qX
i=1

�i�
2
t�i; (3)

where the parameters to be estimated are !, �1; : : : ; �p and �1; : : : �q. An unanticipated shock to the

return process at time t is therefore not incorporated into the volatility process until time t+ 1.

The most commonly used model in applied �nancial studies is the GARCH(1,1) model which is

given by

�
2
t = ! + �(yt�1 � �t�1)

2 + ��
2
t�1; (4)

with parameter values restricted to ! > 0, � � 0 and � � 0. Provided that the sum of � and � is less

than one, the unconditional expectation of the conditional variance is constant and �nite and given

by
!

1� �� �
:

In empirical �nancial research with high frequency data, � + � is often estimated as being close to

unity, which implies a high degree of volatility persistence. Apart from volatility clustering GARCH

models also capture part of the excess kurtosis observed in �nancial time series. Under the assumption

of normality, existence of the fourth order moment for the GARCH(1,1) model is ensured if �2+2��+

3�2 < 1. Subject to this restriction it can be shown that the fourth moment will exhibit excess kurtosis

�y =
�" E(�

4
t )

E(�2t )
2

= 3 +
6�2

1� �2 � 2�� � 3�2
;

and therefore �y > �"; see Bollerslev (1986). For a further discussion on the features of GARCH

models we refer to a number of surveys such as the ones given in note 1.
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2.3 SV model

In the case of the SV model the variance equation is speci�ed in logarithmic form, that is

�t = �
� exp(0:5ht) (5)

with positive scaling factor ��. It follows that ht = ln(�2t =�
�2) where the stochastic process for ht is

ht = �ht�1 + ���t; �t � NID(0; 1); (6)

with persistence parameter � which is restricted to a positive value less than one to ensure station-

arity. The disturbances "t and �t are mutually uncorrelated, contemporaneously and at all lags. The

unconditional variance implied by the SV model is given by

�
�2 exp

 
0:5

�
2
�

1 � �2

!
;

and it can be shown that this model also captures part of the excess kurtosis as

�y =
�" E(�

4
t )

E(�2t )
2

= 3 exp

 
�
2
�

1� �2

!
;

which also implies that �y > �". Alternative speci�cations for the SV model can be deduced from

ln�2t = ln��2 + ht

= ln��2 + �(ln�2t�1 � ln��2) + ���t

= (1� �) ln��2 + � ln�2t�1 + ���t:

The main distinction between GARCH and SV models is that the latter has seperate disturbance

terms in the mean and variance equation, "t and �t, respectively, which precludes direct observation of

the variance process �2t . GARCH models are deterministic in the sense that only the mean equation

has a disturbance term and that its variance is modelled conditionally on It�1, that is the information

upto and including time t� 1. Therefore, the variance can be observed at time t. For the SV model,

the deviation of yt from the mean is captured by a function of the two disturbance terms whereas

in the GARCH model this deviation is accounted for by a single disturbance term. For the GARCH

model this point is evident but to clearify this for the SV model, we rewrite the model as follows:

yt = �t + �t"t

= �t + �
� exp(0:5ht)"t

= �t + �
� exp(0:5�ht�1) exp(0:5�t)"t:

The overall innovation term of the SV model is the error term exp(0:5�t)"t with a zero mean but with

a non-Gaussian density.

2.4 Volatility in mean

The SV model with volatility included in the mean is given by (1) and (5) where the mean equation

(2) is rewritten as

�t = a+
kX

i=1

bixi;t + d�
�2 exp(ht); (7)

with d as the regression coe�cient measuring the volatility-in-mean e�ect. In particular, we will use

the mean speci�cation

�t = a+ byt�1 + d�
�2 exp(ht): (8)
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This SVM model has six parameters which are to be estimated simultaneously using simulation meth-

ods which will be discussed in the next section. Inclusion of the variance as one of the determinants

of the mean facilitates the examination of the relationship between returns and volatility. It enables

us to perform studies in the vein of French, Schwert and Stambaugh (1987) but in the context of SV

models. The relative ease with which they were able to conduct their research, i.e. without prior

manipulation of the original data series, is now also feasible for SV models.

The equivalent in mean speci�cation for the GARCH model is

�t = a+ byt�1 + d�
2
t : (9)

3 Estimation of the SVM model

In this section we show how the parameters of the SVM model are estimated by simulated maximum

likelihood. Further, we show how to compute the conditional mean and variance of the volatility

process ht.

3.1 Model

To simplify the exposition we initially consider the model

yt = d�
�2 exp(ht) + �

� exp(0:5ht)"t;

ht = �ht�1 + ���t;

where yt denotes the underlying series of interest, in our case these are stock index returns. The

details for the estimation of the full model will be given in section 3.7. The disturbances "t and �t
are standard normally distributed and mutually and serially uncorrelated. The latent variable ht is

modelled as a stationary Gaussian autoregressive process of order 1 and with 0 < � < 1. The unknown

parameters are collected in the vector

 = (�; �� ; �
�2
; d)0:

The nature of the model is Gaussian but we deal with a nonlinear model since the variance of the

overall disturbance term in yt is given by ��2 exp(ht) which is stochastic. The Gaussian density for "t
can be replaced by other continuous distributions.

Other formulations of the SVM model are possible but we have chosen this one since it is closely

associated with the ARCH in Mean models; see section 2. From a technical point, the conditional

density function p(yj�;  ) of the SVM model with

� = (h1; : : : ; hT )
0

;

is log-concave in ht. This property is required for the techniques used in the following sections.

3.2 Likelihood evaluation using importance sampling

The construction of the likelihood for the SVM model is complicated because the latent variable ht
appears in both the mean and the variance of the SVM model. We adopt the Monte Carlo likelihood

approach developed by Shephard and Pitt (1997) and Durbin and Koopman (1997). This simulation

method of computing the loglikelihood function can be derived as follows.

De�ne the likelihood as

L( ) = p(yj ) =

Z
p(y; �j )d� =

Z
p(yj�;  )p(�j )d�: (10)
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An e�cient way of evaluating this likelihood is by using importance sampling; see Ripley (1987,

chapter 5). We require a simulation device to sample from some importance density ~p(�jy;  ) which

must be as close as possible to the true densitity p(�jy;  ). An obvious choice for the importance

density is the conditional Gaussian density since in this case it is relatively straightforward to sample

from ~p(�jy;  ) = g(�jy;  ). In the Appendix an approximating Gaussian model for the SVM model is

developed. The simulation smoother of de Jong and Shephard (1995) can be used to sample from the

approximating Gaussian model g(�jy;  ).

The likelihood function (10) is rewritten as

L( ) =

Z
p(yj�;  )

p(�j )

g(�jy;  )
g(�jy;  )d� = ~Efp(yj�;  )

p(�j )

g(�jy;  )
g; (11)

where ~E denotes expectation with respect to the importance density g(�jy;  ). Expression (11) can be

simpli�ed considerably following a suggestion of Durbin and Koopman (1997). The likelihood function

of the approximating Gaussian model is given by

Lg( ) = g(yj ) =
g(y; �j )

g(�jy;  )
=
g(yj�;  )p(�j )

g(�jy;  )
; (12)

and it follows that
p(�j )

g(�jy;  )
=

Lg( )

g(yj�;  )
:

This ratio also appears in (11) and substitution leads to

L( ) = Lg( ) ~Ef
p(yj�;  )

g(yj�;  )
g; (13)

which is the convenient expression we will use in our calculations. The likelihood function of the ap-

proximating Gaussian model can be calculated via the Kalman �lter and the two conditional densities

are easy to compute given a value for �. It follows that the likelihood function of the SVM model is

equivalent to the likelihood function of an approximating Gaussian model, multiplied by a correction

term. This correction term only needs to be evaluated via simulation.

An obvious estimator for the likelihood of the SVM model is

L̂( ) = Lg( ) �w; (14)

where

�w =
1

M

MX
i=1

wi; wi =
p(yj�i;  )

g(yj�i;  )
; (15)

and �i denotes a draw from the importance density g(�jy;  ). The accuracy of this estimator solely

depends on M , that is the number of simulation samples. In practice, we usually work with the log

of the likelihood function to manage the magnitude of density values. The log transformation of L̂( )

introduces bias for which we can correct up to order O(M�3=2); see Shephard and Pitt (1997) and

Durbin and Koopman (1997). We obtain

log L̂( ) = logLg( ) + log �w +
s
2
w

2M �w2
; (16)

with s2w = (M � 1)�1
PM

i=1(wi � �w)2.
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3.3 Computational details

Given a particular vector for  , we evaluate the loglikelihood function (16) for which we use the

approximating model (19) to generate simulation samples. To obtain a maximum likelihood estimate

for  , which we denote by  ̂, the loglikelihood is numerically maximised with respect to  in a similar

fashion as for Gaussian models; see Harvey (1989) and Koopman et.al (1995). The repeated evaluation

of the loglikelihood for di�erent  's during the search for  ̂ will be based on the same set of random

numbers used for simulation.

Although the approximating model is e�ective for simulation, we may wish to decrease the simula-

tion variance further using standard simulation techniques based on antithetics and control variables;

see Durbin and Koopman (1997). In our computations we have only employed two antithetic vari-

ables. The �rst is the standard one given by ��i = 2�̂ � �
i where �i is a draw from the importance

density g(�jy;  ) and where �̂ = ~E(�) can be obtained using the Kalman �lter and smoother. Since
��i � �̂ = �(�i � �̂) and �i are normally distributed, the two vectors �i and ��i are equi-probable. The

second antithetic variable is proposed by Durbin and Koopman (1997) and it deals with balancing the

variance within the generated simulation samples.

The number of simulation samplesM is set prior to the estimation procedure. The choice ofM can

be determined by computing the error variance due to simulation; see Durbin and Koopman (1997).

It is shown by Sandmann and Koopman (1998) that M can be relatively small in the context of SV

models. Therefore, in this study we have set M equal to 50 times four antithetic variables, that is

M = 200.

3.4 Signal extraction

The Monte Carlo importance sampling techniques, which we have used for likelihood evaluation, can

also be employed to compute the conditional mean and variance of the unoberved process ht. The

same approximating Gaussian model can be used for this purpose. The details are given by Durbin

and Koopman (2000).

Computation of the conditional mean and variance amounts to computing

�h
(1)
t =

1

M

MX
i=1

wih
i
t;

�h
(2)
t =

1

M

MX
i=1

wih
i2
t ;

where wi is de�ned in (15) and hit is the tth element of �i which is the ith draw from the importance

density g(�jy;  ). The conditional mean and variance of ht is given by

E(htjy;  ) = �h
(1)
t ; Var(htjy;  ) = �h

(2)
t � [�h

(1)
t ]2:

In practice, the unknown parameter vector  is replaced by its Monte Carlo maximum likelihood

estimate  ̂. The uncertainty related to the estimate  ̂ can be also taken into account by similar

Monte Carlo simulation techniques; see Durbin and Koopman (2000). An alternative approach of

signal extraction for the SV model would be to adopt a Markov chain Monte Carlo techniques; see,

for example, Shephard and Pitt (1997) and Kim, Shephard and Chib (1998).

3.5 Numerical implementation of estimation procedure

The simulated Monte Carlo estimation procedure is implemented using the object-oriented matrix

programming language Ox 2.1 of Doornik (1998)6 using the library SsfPack 2.3 of Koopman, Shephard

and Doornik (1999)7. The relevant programs, including the one used for the Monte Carlo study in the

6More information at www.nuffield.ox.ac.uk/users/Doornik/
7More information at www.ssfpack.com

7



next subsection and the one used for the empirical study in section 4, can be downloaded from the

Internet at www.econ.vu.nl/koopman/sv/. The programs can be adjusted in order to use them in a

more general context (for example, with the inclusion of explanatory variables) and for other Monte

Carlo studies. In addition, they can be applied to other data-sets. Documentation of the programs is

available and can be consulted on-line.

3.6 Monte Carlo evidence of estimation procedure

In this section we present some results of a Monte Carlo study which is carried out to investigate the

small sample performance of the estimation procedure presented in section 3.2. In short, we generate

K simulated SVM series for the model presented in section 3.1 and for some given 'true' parameter

vector  . Subsequently, we treat  as unknown and estimate it for each series using the maximum

likelihood method described in section 3.2. We compute the sample mean and standard deviation

together with a histogram for each element in  and compare it with the 'true' parameter value.

−1 0 1 2 3 4 5 6

.2

.4

.6 ψ1=3.5
3.18  (0.76)

−4 −3.5 −3 −2.5 −2 −1.5 −1 −.5

.5

1

ψ2=−2:
−1.99  (0.40)

−.6 −.4 −.2 0 .2

1

2

3

4

ψ3 = −0.3:
−0.31  (0.11)

Figure 1: Monte Carlo results for standard SV model.
In each panel a histogram is presented and the 'true' parameter value for  �i is printed together with the mean and

standard deviation (in parentheses) for the K = 500 maximum likelihood estimates for  �i for i = 1; : : : ; 3.

The estimation procedure is not with respect to  de�ned in section 3.1, but with respect to

a transformed parameter vector  �. The autoregressive parameter � is restricted to have a value

between zero and one; therefore we estimate  �1 where

� =  1 =
exp( �1)

1 + exp( �1)
;  

�

1 = log
�

1� �
:

Further, we estimate the log variance ��2 and the log standard deviation ��. The mean parameter d

is estimated without transformation.
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In the simulation exercises we have carried out we found satisfactory results. First, we considered

the standard SV model. In this case, the last element of  does not play a role. For generating Monte

Carlo samples, the remaining 'true' parameter values are set to

  
�

 1 = � 0:97 3:5

 2 = �� :135 �2

 3 = �
�2

:549 �0:3

which are typical values found in our empirical study of section 4.

The Monte Carlo results for the basic SV model are similar but slightly better compared to results

presented in similar studies of Jacquier et al. (1994) and Sandmann and Koopman (1998). Note that

in these studies the parameter values were not transformed and that the estimation procedures used

were di�erent from ours. For sample size n = 500 and the number of simulations set to K = 500, the

results are given in �gure 1. To present these results in terms of vector  , we note that the resulting

con�dence intervals are asymmetric due to the nonlinear transformations. We obtain

mean LHS "95% CI" RHS "95% CI"

 1 = � = :97 :957 :825 :990

 2 = �� = :135 :139 :064 :302

 3 = �
�2 = :549 :539 :351 :829

where LHS is the lefthand side border and RHS is the righthand side border of the 95% con�dence

interval. These results will be used as a benchmark for the Monte Carlo results for the SVM model.

−1 0 1 2 3 4 5 6

.2

.4

.6 ψ1=3.5
3.1  (0.77)

−3.5 −3 −2.5 −2 −1.5 −1 −.5

.5

1

1.5

ψ2=−2:
−1.97  (0.39)

−.6 −.4 −.2 0 .2

1

2

3

4

ψ3 = −0.3:
−0.31  (0.11)

0 .05 .1 .15 .2 .25 .3

2.5

5

7.5

10 ψ4 = 0.1:
0.10  (0.038)

Figure 2: Monte Carlo results for the SVM model with d = 0:1.

We now turn our attention towards the Monte Carlo evidence for the SVM model. We keep the

'true' parameters of the SV model and look at the results for di�erent values of d. The Monte Carlo
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experiments are again based on n = 500 and K = 500. The results for the SVM model with 'true'

d = 0:1 are given in �gure 2. The results in terms of  are given by

mean LHS "95% CI" RHS "95% CI"

 1 = � = :97 :957 :825 :990

 2 = �� = :135 :139 :064 :302

 3 = �
�2 = :549 :539 :351 :829

 4 = d = :1 :101 :024 :178

Comparing the results for the standard SV model, we conclude that the con�dence intervals for  1,

 2 and  3 are very similar. The in-mean parameter d is accurately estimated with a relatively small

standard deviation. We repeated this experiment for the SVM model with various values of d and

obtained similar results. As far as d is concerned, the estimates and corresponding standard deviations

for di�erent values of d are given by

'true' mean stand.dev

�0:10 �0:1009 0:0379

�0:05 �0:0492 0:0341

0:00 0:0016 0:0261

0:05 0:0503 0:0334

0:10 0:1014 0:0385

On the basis of the Monte Carlo evidence presented here, we conclude that the in-mean e�ect can be

estimated accurately using the methods of section 3.2.

3.7 Extending the mean equation

The SVM model we have considered in section 3.1 can be extended to include a constant and a lagged

dependent variable in the observation equation. We then obtain model (1) with �t given by equations

(5) and (6) and �t given by (8). These extensions do not alter the estimation procedure as set out in

section 3.2 because the state includes components which drive the variance �2t . The extensions only

in
uence the likelihood function via the squared error term. In the appendix, the last term of the

de�nition for pt is replaced by the term

exp(�ht)�
�2
fyt � a� byt�1 � d exp(ht)g

2
:

The extensions do not change the stochastic process for ht. Therefore, the simulation scheme for

computing the Monte Carlo likelihood remains the same.

The only real di�erence caused by the extension is that numerical maximisation of the Monte

Carlo likelihood is also with respect to parameters a and b. Further, the approximating model, as

derived in the appendix, changes slightly; that is, _pt changes but �pt does not change. In other words,

the de�nition for ct changes but the de�nition for Ht does not.

Using the same arguments, we can include other explanatory variables in the observation equation.

This implies that regression models with stochastic heteroskedasticity can be estimated using the

techniques presented in this section. For example, we may consider the regression model

yt = x
0

t� + �t"t; "t � N(0; 1);

for t = 1; : : : ; n where xt is a vector of explanatory variables, � is a vector of coe�cients and �2t =

exp(ht). The unobserved stochastic process ht can be modelled within the state space form which

allows for a wide range of di�erent speci�cations. Such models may also be of interest outside the

�eld of �nancial econometrics. Here we treat this subject as being beyond the scope of this paper.
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4 Empirical evidence from international stock markets

4.1 Some theory on the relationship between returns and volatility

The intertemporal relationship between expected returns on stock indices and volatility has been the

subject of a large number of studies. Many of these have used GARCH in Mean models to empirically

investigate the validity of the Capital Asset Pricing Model (CAPM) which in essence is a single period

equilibrium model without time dimension that de�nes expected excess returns on a market portfolio

as a linear function of volatility so that

E(y) = d�
2
; (17)

where E(y) is the expected di�erential between the return on a stock market portfolio and the risk-free

rate of return, �2 denotes its variance and d is simply the ratio of the expected excess returns E(y)

and the variance �2.

The general mean equation with time-varying variance we consider for estimation is

�t = a+ byt�1 + d�
2
t ; (18)

where �2t denotes the variance of yt and the relation between excess returns and volatility is measured

by d. In comparison with equation (17) two additional parameters are added: the constant in the

mean term a and the autoregressive b parameter, where the latter is included to account for the �rst

order autocorrelation customarily found in stock index return series.

A positive relationship, i.e. a positive value for the in-mean parameter d, appears plausible as

rational risk-averse investors would require higher expected returns during more volatile periods when

payo�s associated with these securities are less certain. Results reported in the GARCH literature are

however inconclusive and it seems di�cult to �nd evidence of a non-zero relationship. French, Schwert

and Stambaugh (1987) and Campbell and Hentschel (1992) �nd evidence of a positive association,

whereas Glosten, Jagannathan and Runkle (1993) who develop a much richer GARCH-M model

observe a negative intertemporal relation for the US stock market, as does Nelson (1991) with his

EGARCH model. Poon and Taylor (1992) who study the issue in a UK context report a positive

yet weak relationship. These con
icting �ndings are however not without theoretical foundation: a

positive relationship between expected returns and volatility over a given period is certainly persuasive

but there is no consensus that, as Glosten et.al. (1993) point out, this relationship continues to hold

across time and that it will be positive on average. The two variables are of course intimately related

as increases in volatility are caused by large returns of either sign. What is more, empirical studies of

asset returns have almost consistently shown that large negative returns occur more frequently than

large positive ones, as one of the salient features of these asset return distributions is that they are

negatively skewed. However, a negative value for the relationship does not automatically imply that

the CAPM model is invalid as this one-period asset pricing model was never intended to explain the

interdependence between contemporaneous expected returns and time-varying volatility.

The remainder of this section is organised as follows. We start by discussing the data of the three

international stock market indices we selected in order to investigate the intertemporal relationship

between excess returns and their volatility: the Financial Times All Share, the Standard & Poor's

Composite and the Topix Index. We then proceed with the estimation results for these series using

our SVM model. The parameter estimates are then compared with those obtained by the GARCH-

M model. We also present results for alternative model speci�cations which we obtain by imposing

restrictions on the various parameters in the mean.

4.2 Data

The data we analyse includes daily stock index returns from three international stock markets: the

United Kingdom, the United States and Japan. The UK Financial Times All Share Index and the US

11



Table 1: Summary statistics of daily excess returns

Period 1975-1998 1988-1998

Number of observations T 6261 2869

Stock index FT All S&P FT All S&P Topix

Mean 0.033 0.028 0.017 0.042 -0.025

Variance 0.943 0.874 0.584 0.747 1.357

Skewness -0.194 -2.562 -0.022 -0.664 0.343

Excess Kurtosis 11.828 62.758 3.491 7.954 6.107

Excess Returns

�̂1 0.167 0.054 0.115 0.004 0.100

�̂2 0.008 -0.024 -0.002 -0.013 -0.062

�̂3 0.037 -0.021 -0.005 -0.041 -0.009

�̂4 0.046 -0.024 0.041 -0.016 0.027

�̂5 0.019 0.032 0.009 0.006 -0.030

Q(12) 262.08 41.94 61.32 29.86 64.86

Squared Excess Returns

�̂1 0.478 0.112 0.163 0.176 0.163

�̂2 0.281 0.149 0.155 0.087 0.161

�̂3 0.238 0.077 0.136 0.049 0.118

�̂4 0.290 0.020 0.111 0.087 0.173

�̂5 0.202 0.137 0.109 0.097 0.179

Q(12) 4543.79 404.14 560.52 286.52 527.91

�̂` is the sample autocorrelation coe�cient at lag ` with asymptotic standard error 1=
p
T and Q(`) is the Box-Ljung

portmanteau statistic based on ` squared autocorrelations.

Standard and Poor's Composite stock index series cover the period 1 January 1975 to 31 December

1998 whereas the Japanese Topix series starts on 1 January 1988 and ends at 31 December 1998. The

stock data was obtained from Datastream. From the same data source we also collected daily UK

and Japanese 1 month Treasury bill rates; the US 3 month Treasury bill rate data was extracted from

the on-line Federal Reserve Bank of Chicago Statistical Release H.15 database. These interest rate

series are used as proxies for the risk free rate of return. The stock index prices are in local currencies

and not adjusted for dividends following studies of French, Schwert and Stambaugh (1987) and Poon

and Taylor (1992) who found that inclusion of dividends a�ected estimation results only marginally.

Returns are calculated on a continuously compounded basis and expressed in percentages, they are

therefore calculated as Rt = 100(lnPt � lnPt�1) where Pt is the price of the stock market index at

time t. From these returns we subtract the daily risk free rate multiplied by 100, denoted by Rft, in

order to obtain the excess returns which are therefore de�ned as yt = Rt �Rft.

In this section we model the behaviour of �ve series: we consider daily excess return series on the

UK and US index that cover a period of 24 years ending in 1998, as well as 11 year sub-samples of these

two series together with excess returns on the Japanese stock market index. These shorter series start

in 1988 and therefore exclude the extreme negative observations relating to the 1987 stock market

crash. Figures 3 and 4 contain graphs of the �ve excess return series, the accompanying summary
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Figure 3: Excess returns for the (i) FT All Share Index (UK) and (ii) S&P Composite Stock Index

(US) between 02/01/75 and 31/12/98

statistics are presented in table 1.

We observe that the e�ects of the October 1987 crash were especially pronounced for the US stock

market where the Standard & Poor's Composite index fell by nearly 23% on one single trading day.

This one observation contributed to a great extend to the large excess kurtosis value of 62:758 and

the high negative skewness coe�cient of �2:562. The most volatile series of the �ve is the Topix

series which can not be attributed to one extreme movement, as can be seen in �gure 4, but to several

prolonged periods of market turbulence initiated in the early nineties by the collapse of the Japanese

asset market. The Topix series is further characterised by a negative mean and is positively skewed,

which are features not typically found in a stock index (excess) return series. We further observe

that the UK excess returns and squared excess returns for the period starting in 1975 are highly

autocorrelated at lag 1 but that these values are much lower and comparable with those of the Topix

stock index for the sub-sample period 1988{1998. First-order serial correlation coe�cients for the

Standard & Poor's Composite Index excess returns on the other hand are relatively low for both the

full and the sub-sample period. In the case of excess returns high �rst-order autocorrelation re
ects

the e�ects of non-synchronous or thin trading, whereas highly correlated squared returns can be seen

as an indication of volatility clustering. The Q(12) test statistic, which is a joint test for the hypothesis

that the �rst twelve autocorrelation coe�cients are equal to zero, indicates that this hypothesis has

to be rejected at the 1% signi�cance level for all excess return and squared excess return series.

4.3 Estimation results for the SV(M) model and some diagnostics

Our main objective in this empirical section is to estimate the intertemporal relationship between

excess returns on stock market indices and their volatility with our SVM model, which we already
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Figure 4: Excess returns for the (i) FT All Share Index (UK), (ii) S&P Composite Stock Index (US)

and (iii) Topix Stock Index (Japan) between 04/01/88 and 31/12/98

de�ned in equations (5), (6) and (8).

In addition to this model we also estimate two alternative SV models which we obtain by imposing

the constraints d = 0 and a = b = d = 0. With

yt = �t + �t"t; "t � NID(0; 1);

the mean equations of these models can be written as

SVM or SV-1 Model: �t = a+ byt�1 + d�
�2 exp(ht)

SV-2 Model: �t = a+ byt�1

SV-3 Model: �t = 0

where all three SV models have the same variance speci�cation

�
2
t = �

�2 exp(ht);

ht = �ht�1 + ���t; �t � NID(0; 1):

In table 2 the estimation results for the SVM model are presented and our �rst observation is that

the d parameter is negative for all �ve series. This implies that on average more volatile periods are

associated with larger negative excess returns although the relationship is weak and the null hypothesis

of d equal to zero can never be rejected at the conventional 5% level. The largest negative values for d

are observed for the shorter period where they are also closest to being statistically signi�cant. This

14



Table 2: Estimation results for the SVM (SV-1) model

Period 1975-1998 1988-1998

No. of obs. 6261 2869

Stock Index FT All S&P FT All S&P Topix

a 0:038 0:045 0:061 0:074 0:019
0:014 0:063 0:017 0:073 0:016 0:106 0:038 0:111 �0:014 0:052

b 0:146 0:074 0:100 0:024 0:099
0:123 0:172 0:054 0:101 0:068 0:144 0:009 0:062 0:067 0:143

d �0:011 �0:023 �0:085 �0:046 �0:031
�0:049 0:028 �0:065 0:019 �0:176 0:006 �0:103 0:011 �0:066 0:005

�
�2 0:615 0:597 0:458 0:539 0:832

0:498 0:758 0:508 0:701 0:358 0:587 0:427 0:682 0:642 1:077

� 0:984 0:979 0:976 0:970 0:966
0:977 0:990 0:969 0:986 0:958 0:986 0:954 0:981 0:947 0:978

�
2
� 0:018 0:021 0:019 0:035 0:058

0:014 0:025 0:015 0:029 0:012 0:032 0:025 0:050 0:041 0:082

lnL -7531.80 -7496.80 -3039.36 -3299.35 -3988.34

AIC 15075.6 15005.6 6090.7 6610.7 7988.7

Q(12) 24.45 20.06 7.44 21.79 10.30

N 16.265 18.578 2.326 9.969 11.643

�
2
1

0.825 0.760 0.560 0.727 1.277

corr("t; �t+1) -0.033 -0.064 -0.070 -0.089 -0.175

Parameter estimates are reported together with the asymptotic 95% con�dence interval which are a-symmetric for b,

��2, � and �2�; AIC is the Akaike Information Criterion which is calculated as -2(lnL) + 2p and Q(`) is the Box-Ljung

portmanteau statistic for the estimated observation errors which is asymptotically �2 distributed with `� p degrees of

freedom where p is the total number of estimated parameters; N is the �2 normality test statistic with 2 degrees of

freedom; �2
1

denotes the unconditional variance as implied by the volatility process.

is slightly surprising since we would expect the average association to become more positive once the

e�ects of the 1987 stock market crash were no longer included in the sample. The relatively high

parameter estimates for a indicate that the risk premium is not proportional to the variance of stock

market returns. Except for the Topix series, which has a negative mean, the estimated values for a

are positive and statistically signi�cant. What is more, the estimate for the constant in the mean

parameter consistently exceeds the mean value of the excess return series itself although this value

is included in all con�dence intervals for a, again with the exception of the Topix series. Estimates

for the b parameter are all statistically signi�cant and very similar to the �rst-order autocorrelation

coe�cients reported in table 1. The high �rst-order autocorrelation coe�cient observed for the squared

excess returns of the long FT All Share series is re
ected in the persistence parameter estimate �,

which is close to one. The other four estimates for � also lie in this region which is consistent with

the near unity volatility persistence for high frequency data typically found with GARCH models.

The more erratic behaviour of the Topix series is quite well captured by the SVM model through a

combination of parameters: the scaling parameter ��2 is quite large at 0:832 and the relatively small

volatility persistence parameter �, combined with a value of 0:058 for �2� , implies that the Topix series

is not only more volatile but also less predictable than any of the other four series.

With regard to the distributional assumptions we see that the standardised error term "t abides

the normality assumption reasonably well, especially for the shorter UK series. This makes the need

to specify alternative distributions for "t, such as the Student-t distribution which has fatter tails
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and is often employed in GARCH models, less imperative. The hypothesis that the �rst twelve

autocorrelation coe�cients of "t are equal to zero can not be rejected for the short FT All Share and

the Topix series, as the critical value at the 5% signi�cance level is 12:6. This indicates that there is

little serial correlation left in the standardised error term.

We �nd that the correlation coe�cients between the two error terms "t and �t+1 are consistently

negative. This then implies that unexpected negative shocks to the excess returns are associated with

increases in volatility, while unexpected positive shocks result in decreasing volatility values. We are

inclined to interpret this as an indication of the presence of the leverage e�ect, or asymmetric volatility,

even though our initial assumption was that of zero correlation between the two error terms.

Table 3: Estimation results for the SV-2 model

Period 1975-1998 1988-1998

No. of obs. 6261 2869

Stock Index FT All S&P FT All S&P Topix

a 0:033 0:033 0:027 0:055 �0:0001
0:016 0:050 0:017 0:049 0:004 0:050 0:032 0:078 �0:026 0:025

b 0:146 0:075 0:101 0:025 0:100
0:122 0:174 0:054 0:102 0:069 0:146 0:010 0:060 0:088 0:113

�
�2 0:615 0:597 0:459 0:540 0:831

0:503 0:752 0:504 0:706 0:358 0:588 0:429 0:680 0:734 0:941

� 0:984 0:979 0:976 0:970 0:965
0:977 0:989 0:970 0:985 0:959 0:986 0:954 0:981 0:950 0:976

�
2
� 0:018 0:020 0:019 0:035 0:059

0:014 0:024 0:015 0:028 0:012 0:031 0:022 0:055 0:044 0:079

lnL -7531.92 -7496.36 -3040.80 -3300.30 -3989.32

LR(d = 0) 0.25 1.13 2.87 1.89 1.95

AIC 15073.8 15002.7 6091.6 6610.6 7988.6

Q(12) 24.43 19.88 7.60 21.26 10.42

N 16.855 20.261 3.989 11.936 8.671

�
2
1

0.825 0.761 0.562 0.729 1.278

corr("t; �t+1) -0.034 -0.069 -0.081 -0.094 -0.179

Parameter estimates are reported together with the asymptotic 95% con�dence interval which are a-symmetric for b, ��2,

� and �2�; LR(d = 0) is the likelihood ratio statistic for the hypothesis d = 0; AIC is the Akaike Information Criterion

which is calculated as -2(lnL) + 2p and Q(`) is the Box-Ljung portmanteau statistic for the estimated observation errors

which is asymptotically �2 distributed with `�p degrees of freedom where p is the total number of estimated parameters;

N is the �2 normality test statistic with 2 degrees of freedom; �2
1

denotes the unconditional variance as implied by the

volatility process.

The results change only marginally when we estimate the SV-2 model where d is restricted to zero,

results of which are presented in table 3. The main di�erence between the two models is the general

decrease in the estimated value for a. The fact that the d parameter has little explanatory power is

con�rmed by the likelihood ratio test statistic which never exceeds the critical value �21 5% signi�cance

value of 3:84. All our parameter estimates are now statistically signi�cant, with the exception of the

a parameter for the Topix series. The AIC statistic, which is a goodness-of-�t statistic that allows

comparison between models with di�erent numbers of parameters, indicates that there is little to be

gained by including the d parameter as this statistic favours the SV-2 model in four out of �ve cases.

Finally we present our �ndings for the SV-3 model in table 4 in order to compare the results with

those of the SVM and the SV-2 model and determine whether SV models bene�t from simultaneously
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Table 4: Estimation results for the SV-3 model

Period 1975-1998 1988-1998

No. of obs. 6261 2869

Stock Index FT All S&P FT All S&P Topix

�
�2 0:631 0:602 0:465 0:546 0:839

0:502 0:793 0:509 0:713 0:365 0:592 0:424 0:703 0:654 1:076

� 0:985 0:979 0:976 0:971 0:965
0:980 0:989 0:971 0:985 0:962 0:985 0:948 0:984 0:946 0:977

�
2
� 0:017 0:020 0:019 0:033 0:059

0:014 0:022 0:014 0:027 0:012 0:031 0:019 0:058 0:041 0:085

lnL -7604.05 -7521.84 -3057.78 -3311.34 -4002.63

LR(a = b = d = 0) 144.5 50.1 36.8 24.0 28.6

AIC 15214.1 15049.7 6121.6 6628.7 8011.3

Q(12) 151.76 55.40 35.49 23.02 39.77

N 18.422 31.913 4.503 18.788 4.914

�
2
1

0.849 0.765 0.570 0.732 1.288

corr("t; �t+1) -0.055 -0.086 -0.101 -0.123 -0.186

Parameter estimates are reported together with the asymptotic 95% con�dence interval which are a-symmetric for

��2, � and �2�; LR(a = b = d = 0) is the likelihood ratio statistic for the hypothesis a = b = d = 0; AIC is the

Akaike Information Criterion which is calculated as -2(lnL) + 2p and Q(`) is the Box-Ljung portmanteau statistic for

the estimated observation errors which is asymptotically �2 distributed with ` � p degrees of freedom where p is the

total number of estimated parameters; N is the �2 normality test statistic with 2 degrees of freedom; �2
1

denotes the

unconditional variance.

modelling of both the mean and the variance equation or not. On the basis of the likelihood ratio test

statistics the conclusion would have to be that simultaneous estimation is quite advantageous as these

values are always statistically signi�cant at the 1% con�dence level, which is con�rmed by the values

for the AIC statistic. We further note that "t is in general less well-behaved for the SV-3 than for the

other two Stochastic Volatility models, especially in terms of the assumption of zero autocorrelation.

With regard to the Stochastic Volatility in Mean model we can conclude that our �ndings are

di�erent from those usually observed in the GARCH literature where relatively small values for a and

positive estimates for the in-mean parameter have been reported for both the UK and the US stock

market, although there is also evidence of an average negative relationship between excess returns and

volatility for the US market. In order to compare both methods in more detail we present GARCH

estimates for our �ve series in the next subsection.

4.4 Some comparisons with GARCH estimation results

Our initial attention will be on the estimation results of the GARCH in Mean model as de�ned in

equations (4) and (9). With yt = �t + �t"t, its mean equation is therefore expressed as

GARCH-M or GA-1 Model: �t = a+ byt�1 + d�
2
t

The GA-2 and GA-3 model have mean speci�cations identical to those of the SV-2 and SV-3 model,

respectively, and all three GARCH models have their variance de�ned by

�
2
t = ! + �(yt�1 � �t�1)

2 + ��
2
t�1:

Estimation results for the GARCH-M or GA-1 model are given in table 5 where we observe that

near zero estimates for a are combined with positive values for d. The null hypothesis of a zero
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Table 5: Estimation results for the GARCH-M (GA-1) model

Period 1975-1998 1988-1998

No. of obs. 6261 2869

Stock Index FT All S&P FT All S&P Topix

a 0:022 0:003 �0:010 0:004 �0:015
�0:008 0:052 �0:034 0:039 �0:063 0:043 �0:050 0:059 �0:063 0:033

b 0:152 0:080 0:115 0:019 0:112
0:127 0:178 0:052 0:107 0:076 0:154 �0:019 0:057 0:072 0:151

d 0:017 0:046 0:070 0:061 0:043
�0:024 0:058 �0:005 0:099 �0:033 0:172 �0:023 0:145 �0:002 0:087

! 0:018 0:011 0:014 0:003 0:032
0:014 0:023 0:008 0:014 0:008 0:020 0:002 0:005 0:023 0:040

� 0:094 0:065 0:072 0:032 0:134
0:082 0:105 0:062 0:068 0:057 0:087 0:027 0:037 0:116 0:152

� 0:885 0:924 0:905 0:965 0:849
0:871 0:899 0:918 0:930 0:882 0:927 0:959 0:971 0:829 0:869

�+ � 0:978 0:989 0:976 0:997 0:983

lnL -7615.05 -7667.26 -3078.86 -3416.20 -4078.56

AIC 15242.1 15346.5 6169.7 6844.4 8169.1

Q(12) 35.81 11.89 10.16 17.13 11.25

N 6630.1 10254.1 390.7 6022.5 810.8

�
2
1

0.852 0.973 0.583 0.991 1.823

Parameter estimates are reported together with the asymptotic 95% con�dence interval which are all symmetric; AIC is

the Akaike Information Criterion which is calculated as -2(lnL) + 2p and Q(`) is the Box-Ljung portmanteau statistic

for the estimated observation errors which is asymptotically �2 distributed with `� p degrees of freedom where p is the

total number of estimated parameters; N is the �2 normality test statistic with 2 degrees of freedom; �2
1

denotes the

unconditional variance as implied by the volatility process.

relationship between excess returns and volatility can however never be rejected at the 5% signi�cance

level, although in some cases only by a very small margin. The main di�erence between the SVM and

GARCH-M model is therefore that the parameter estimates for d are negative for the SVM model and

positive for the GARCH-M model, although none of these are ever statistically signi�cant. Further,

a is statistically signi�cant in the SVM model and insigni�cant in the GARCH-M model. The values

for a in the SVM model are relatively large and this is of course a natural consequence of the negative

parameter estimate for d. A very similar pattern has been observed before in the literature by Glosten

et al. (1993) who developed a GARCH-M model which included a number of additional variables in

both the mean and variance equation. For the standard GARCH-M model (which is identical to our

GA-1 model but with b constrained to zero) they initially found a small parameter estimate for a and

a positive value for d. Re-estimation with their extended GARCH-M model resulted however in much

larger values for the constant in the mean combined with negative values for the in-mean parameter

which, on occasion, were even statistically signi�cant. Our SVM model therefore appears to be closer

related to this richer GARCH-M model than to the GA-1 model we estimated here.

In section 4.1 we discussed why an average negative intertemporal relationship between excess

returns on a stock index and volatility might be more likely than a positive one. This does however

not explain why the two in-mean models result in such di�erent estimates for the d parameter. One

of the reasons might be the di�erent de�nitions of the two volatility processes. The SVM model
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immediately incorporates the e�ect of an unexpected return shock in the volatility process through

�t, whereas the GARCH-M model does not absorp this new information until time t + 1. Following

an unanticipated shock at time t the variance of the GARCH model only starts to increase at time

t + 1 and it is not until the subsequent period that it becomes fully incorporated. Consequently the

d parameter in the GARCH-M model does not actually measure the contemporaneous relationship

between expected returns and volatility. This problem is most pronounced at the beginning of a

volatile period when the shock to the return process is large and the GARCH-M variance still small.

The relevant question therefore appears to be how many volatile periods in the return series start with

a large negative rather than a positive shock, as this explains the di�erence between the sign of the d

parameter for the two models. As volatile periods are usually initiated by large negative unexpected

returns, the d parameter is bound to be larger for the GARCH-M than for the SVM model. What is

more, negative unanticipated returns also induce more volatile behaviour than positive ones as shown

in many empirical applications of Nelson's EGARCH model and a�rmed by the negative correlation

between the two estimated error terms "t and �t+1 we observed in our SV model8.

Although the size of the shock is certainly relevant, it does not seem to be of crucial importance as

the d parameter in the SVM model is smaller for the longer Financial Times All Share and Standard

& Poor's Composite Index series than for the same series starting in 1988.
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Figure 5: Estimated volatility for FT All Share Index (UK) between 03/01/75 and 31/12/98 as implied

by the (i) GARCH-M model and (ii) SVM model

Another di�erence between the two volatility series becomes evident when we graph the variance

implied by the SVM and the GARCH-M model for the Financial Times All Share Index in �gure 5 for

the period starting in 1975. The variance for the SVM model is given by ��2 exp(ht)jIT and that of

the GARCH-M model by �2t jIt�1 where T denotes the sample size. The graph clearly shows that the

8Also see the discussion and references in Harvey and Shephard (1996)
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GARCH-M variance series reacts more abruptly than the variance series implied by the SVM model.

The main reason for this is that the SVM model produces a smoothed volatility series based on all

information in the sample (IT ), whereas the GARCH-M (1,1) model is a conditional model based

on information available at time t � 1. The �ltered estimate of the volatility for the SVM model,

that is ��2 exp(ht)jIt�1 can be obtained via the technique of particle �ltering, see Pitt and Shephard

(1999). We further note that both series broadly follow the same pattern and are closely related with

correlation 0:86, although the average value for the GARCH model is considerably higher than that

of the SVM model: 0:90 for the GARCH-M(1; 1) series as opposed to an average value of 0:79 when

the volatility of the Financial Times All Share Index is estimated with the SVM model9.

Table 6: Estimation results for the GA-2 model

Period 1975-1998 1988-1998

No. of obs. 6261 2869

Stock Index FT All S&P FT All S&P Topix

a 0:032 0:030 0:022 0:038 0:021
0:013 0:050 0:011 0:049 �0:003 0:047 0:010 0:066 �0:011 0:052

b 0:152 0:080 0:116 0:020 0:113
0:127 0:178 0:053 0:107 0:077 0:155 �0:018 0:057 0:075 0:151

! 0:018 0:011 0:014 0:003 0:031
0:014 0:023 0:008 0:013 0:008 0:020 0:002 0:005 0:023 0:039

� 0:094 0:065 0:072 0:031 0:134
0:082 0:105 0:062 0:067 0:057 0:087 0:026 0:037 0:116 0:152

� 0:885 0:924 0:904 0:965 0:850
0:871 0:899 0:918 0:930 0:881 0:927 0:959 0:971 0:830 0:869

�+ � 0:978 0:989 0:976 0:997 0:984

lnL -7615.39 -7669.95 -3079.79 -3417.49 -4080.41

LR(d = 0) 0.68 5.38 1.86 2.58 3.70

AIC 15240.8 15349.9 6169.6 6845.0 8170.8

Q(12) 35.65 12.36 9.57 17.79 9.78

N 6600.8 10478.1 392.2 5979.3 811.4

�
2
1

0.852 0.978 0.584 1.002 1.884

Parameter estimates are reported together with the asymptotic 95% con�dence interval which are all symmetric; LR(d =

0) is the likelihood ratio statistic for the hypothesis d = 0; AIC is the Akaike Information Criterion which is calculated as

-2(lnL) + 2p andQ(`) is the Box-Ljung portmanteau statistic for the estimated observation errors which is asymptotically

�2 distributed with `� p degrees of freedom where p is the total number of estimated parameters; N is the �2 normality

test statistic with 2 degrees of freedom; �2
1

denotes the unconditional variance as implied by the volatility process.

Estimation results for the remaining two GARCH speci�cations, the GA-2 and the GA-3 model

are presented in tables 6 and 7. Comparison between SV and GARCH models shows that estimates

for b are very similar across the various model speci�cations. The volatility persistence parameters are

all close to unity although we �nd that the persistence values for the Topix and the Standard & Poor's

series starting in 1988 are considerably higher when the volatility process is modelled with GARCH

models. They are in fact so high that they exceed those of the 1975{1998 Financial Times All Share

9Variance series of this index have been examined previously in the literature: Poon and Taylor (1992) graphed

and compared a monthly GARCH(1,1) conditional variance series with an ARMA(1; 1) variance series for the period

1969{1989. They also found larger average values for the GARCH series and a correlation coe�cient between the two

variance series of 0:87.
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Table 7: Estimation results for the GA-3 model

Period 1975-1998 1988-1998

No. of obs. 6261 2869

Stock Index FT All S&P FT All S&P Topix

! 0:018 0:011 0:014 0:004 0:033
0:014 0:022 0:008 0:013 0:008 0:020 0:002 0:006 0:025 0:041

� 0:093 0:064 0:074 0:036 0:134
0:082 0:104 0:061 0:066 0:060 0:089 0:031 0:041 0:117 0:151

� 0:887 0:926 0:902 0:960 0:848
0:874 0:901 0:920 0:931 0:880 0:925 0:954 0:966 0:829 0:868

�+ � 0:980 0:995 0:976 0:996 0:983

lnL -7707.40 -7696.96 -3101.58 -3421.38 -4096.63

LR(a = b = d = 0) 184.7 59.4 45.4 10.4 36.1

AIC 15420.8 15399.9 6209.2 6848.8 8199.3

Q(12) 207.02 61.47 48.76 21.36 47.06

N 7615.5 10192.5 429.6 4497.2 825.7

�
2
1

0.905 0.995 0.599 0.964 1.857

Parameter estimates are reported together with the asymptotic 95% con�dence interval which are all symmetric; LR(a =

b = d = 0) is the likelihood ratio statistic for the hypothesis a = b = d = 0; AIC is the Akaike Information Criterion

which is calculated as -2(lnL) + 2p and Q(`) is the Box-Ljung portmanteau statistic for the estimated observation errors

which is asymptotically �2 distributed with `�p degrees of freedom where p is the total number of estimated parameters;

N is the �2 normality test statistic with 2 degrees of freedom; �2
1

denotes the unconditional variance.

Index series which exhibits very high autocorrelated squared returns as shown in table 1. We further

observe that unconditional variances are consistently lower for SV models and that diagnostic statistics

with regard to the standardised residual "t seem to favour SV models in most cases, especially in terms

of the normality test statistic.

5 Summary and Conclusions

In this paper we have presented a Stochastic Volatility model where the mean is modelled simultan-

eously with the variance equation. When one of the variables in the mean is the volatility process

itself, we obtain the Stochastic Volatility in Mean (SVM) model with which we are able to investigate

the contemporaneous relationship between expected excess returns on a stock market index and its

time-varying volatility. We estimate the parameters in our model using a special simulation based

maximum likelihood method and we also present results of a simulation experiment to show that if

such a interdependence is present our SVM model is capable of detecting it.

For our empirical application we examined stock indices from the United Kingdom, the United

States and Japan over two time periods and for three di�erent mean equations. The results were then

compared with the estimation results obtained for their GARCH counterparts. Our conclusions can be

summarised as follows. Firstly, with our SVM model we �nd evidence of a weak negative relationship

for all stock index series, whereas estimation with the GARCH-M model produces positive, but again

statistically insigni�cant, estimates for the in-mean parameter d. We assert however that a negative

average relationship between excess returns and their contemporaneous time-varying volatility is more

plausible than a positive one and that the sign of the in-mean parameter can be at least partially

explained by the di�erence in de�nitions of the volatility process of the models. The large positive

21



value for the constant in the mean parameter a observed in the SVM model, as opposed to a near-zero

estimate in the case of the GARCH-M model, is a natural consequence of the negative value for d.

The �rst-order autoregressive term b in the mean equation appears robust across model speci�cations

and classes of volatility models. Secondly, we �nd that simultaneous modelling of the mean and the

variance equation results in improvements in terms of the goodness-of-�t of the model. Although

it is possible to model the original series prior to estimation with a volatility model, simultaneous

estimation is more e�cient. Finally, we observe that the volatility persistence parameter � in the SV

models, which is an indication of volatility clustering, is comparable with those of GARCH models and

might even be preferable to the latter. An additional advantage of SV models over GARCH models

is that the distributional assumptions of the error term in the mean "t are much less violated by our

SV model, especially in terms of the normality assumption. This makes the case for departures from

normality and hence the estimation of additional parameters less strong. On the basis of the above

we therefore feel that SV models can be regarded as a more than competitive alternative to GARCH

models, not only in theoretical terms but also in empirical research.

Appendix: approximating model used for simulation

The approximating model is based on a linear Gaussian model with mean E(yt) = ht+ct and variance

V(yt) = Ht, that is

yt = ht + ut; ut � N(ct;Ht); t = 1; : : : ; n; (19)

where ct and Ht are determined in such a way that the mean and variance of yt implied by the

approximating model (19) and by the true model (1) and (7) are as close as possible10.

We achieve this by equalising the �rst and second derivatives of p(yj�;  ) and g(yj�;  ) with respect

to � at �̂ = ~E(�) =
R
�g(�jy;  ). Note that p(�) refers to a density for the true model and g(�) refers to

a density for the approximating Gaussian model. Further, it follows that �̂ can simply be obtained via

the Kalman �lter and smoother applied to the approximating model (19). The conditional densities

are given by

p(yj�;  ) =
nY

t=1

pt; g(yj�;  ) =
nY

t=1

gt;

with

pt = p(ytjht;  ) = �0:5[log 2��2 + ht + exp(�ht)�
�2
fyt � d exp(ht)g

2];

gt = g(ytjht;  ) = �0:5flog 2� + logHt +H
�1
t (yt � ct � ht)

2
g:

Di�erentiating both densities twice with respect to ht gives

_pt = �0:5[1 + �
�2
fd

2
�
�2 exp(ht)� y

2
t exp(�ht)g];

�pt = �0:5��2[d2��2 exp(ht) + y
2
t exp(�ht)];

_gt = H
�1
t (yt � ct � ht);

�gt = �H
�1
t :

Equalising the �rst and second derivatives, that is _pt = _gt and �pt = �gt for t = 1; : : : ; n, leads to

ct = yt � ht + 0:5Ht[1 + �
�2
fd

2
�
�2 exp(ht)� y

2
t exp(�ht)g];

Ht = 2��2=[d2��2 exp(ht) + y
2
t �

��2 exp(�ht)]:

10Note that the true model implies a nonlinear relationship between yt and ht; the approximating (linear) model is

e�ectively a second-order Taylor expansion of the true model around ht.
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The resulting model for ~yt = yt � ct is equivalent to

~yt = ht + ~ut; ~ut � N(0;Ht); t = 1; : : : ; n;

with

~yt = ht �
�
�2 + d

2
�
�2 exp(ht)� y

2
t �

��2 exp(�ht)

d2��2 exp(ht) + y
2
t �

��2 exp(�ht)
; Ht =

2�2

d2��2 exp(ht) + y
2
t �

��2 exp(�ht)
:

It should be noted that Ht > 0 for any value of ht. We cannot solve out for ~yt and Ht at ĥt = ~E(ht)

because ~E refers to expectation with respect to the approximating model which depend on ht. However,

such complicated but linear system of equations is usually solved iteratively by starting with a trial

value ht = h
�

t . Computing ~yt and Ht based on h�t and applying the Kalman �lter smoother to model

(19) leads to a smoothed estimate for ht which can be used as a new trial value for ht. Recomputing

~yt and Ht based on this new trial value leads to an iterative procedure which converges to ĥt. Note

that the �rst and second derivatives of the true and approximating densities are equal at ht = ĥt.

More details are given by Durbin and Koopman (1997). It is worth mentioning that ĥt is equal to the

mode of p(htjy;  ) which can be of interest.
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