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Abstract

By a cooperative game in coalitional structure or shortly coalitional game we mean the
standard cooperative non-transferable utility game described by a set of payoffs for each
coalition that is a nonempty subset of the grand coalition of all players. It is well-known
that balancedness is a sufficient condition for the nonemptiness of the core of such a
cooperative non-transferable utility game. For this result any information on the internal
organization of the coalition is neglected.

In this paper we generalize the concept of coalitional games and allow for organiza-
tional structure within coalitions. For a subset of players any arbitrarily given structural
relation represented by a graph is allowed for. We then consider non-transferable utility
games in which a possibly empty set of payoff vectors is assigned to any graph on every
subset of players. Such a game will be called a cooperative game in graph structure or
shortly graph game. A payoff vector lies in the core of the game if there is no graph on a
group of players which can make all of its members better off.

We define the balanced-core of a graph game as a refinement of the core. To do so,
for each graph a power vector is determined that depends on the relative positions of the
players within the graph. A collection of graphs will be called balanced if to any graph
in the collection a positive weight can be assigned such that the weighted power vectors
sum up to the vector of ones. A payoff vector lies in the balanced-core if it lies in the core
and the payoff vector is an element of payoff sets of all graphs in some balanced collection
of graphs. We prove that any balanced graph game has a nonempty balanced-core and
therefore a nonempty core.

We conclude by some examples showing the usefulness of the concepts of graph
games and balanced-core. In particular these examples show a close relationship between
solutions to noncooperative games and balanced-core elements of a well-defined graph
game. This places the paper in the Nash research program, looking for a unifying theory

in which each approach helps to justify and clarify the other.
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1 Introduction

Many economic situations can be modelled as a cooperative non-transferable utility game.
In such a game a set of payoffs is assigned to each coalition being a subset of the grand
coalition. To show nonemptiness of the core of such a game one can use balancedness as
a sufficient condition. In the remainder of the paper we will call this condition coalitional
balancedness and refer to such a game as a coalitional game. However, in many economic
situations of interest more information on the internal organization of a coalition is avail-
able. For instance, in order to run a firm, a group of workers can be organised according to
several hierarchies consisting of a different number of levels, a different number of workers
on a level, or even different players placed on a position of the same internal structure. To
each admissible organization of a group of players corresponds a set of payoffs for these
players. The usual approach to model this as a cooperative game would be to assign to
a coalition of players the union of the sets of payoffs of all possible internal organizations
which might occur for that coalition. In this paper we avoid this rough way of modelling
and develop tools that exploit the available information about different organizational
structures of coalitions.

In the core of a coalitional game it is always assumed that the grand coalition results
and cooperates. However, it is not necessarily the case that all players in the grand coalition
behave in the same way. The information given in a coalitional game does not reveal that
some of the players collude, or one player is the boss over the other players, or that (groups
of) players compete with each other. For games with transferable utilities Nowak and
Radzik [18] consider games in permutational form. For such TU games the value of a
coalition depends on the ordering of the members within the coalition. Myerson [16] uses
undirected graphs to model communication structures in cooperative games. Depending
on the application it is more appropriate to model the internal organization of a coalition
by means of a hierarchy, a partition, an ordered structure as studied in van der Laan,
Talman and Yang [14], or an even more general structure. For instance, it may be very
useful to model the internal organization of an industry by a partitional game, in which
for any coalition of players a payoff set is assigned to every partition of the coalition into
subsets of colluding players within the coalition. The obvious question is whether this
refined modelling can be utilized to give sharper results on core existence and restrict the
core to a smaller set.

To answer this question we generalize the concept of a coalitional game to a graph
game. The use of directed graphs provides a very convenient way to model the organiza-
tional structure of a set of players. To do so, the nodes of the graph are identified with the
players and the arcs of the graph correspond to organizational links between players. Then

a cooperative non-transferable utility game in graph structure, or graph game, consists of



a set of players, a collection of graphs on subsets of the set of all players and a payoff set
for every element in the collection of graphs. The whole set of players is called the grand
coalition and consists of all players involved in the game. Each graph in the collection
of graphs corresponds to a possible internal structure on a coalition of players that could
evolve. The collection of possible graphs is called the set of organizational graphs of the
game. If, for instance, only hierarchies are relevant, then one could take the collection
of all hierarchical graphs on the subsets of players. In the case where partitions are the
appropriate model one could take the collection of graphs that have totally connected com-
ponents. To any organizational graph in the collection of graphs a set of payoffs is assigned
reflecting the set of possible outcomes the players can achieve by organizing themselves
according to the internal structure given by that graph. So, the set of payoffs attainable
to a group of players depends on the organization within that group. It should be stressed
that we allow for multiple organizational structures within a given group of players. For
every coalition of players, a set of payoffs is assigned to any relational graph structure that
might evolve for that coalition.

Following the standard definition for coalitional games, the core of a graph game is
defined by the set of all payoff vectors attainable for some internal organization of the whole
set of players satisfying that there is no coalition of players that can organize themselves by
means of an organizational graph in the collection of possible graphs, such that all players
in that coalition can improve upon their payoff.

To prove the nonemptiness of the core we generalize the concept of coalitional bal-
ancedness to graph balancedness. To do so, to each graph a power vector is associated
whose components reflect the relative position of each player within the graph. Several
possibilities to define such power vectors will be discussed. A collection of graphs is defined
to be graph balanced if to each graph within the collection a weight can be assigned such
that the weighted sum of their power vectors is equal to the vector of ones. A graph game
is defined to be balanced if for any balanced collection of graphs the intersection of the
corresponding payoff sets is contained in the set of attainable payoff vectors of the grand
coalition. A payoff vector is defined to be in the balanced-core of a graph game if it is
in the core of the game and it belongs to the intersection of all payoff sets corresponding
to some balanced collection of graphs. Obviously the balanced-core of a graph game is a
subset of the core. It will be shown that the balanced-core of a balanced graph game is
nonempty, by formulating an intersection theorem on the unit simplex that generalizes the
well-known intersection theorem of KKM and the generalization that was used by Shapley
[21] to prove the nonemptiness of the core of a coalitional game, see also Herings [10], Ichi-
ishi [11] and van der Laan, Talman and Yang [15]. In case the game is a coalitional game

the balanced-core equals the core. However, in general the balanced-core of a graph game



is a proper subset of the core of the game and thus a refinement of the core is obtained.

For any graph game a coalitional game is obtained by defining the payoff set of
a coalition as the union over all payoff sets of the possible organizational structures of
that coalition. So, in the induced coalitional game all information about the internal
organization is ignored. It follows straightforwardly that the core of the induced coalitional
game is equal to the core of the underlying graph game, so that graph balancedness of the
graph game is sufficient for the non-emptiness of the core of the induced coalitional game.
It is well-known that coalitional balancedness guarantees the existence of the nonempty
core of the coalitional game. However, graph balancedness of a graph game does not imply
coalitional balancedness of the induced coalitional game. From this we may conclude that
more information about the internal organizational structure not only refines the core, but
also results in less severe conditions for the existence of undominated payoff vectors.

The usefulness of the concept of balanced-core in graph games will be demonstrated
by some examples resembling an unexpected relationship between noncooperative and co-
operative games. For example, the noncooperative Cournot quantity competition game
between firms producing a homogeneous commodity will be reformulated as a coopera-
tive graph game. It will then be shown that the unique element of the balanced-core of
the graph game corresponds to the Cournot-Nash equilibrium of the noncooperative game
when in the graph game all two-level hierarchical structures of the grand coalition are
allowed, while the Cournot-Stackelberg outcome is obtained when only one such a hierar-
chical graph is allowed, i.e. when the leader is a priori determined. In this way the paper
contributes to the Nash research program, see for instance Nash [17], looking for a unifying
theory in which each approach helps to justify and clarify the other.

The structure of the paper is as follows. In Section 2 graph games are introduced
and several examples of collections of graphs are discussed. We also define the core of a
graph game and the coalitional game induced by a graph game. Graph balancedness of
a game is introduced in Section 3. To do so, we first introduce the concept of the power
vector of a graph. In Section 4 the balanced-core of a graph game is defined and it is proven
that the balanced-core is not empty when the graph game is balanced. This also shows
the nonemptiness of the core of both the graph balanced game and the induced coalitional
game. Some applications and examples are discussed in Section 5. These applications show

the relationship between the theories of cooperative and noncooperative games.

2 Graph games

Aumann and Peleg [2] have introduced a cooperative non-transferable utility game with a

finite number n of players as a game in which for each nonempty subset of players, called



a coalition, a certain subset of R" of payoff vectors is available on which the coalition can
agree. When a coalition agrees on a payoff vector in the attainable payoff set, then each
player of the coalition receives a payoff as specified by this player’s component of the payoft
vector. A payoff vector that is attainable for the grand coalition lies in the core of the game
if no coalition can improve upon this vector, see Aumann [1], i.e. if there does not exist a
coalition and a vector in its payoff set that makes at least one player of the coalition better
off and gives at least the same payoff to all other players of the coalition. In van der Laan,
Talman and Yang [14] this coalitional game is generalized to permutional games in which
an attainable set of payoff vectors is assigned to any ordered partition of a coalition of the
set of players, i.e. the set of attainable payoff vectors of a coalition is allowed to depend on
a given partition of the coalition and a given collection of permutations on the collection
of player sets in the partition.

In this paper we further generalize the concept of cooperative non-transferable utility
games by allowing that the set of attainable payoff vectors of the players in a coalition
depends on the organizational structure within that coalition. To do so, any possible
internal structure within a set of players will be modelled by means of a graph. A graph
G is defined to be a pair (V, A(V)), where V is a non-empty finite set of elements, called
the vertices of the graph, and A(V) is a finite collection of ordered pairs of elements of V,
called the arcs of the graph. An arc is assumed to order always two different vertices. In
our setup V' is a non-empty subset S of the set N' = {1,...,n} of agents or players.! Then
a graph G = (S, A(S)) denotes a coalition S C N of players and an internal organizational
structure within the coalition given by the set A(S) of arcs. For given A(S), any two
different agents 4,7’ € S have no organizational relation in case both pairs (i,7') and (7', 1)
are not in A(S), ¢ is ordered above i’ if the pair (i,i") € A(S), and i’ is ordered above i if
the pair (7/,7) € A(S). Observe that we don’t impose any restrictions on the graph, except
that we exclude the pairs (i,4) from A(S), ¢ € S. So, neither completeness nor transitivity
of the ordering is required. It should be noticed that we also allow that for some 7,7 € S,
both pairs (4,4") and (¢',4) are in A(S). To simplify the discussion, an agent ¢ in S is said
to dominate ¢’ in S within the organizational structure A(S) in case (i,i") € A(S) and
(i',1) € A(S). Two different agents ¢ and ¢’ in S are said to be equally ordered within A(S)
in case A(S) contains both (¢,4") and (¢',4). Observe that two equally ordered agents i and
i’ may take different positions within A(S) in the sense that there may exist a third agent
1" € S such that ¢ dominates ¢”, while " dominates 7.

For a subset S of A, the collection of all possible graphs G with vertex set S is
denoted by G(S). The collection of all graphs, GV, is then obtained by taking the union of

'In the sequel we only consider nonempty subsets S of N.



G(S) over all S, i.e.
QN = Uscn Q(S)

We now have the following definition of a cooperative graph game, where a set X C IR"
is said to be cylindric with respect to S C {1,...,n} if for any two vectors = and y in R"
with z; = y; for all i € S, it holds that x € X if and only if y € X.

Definition 2.1 (Graph Game)

A non-transferable utility game in graph structure or graph game on a collection of players
N = {1,...,n} consists of a nonempty collection T of elements of GV and a function v
from T to the collection of subsets of R™ (including the empty set) satisfying that for every
graph G € T" being an element of G(S), the set v(G) C R" is cylindric with respect to S.

In the sequel we denote a graph game with a function v on a collection I' of graphs
by the pair (I',v). The collection I' is the set of graphs on coalitions of A that could
evolve in the model and v is the payoff function assigning to every graph in I' a set of
payoff vectors. If v € v(G) with G € G(S) for some coalition S of players, then the
members of S can guarantee themselves a payoff u; for each ¢ € S, independent of what
the players outside the coalition S do, by organizing themselves according to the graph
G. When G € T is a graph in G(N), then v(G) is the set of payoff vectors the players of
the grand coalition N can guarantee themselves when the players coordinate according to
the graph GG. Before continuing by analyzing the concept of graph games, we first discuss
some interesting classes of graph games. To describe these specific collections, we introduce
somewhat more terminology.

A graph (S, A(S)) is said to be empty if A(S) = 0 and is said to be complete if
any two different agents ¢,7’ € S are equally ordered, i.e. both (i,7') and (i,7) belong
to A(S). A complete graph (S, A(S)) is also called a coalitional graph. Clearly, for given
S the coalitional graph (S, A(S) is uniquely defined and hence the number of coalitional
graphs is equal to 2" — 1, namely one graph for each (nonempty) subset S of /. Since in
a coalitional graph (S, A(S)) each two different players in S are equally ordered, we have
that all players are in the same position.

A graph (S, A(S)) is said to be connected if it cannot be expressed as the union of
two disjoint graphs, i.e. there are no two graphs G! = (S, A(S1)) and G? = (s, A(S2))
such that S; and Sy are disjoint, whereas S = S; U Sy and A(S) = A(S;) U A(Sy).
Given a graph G = (S, A(S)) on S, a path in G is a finite sequence of ordered pairs
(i1,12), (42,73), - - -, (4m—1, im) such that 4; € S for all j =1,...,m and (i;,4;41) € A(S) for
all j =1,...,m— 1. If i1 = ,,, then the path is called a circuit in G. A connected graph



G without circuits is called a hierarchy. So, a hierarchy only exludes circuits, but does not
impose any other restrictions on the graph. The connectness of the graph only states that
each two different players in S are connected to each other by a sequence of other players,
i.e. in a hierarchical graph G any player i € S is connected to any other player ¢/ € S
by a finite number m, 0 < m < |S| — 2, of other players i, ...,y such that for each j,
j=0,...,m, at least one of the two ordered pairs (i;,4;+1) and (;41,1;) is in A(S), where
to =1 and 4,1 =17

In a graph G = (S, A(S)), a player ¢ € S is called a leader or topman if i dominates
at least one player ¢ € S, so (i,i') € A(S), and there does not exist a player i” € S such
that (i”,7) € A(S), i.e. i is undominated; a player i € S is called a follower or bottomman
if 7 is dominated by at least one player i’ € S, so (i',i) € A(S), and there does not exist
a player i" € S such that (i,i") € A(S), i.e. if i does not dominate any other player; a
player i € S is called a middleman if there exist players i',i” € S such that (,7') € A(S)
and (i",7) € A(S), i.e. if ¢ dominates and is dominated; a player ¢ € S is called a dummy
if for any ¢ € S neither (¢,7') nor (¢/,7) belongs to S, i.e. if i dominates nobody and
nobody dominates ¢ in A(S). Observe that the sets of topmen, bottommen, middlemen
and dummies form a partition of the set S.

All players on a circuit in A(S) are middlemen. Since a hierarchical graph is con-
nected, a hierarchy does not contain dummies (except for the trivial hierarchy that consists
of one player only. Moreover, a hierarchy has at least one topman and one bottomman, but
may contain multiple topmen or bottommen. In the sequel a hierarchy with one topman
or one bottomman is called a pseudo-tree. In a pseudo-tree with one topman there is a
path from the unique topman to every other player in the graph and in a pseudo-tree with
one bottomman there exists for every other player in the hierarchy a path from that player
to the unique bottomman. If for every other player the path from the unique topman
to that player, respectively from that player to the unique bottomman, is unique, then
the pseudo-tree is called a tree. A tree with one topman is called a top-down tree and a
tree with one bottomman a bottom-up tree. A tree (S, A(S)) with one topman and one
bottomman consists of one path from the topman to the bottomman and hence induces an
ordering or permutation on the players of S. Therefore such a tree is called a permutation
tree. For the set S = {1,2,3} of three players, all possible types of hierarchies are given
in Figure 1. Figure la shows a permutation tree with player 1 as the topman, player 2 as
middleman and player 3 as the bottomman, Figure 1b is a bottom-up tree with players 1
and 2 as topmen and player 3 as the bottomman, and Figure 1c is a top-down tree with
player 1 as the topman and the players 2 and 3 as bottommen. Figure 1d is a pseudo-tree
with player 1 as topman, player 2 as middleman and player 3 as bottomman. Figure 2

shows two types of hierarchies with 2 topmen (1 and 2) and two bottommen (3 and 4).
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Figure 1. Trees on a three player set.

1 2 1 2
v \/
4 4

Figure 2. Two hierarchies on a four player set.



Example 2.2

We consider the model of the internal organization of a firm as given in Ruys and van den
Brink [20]. According to their model a firm is characterized by a top-down tree defined by
a number £ of hierarchical levels and a number ¢ yielding the span of control. The number
of hierarchical levels gives the maximal length of a path (the number of arcs) from the
unique topman to a bottomman, i.e. each path from the topman to a bottomman passes
at most ¢ — 1 middlemen. The span of control gives the number of agents that is dominated
by the topman and any of the middlemen, i.e. the topman and each middleman dominate
precisely ¢ other agents. For any given set S of players, and any permutation (7, ..., 7s))
of the players in S, there is a unique permutation tree with |S| — 1 levels and span of
control ¢ = 1 yielding a path from the topman ; to the bottomman 5. Furthermore, for
any player s € S there is a unique top-down tree with 1 level and ¢ = |S| — 1 having s as
the unique topman. Further, for |S| < 4, |S| = 6 and |S| = 8 there are no other top-down
trees with fixed span of control. For |S| =5 there is only one other type of top-down tree
with fixed span of control, namely with ¢ = 2 and ¢ = 2. For |S| = 7 there are three other
types of top-down trees with fixed span of control, given in Figure 3, namely trees with
{ =c =2, trees with £ = 2 and ¢ = 3 and trees with £ = 3 and ¢ = 2. Observe that
the number of trees concerns the number of types, of course many trees are obtained by
permutating the players over the different positions in the tree. The set of payoffs may
not only differ between different types of trees but may also depend on which players are
located at which position on the tree. For example the payoffs for every one might be
higher if the more skilled workers are located in the top of the tree and the less skilled

workers closer to the bottom.

The example shows that the collection of hierarchical graphs can be severely restricted by
making additional assumptions, for instance that the agents can only organize themselves
by a top-down tree with constant span of control. As we have seen above, there are for
instance only five possible types of trees in case |S| = 7 and a constant span of control is
required. Observe that this number even reduces to the three types, one with £ = |[S|—1 = 6
levels and ¢ = 1, one with £ = 1 level and ¢ = |S| — 1 = 6 and one with ¢ = ¢ = 2 when we
require that also each path from the topman to a bottomman must have the same length.
Another application with a natural limitation on the number of attainable graphs is given

in the next example.

Example 2.3
In this example we consider the organization of an industry with a number of firms com-
peting each by quantity competition. So, each firm first chooses an output quantity and

then the price follows from the inverse demand function. A well-known solution for this



Figure 3. All types of top-down trees with fixed span of control 1 < ¢ <6, |S| =7.

industrial organization model is the Cournot-Nash solution, in which each firm reacts opti-
mally given the behavior of the others, i.e. each firm chooses a profit maximizing quantity
of output given the choices of the other firm. In case there are n firms, the industry is
modelled by n bottom-up trees with one of the players as bottomman and all other n — 1
players as topmen. In each tree, first the topmen choose a quantity independent from each

other, then the single bottomman reacts optimally on the choices of the topmen.

We now consider some examples of specific graph games. First of all it should be
noticed that our general framework comprises the standard coalitional games as a special

case.

Definition 2.4 (Coalition game)
A graph game (I',v) is a coalitional game if any graph (S, A(S)) € T is a coalitional graph.
The game (I',v) is the full coalitional game if I is the collection of all 2™ — 1 coalitional

graphs.

A second interesting class of games is the class of partitioned coalitional games. A
collection {(S1, A(S1)), ..., (Sm, A(Sm))} of m graphs is a partition of the graph (S, A(S))
if the collection {Sy,..., S} is a partition of the set S of vertices and the collection
{A(S1),...,A(Sn)} is a partition of the set A(S) of arcs.

9



Definition 2.5 (Partitioned Coalition game)
A graph game (I',v) is a partitioned coalitional game if every graph (S, A(S)) € I' can be
partitioned into a collection {(S1, A(S1)), ..., (Sm, A(Sm))} of coalitional graphs.

Observe that for any given S and any given partition {51, ..., Sy} of S the graph (S, A(S))
such that {(S1, A(S1)),..., (Sm, A(Sm))} is a partition of (S, A(S)) into coalitional graphs
is uniquely defined, namely the graph (S, A(S)) being the union of the collection of the
coalitional graphs (S;, A(S;)), j = 1,...,m. In van der Laan, Talman and Yang [14]
cooperative games have been studied which can be modelled within the framework of this
paper by the collection of ordered partitioned coalitional graphs. A graph (S, A(S)) is
an ordered partitioned coalitional graph if the set S can be partitioned in a collection of
subsets Sj, j = 1,...,m, such that for any two players ¢,7" € S it holds that (i,") € A(S) if
and only if either for some j =1,...,m, both 7 and 7 belong to the same subset S, or for
some j =1,...,m—1, we have that ¢ € S; and ¢’ € Sj1,, i.e. forall j =1,...,m the graph
restricted to S; is a coalitional graph and the partition {S,..., Sy} if S is ordered in the
sense that any player in the set S; dominates any player in S;; or shortly S; dominates

Sis1,j=1,...,m—1.

Definition 2.6 (Ordered Partitioned Coalition game)
A graph game (T',v) is an ordered partitioned coalition game if every graph (S, A(S)) € T

18 an ordered partitioned coalitional graph.
Finally we define hierarchy games and some subclasses of hierachy games.

Definition 2.7 (Hierarchy, Tree and Permutation games)

A graph game (T',v) is a hierarchy game if every graph (S, A(S)) € T is a hierarchy.

A hierarchy game (T',v) is a tree game if every graph (S, A(S)) € T is a tree.

A tree game (I',v) is a permutation game if every graph (S, A(S)) € ' is a permutation
tree.

It should be noticed that the analysis in this paper is entirely valid in the most
general case where no a priori restrictions are placed on the internal structures of coalitions,
i.e. incase ' = GV. However, restricting the graphs to a certain subclass of the class GN of
all graphs and hence reducing the complexity of the game to a game (I", v) for some subset
' of GV satisfying certain properties will often facilitate the analysis. The possibility to
do so of course depends on the underlying application.

We conclude this section by restating the core concept for graph games and the

relationship between the core of a graph game and the core of a coalitional game induced
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by the graph game. For any graph game (I',v), let the function ¢’ from the collection of
subsets of A/ to the collection of subsets of R™ be defined by

v'(S) = Ugerngs) v(G), S CN,

i.e. the payoff set v/(.S) is defined to be the union of all payoff sets assigned to the graphs
on the coalition S of players. This function v' induces a non-transferable utility n-player
game in coalitional structure, denoted by (N,v’). Since I' C GV and we also allow for
empty payoff sets if G € T, it might be possible that also some of the payoff sets v/(S) are
empty. The core of the induced coalitional game (N, v"), denoted by C(N,v), is as usual
defined by the set of vectors x € v'(N) such that there do not exist a coalition S C N
and vector y € v'(S), such that y; > z; for all i € S. Analogously we say that a payoff
vector z is in the core of the graph game (T',v) if z € v/(N)) = Ugerngv) v(G) and there
are no coalition S and graph G € I' N G(S), such that all the members of the coalition S

can improve upon .

Definition 2.8 (Core of a Graph Game)

The core of a non-transferable utility graph game (I',v) is the set of vectors x € R"™ satis-
fying that x € v'(N) and there do not exist a coalition S C N, graph G € T N G(S) and
vector y € v(Q) such that y; > x; for alli € S.

In the sequel we denote the core of a graph game (I',v) by C(I',v). Observe that a core
element of the graph game lies in v(G) of some graph G € G(N) on the grand coalition
and hence lies in v'(NV)). Now we have the following lemma, which shows that the core of

a graph game coincides with the core of the induced coalitional game.

Lemma 2.9

For any graph game (T',v) and the induced coalitional game (N, v") it holds that C(T,v) =
C(N, ).

Proof.

For some z € R", first suppose x & C(N,v’). Then there exists a coalition S C N and a
vector y € R™ such that y € v/(S) and y; > z; for all i € S. By the definition of v/(S) this
implies that there is some graph G in I' N G(S) such that y € v(G). Hence x ¢ C(T',v).
Secondly, suppose that = ¢ C(I",v). Then there exist a coalition S, graph G € T' N G(S)
and vector y € v(@) such that y; > x; for all i € S. By definition we have that y € v/(S).
Hence = ¢ C(N,v'). Q.E.D.
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3 Balancedness of graph games

It is well-known that the core of a non-transferable utility coalitional game is not empty
if the game is balanced. In this section we will generalize the concept of balancedness for
coalitional games to balancedness for graph games. Based on this definition we introduce
the concept of balanced-core of a graph game and show that an element in the balanced-
core is also in the core of the graph game. In the next section we prove that a balanced
graph game has a non-empty balanced-core.

First we introduce the notion of power measure on a graph. For given S C N, let
Gs = (S, A(S)) be a graph in G(S). Then a power measure on Gg assigns a real number
to any player in .S, which can be seen as the importance or power of that player within the
graph Gg. To facilitate the introduction of power measure, we first define for every player

i € S in a graph Gg the sets of predecessors and successors by
P'(Gs) = {j € 8|(4,1) € A(S)}

and
D'(Gs) = {j € S(i,j) € A(S)},

respectively, i.e. P*(Gg) is the set of all players by which 7 is dominated in G and D'(Gg)
is the set of all players in Gg dominated by i. A power measure that is well-known in graph
theory is the score measure, see for instance Behzad, Chartrand and Lesniak-Foster [3] and
van den Brink [6]. For tournaments, i.e. graphs (S, A(S)) such that for any pair 4,7 of
two different players in S either (i,4") or (¢',4) is in A(S) the score measure coincides with
the Copeland measure and has been axiomatized by Rubinstein [19], see also Bouyssou
[5]. According to the score measure, the power of a player 7 in Gg is equal to the number
of elements in the set D'(Gg). Another measure has been developed by van den Brink
and Gilles [7], see also [8], according to which the power of a player i in Gg is given by
Y jepi(cs) | P?(Gs)|~". The interpretation of this so-called BG or dominance measure is as
follows. Initially, each player gets one point. This point is equally distributed amongst all
his predecessors, so amongst all the players by which a player is dominated. The power of
a player is the sum of all his shares in the points of the players he dominates.

Clearly, except when A(S) is empty, each of the above mentioned measures can be
easily normalized in such a way that the sum of the powers is equal to one. When A(S)
is empty, it is natural to set the normalized power of a player in Gg equal to |S|t. For
our purposes, we further assign for each Gg also a power to all players not in S by setting
the power of a player j equal to zero when j ¢ S. This gives the following definition of a
power measure and a power measure function, a function that associates a power measure

to each graph in GN.
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Definition 3.1 Power measure
Let S C N be a coalition of players and Gs = (S, A(S)) a graph on S. Then a power

measure for Gg is a vector m(Gg) € R" such that
(i) mi(Gs) =0ifj &5,

(i)  Yiesmi(Gs) =1.

A power measure function for GV is a function m : GV — R™ such that m(Gg) is a power
measure for all Gg € GV.

For practical use the above definition of power measure does not require enough to be useful
in particular situations. For example, the vector m(Gyg) defined by m;(Gg) = 1/|S| for all
i € S and m;(Gg) = 0 for all i € S satisfies the conditions. In this case, the power measure
depends on S, but not on the graph Gg on S. In fact this measure is usually applied in
coalitional games to define balancedness. In our more general framework of graph games,
we want to allow for a graph dependent power measure. This does not necessarily mean that
two different graphs always get different power measures. For instance, it is quite natural
to assign the above defined vector m for both the empty graph and the coalitional graph on
a set S, and also for any other graph in which all players take symmetric positions, e.g. the
circuit given by the graph Gg = (S5, A(S)) with A(S) = {(4;,%;+1) | j = 1,...,|S|}, where
i1,12,...,1% are the different players in S and 4541 = 7;. On the other hand, it is natural
to allow that players have different power when they do not take symmetric positions in the
graph. Therefore we introduce a power measure that will be called the positional measure.
While the score measure of a player only depends on his number of successors and the
dominance measure of a player on his set of successors and the sets of predecessors of all
his successors, the positional measure of a player in a graph Gg = (5, A(S)) depends on
all arcs in the set A(S), i.e. it depends on the full graph and the position of the player
within the graph.

To define the positional measure we consider the system of |S| equations induced
by a graph Gg = (S, A(S)) given by

Ty =c+ Z Tj— Z Zj, iES, (1)

jGDi(Gs) jGPi(Gs)
where ¢ € R is a constant to be determined below. Bringing the two last righthand side

terms to the lefthand side of the equation, this system of equations can be written as
M(Gg) - x = ce®, (2)

where x is the |S|-dimensional vector with components (;);cs and e° the |S|-dimensional

vector of ones, and where M(Gy) is the |S| x |S| matrix given by

M”<GS) =1 for all ¢ S S

13



and for all i # j, i,j € S by

M;;(Gs) = 1ifje€ P(Gg) and j € D'(Gy),
Mij<Gs) = -1 lf] - Dl(Gs) and j Q’ Pi(Gs),
M;;j(Gs) = 0 otherwise.

For any graph Gs, we now have the following lemma on the properties of the matrix
M(Gs), where I° the |S| x |S| identity matrix and 09 the |S|-dimensional vector of zeros.

Lemma 3.2
For any graph Gg € GV it holds that

(i) M(Gs) + MT(Gg) =217,
(i) T M(Gg)x = Y2 (2:)? for any = = (:)ies,

(iii) M Y(Gs) exists.

Proof.
(i) For all i # j we have that M;;(Gs) = 0 if and only if M;;(Gs) = 0 and M;;(Gs) =1
if and only if M;;(Gs) = —1. Together with M;;(Gs) = 1 for all 4, it follows that

M(Gs) + MT(Gg) = 2I°.

(ii) From (i) it follows that for any = = (;);es it holds that 2" M(Gs)z = 12T (M(Gs) +
MT(Gs)z = 2Tz = Xl (2,)2

(iii) From (ii) it follows that T M(Gg)z = S (2,)2 > 0 if z # 05. Hence, M(Gy) is
regular, so that M 1(Gg) exists. Q.E.D.

From part (iii) of the lemma it follows that for any graph G and any c the system (2) has

a unique solution z(Gg, ¢) given by the vector
z(Gg,c) = cM 1(Gg)e’. (3)

Clearly, z(Gg,c) = cx(Gs, 1). Moreover, it follows that

S|
> 2:i(Gs,c) = ¢S  x(Gg,c) = ce® M~ (Gg)e®. (4)
i—1

So, taking ¢* = (eSTM_l(GS)eS)_1 and defining x(Gs) = 2(Gg,c*) = c*M~1(Gg)e?, it
follows that

S|
;xi(GS) = c*e® MY (Gy)e® = 1. (5)

We now define the positional measure of a player i in a graph Gg as z;(Gg) if i € S and

zero otherwise.
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Definition 3.3 Positional measure
Let S C N be a coalition of players with organizational structure Gs € G(S). Then the

positional measure is the vector mP(Gg) € R™ given by
m;i(Gs) = 0ifi &S5,
m;(Gs) = zi(Gs) ifi € S.

By definition we have that the sum of the components of the power measure is equal to
one. So, according to system (1) the positional power x;(Gg) of a player i € S is equal to
the normalization constant ¢* = (esT M~YGs)e® )_1 plus the sum of the powers of all his
successors (all players dominated by ) minus the sum of the powers of all his predecessors
(all players which dominate 7).

In the next examples the normalized score measure, denoted by m?*(Gg), the nor-
malized dominance measure, denoted by m%(Gg) and the positional measure m?(Gyg) are
compared with each other for some typical graphs Gs. To avoid notational burden, in all

examples we take S = N.

Example 3.4
First, let S ={1,...,n} and let Gg be the coalitional graph, the empty graph or a circuit,
respectively. In all three cases we have that m{(Gs) = m(Gs) = mf(Gs) = < for all
1=1,...,n.

Second, we consider the five player graph on the set S = {1,...,5} of players being
partitioned in the coalitional graph on the set S; = {1,2,3} and the coalitional graph on
the set Sy = {4,5}. The measures for this graph are given by:

1
m8<GS) = §<272727171)T7
1
m*(Gs) = 5(1,1,1,1,1)T,

1
mP(Gg) = g(1,1,1,1, '

In this case only the score measure differentiates between the different positions taken by

the first three players and the last two players.

Example 3.5
Let n = 4 and let Gg be the permutation tree on S given by A(S) = {(¢,i+1) | i =1,2,3}.
Then the measures are as follows:

1

mS<GS) - §<1717170)T7
1

md<GS> - 5(1717170)T7
1

mp(GS) = ﬁ(77 27 47 1)T
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The first two measures don’t differentiate between the topman 1 and the two middlemen
2 and 3. The positional measure differentiates between the topman and the other players.
These properties hold for any permutation tree. In this example we also see that the
positional measure gives the topman the highest power and the bottomman the lowest. The
former property is true for any permutation tree, but the latter is not. For a permutation
tree the positional measure typically shows that the powers have alternating high and low
values. The high power of the topman induces a low power for the second man. According
to equation (1) this results in a higher power for the third man in the hierarchy and so on.
For n = 3 the positional measure is given by m?(Gs) = £(4,1,2)". In some organizations
this maybe indeed reflect the weak position of the middlemen as intermediator between
the topman and the bottomman. Since the middleman gets his direct orders from the
powerful topman, his power is quite limited. The bottomman, dominated by the weak
middleman, may have more possibilities for making his own decisions. For higher values
of n the alternating scheme dies out when getting lower in the tree, for instance for n =9

the positional measure is given by m?(Gs) = 5 - (8,3,6,4,5,4,4,3,2)".

Example 3.6
We now consider the trees given in Figure 4, where the indices of the players are indicated

in the figure. The respective measures are:

graph 4a graph 4b graph 4c
m*(Gs) £(1,1,1,0,0,0,0)" 1(1,1,0,0,0)"  1(1,2,0,0)",
m(Gs) 3(1,1,1,0,0,0,0)" 1(1,1,0,0,0)" 1(1,3,0,0)T,
mP(Gs) (9,2,2,3,3,3,3)7 £(9,4,-2,3,3)7 1(3,4,-2,1)".

ol |

1 1 1 2

4a 4b 4c

Figure 4.
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For the 7 player top-down tree with fixed span of control of Figure 4a we see again that in
the positional measure the middlemen have the lowest power. In the 5 player top-down tree
of Figure 4b the positional measure gives the player 3, dominated by the strong topman
and not dominating any player himself, a negative power. In both cases the score measure
is equal to the dominance measure, which is due to the fact that each player is dominated
by at most one other player. In the four player hierarchy of Figure 4c player 3 is dominated
by both 1 and 2, while player 4 is dominated by player 2 only. In this case the score measure
and the dominance measure are different. Observe that in the latter example the positional
measure not only differentiates between the two top players, but also differentiates between
the two bottom players 3 and 4, according to the different positions in the graph taken by
these two players. Because of the weak position of player 3, the positional power of this

player becomes negative.

Example 3.7

Finally we consider the three player graphs given in Figure 5. In these graphs the set of
players S = {1,2,3} is partitioned into the collection S; = {1} and S, = {2,3}. Figure
ba is a partitioned graph with a permutation tree on the set Sy. The graphs of Figures 5b
and 5c are ordered coalitional graphs. In 5b S; dominates Sy and in 5¢ Sy dominates Si.

The respective measures are:

graph 5a  graph 5b  graph 5c
m*(Gs) (0,1,0)" 2(2,1,1)7 £(0,1,1)7,
m¥(Gs) (0,1,0)"  1(2,1,1)T 1(0,1,1)7,
mP(Gs) 3(1,1,0)" (1,0,0)" (-1,1,1)7.

2 1 2 3
°
1
3 2 3 1
oa ob oc

Figure 5.

The most appropriate measure to use will depend on the particular application one

has in mind. For instance, as we have seen in Example 3.4 the dominance measure and the
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positional measure do not discriminate between players in a partitioned coalitional graph.
So, when considering an example in which all available graphs are coalitional partitions,
there are cases in which one wants to take the normalized score measure as the most
appropriate measure, giving more power to a player when the number of players in the
subset to which that player belongs increases. On the other hand, being part of a larger
coalition means also to coordinate with more players, which has an offsetting effect on the
power of an individual player, and which makes the positional measure more appropriate.

We now have the following definition of graph balancedness, where m is some power
measure as defined in Definition 3.1. It should be observed that the definition depends
on the chosen power measure, i.e. a family of graphs may be balanced for some power
measure and not for some other measure. Nevertheless, the following analysis is valid for

alny power measure.

Definition 3.8 (Graph Balancedness)
For a given power measure function m, a family F = {F' ..., F*} of k graphs in the
collection GV is graph balanced if there exist positive numbers N, j=1,...,k, such that

k _ 1
> Am(F7) = —eV.

=1 n

Graph balancedness of a family F of k graphs F',..., F*¥ in GV means that to any graph
Fi 5 =1,...,k a weight \; can be assigned in such a way that the total power of
every player i € N is the same and therefore is equal to % Geometrically it means
that F is graph balanced if and only if the vector %eN lies in the relative interior of the
convex hull of the vectors m(F7), j = 1,...,k. Notice that in Definition 3.8 it must
hold that Zle Aj = 1. Observe that graph balancedness coincides with the well-known
notion of coalitional balancedness when every graph F* = (S* A(S*)) in the family F
is a coalitional graph and the power measure satisfies m;(F¥) = 1/|S*| if j € S* and

m;(F*) = 0 otherwise. We now have the following definition of a balanced graph game.

Definition 3.9 (Balanced graph game)
A non-transferable utility game (I, v) with power measure function m is a balanced graph
game if for every graph balanced family F = {F*,..., F*} of graphs in T it holds that

Nk u(F9) C o/ (N).

Observe that this definition boils down to the standard definition of a balanced coalitional
game when we take I' as the collection of all coalitional graphs. In the sequel we speak
shortly about a balanced graph game (balanced coalitional game), if we mean a graph

balanced (coalitionally balanced), non-transferable utility graph game (coalitional game
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respectively). Surprisingly, the balancedness of a graph game does not imply that also the
induced coalitional game as defined in the previous section is a balanced coalitional game.
For an example where I' is the collection of all ordered coalitional partitions, we refer to
van der Laan, Talman and Yang [14].

In the next section it will be shown that the core is nonempty if the graph game is
graph balanced and every set v(G), G € I' N G(S), is comprehensive, closed and bounded
from above in its projection space R® defined by R® = {(z;)ies|r € R"}. From Lemma
2.9 it also follows that it is sufficient for the nonemptiness of the core of a coalitional game
induced by a graph game that the underlying graph game is balanced and hence it is not
required that the coalitional game itself is coalitionally balanced.

To conclude this section we remark that Billera [4] has pointed out that in case of
coalitional games there are many ways to define the powers of the players. In the same way
there is a lot of freedom to define the powers in case of graph games. Notice however that
this has consequences in forming graph balanced families and hence on the fact whether
or not a game in graph structure is graph balanced. Since the core of a game does not
depend on the definition of the power vectors, this implies that for the nonemptiness of
the core of a graph game it is sufficient to have graph balancedness with respect to some
collection of power vectors. For example, if we take m(G) = ﬁes for every G € I'N G(5),
then the graph game is balanced with respect to these constant (for every S) vectors if
and only if the induced coalitional game is balanced. Hence, an induced coalitionally game
being balanced implies that the original graph game is graph balanced with respect to
some specific collection of power vectors. However, the other way around is not true, i.e.
a coalitional game induced by a balanced graph game may not be coalitionally balanced
with respect to any set of power vectors. Moreover, while the core is independent of the
choice of the power vectors, the balanced-core to be introduced in the next section will
depend on this choice. The choice of the power vectors should depend on the economic, or
in general game theoretic, situation under consideration. The appropriate choice of power

vectors in a given application is a point of further research.

4 Balanced-core

For graph games the concept of the core can be refined to what we will call the balanced-
core. The balanced-core of a graph game consists of all elements of the core that can be
supported by a balanced collection of graphs of coalitions and will be denoted by BC(T", v).
We show that the balanced-core of the graph game (I", v) is nonempty if the game is graph
balanced. Furthermore, from the definition of the balanced-core it follows immediately

that the balanced-core of a graph game is a subset of the core of this game, and in many
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cases a proper subset of the core. In case I' is the collection of all coalitional games and so
(', v) is a coalitional game, then its balanced-core is equal to the usual core of a coalitional

game.

Definition 4.1 (Balanced-core)
The balanced-core of a non-transferable utility graph game (I',v) with power measure func-

tion m is the set of all vectors x € Ugerngny v(G) satisfying that

(i)  for any S C N, there does not exist a graph G € T NG(S) and a vector y € v(QG)
such that y; > x; for alli € S,

(ii)  there exists a graph balanced family {F*,..., F*} of k graphs in T, such that x €
Ns_v(F7).

From condition i) of Definition 4.1 it follows immediately that a payoff vector in the
balanced-core lies also in the core of the graph game. Condition ii) states that an element of
the core is an element of the balanced-core only if it lies in the intersection of the payoff sets
of a graph balanced collection of graphs, i.e. if it is supported by a graph balanced family
of graphs. Since each player in N has an equal total weight in a graph balanced family
of graphs, elements in the balanced-core have an appealing stability property. All players
have an equal weight in supporting a balanced-core payoff vector, while a balanced-core
payoff vector also lies in the payoff set of any graph in the balanced family.

In order to prove the existence of a payoff vector in the balanced-core of a balanced

graph game we first introduce an intersection lemma on the (n—1)-dimensional unit simplex

A defined by
i=1

Lemma 4.2
Let T' C GV be a collection of graphs and for any G € T, let C be a (possibly empty)
closed subset of A such that

(i) the collection of sets CY covers A,

(ii)  for any q in the boundary of A it holds that S C {i € N'| ¢; > 0} when q¢ € C% for
some G € I'NG(S).

Then, for any power measure function m there is a graph balanced family {F*,... F*} of
k graphs in T' for which it holds that

Nt C £0.
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Before proving the lemma, observe that for a given collection of graphs I' € GV, condition
(i) states that the simplex A is covered by closed subsets C“ G € I'. Condition (ii) is
some boundary condition. Although no further conditions on the collection I' are required,
and hence many elements of G may be missing in I" (or, stated in terms of a graph game,
many graphs in GV may have empty payoffs sets or are missing in I'), boundary condition
(ii) implies that for any player ¢ € A it holds that the single player graph Gg = (S, A(S))
with S = {i} (and therefore A(S) = ) is in I'. The lemma states that under conditions
(i) and (ii) there exists a graph balanced collection of graphs for which the corresponding
subsets of A have a nonempty intersection. This generalizes the well-known intersection
theorem of Shapley [21], see also [10], in which only sets C* are defined for coalitions S C N

Proof of Lemma 4.2.
For any G € I, let us define the vector ¢ = LV — m(G). Let Y™ be defined by

Y™ = conv({c” | G € T}),

where conv(X) denotes the convex hull of a set X C R". Observe that Y7, ¢§ = 0 for all

G and hence 377, y; = 0 for all y € Y. Next, define the correspondence F': A — Y™ by
F(q) = conv({c | ¢ € C“}), g € A.

Since the collection of subsets is a covering of A, for every g € A, the set F(q) is nonempty.
It is easily verified that, for every ¢, F'(q) is convex and compact. Moreover, U,ea F'(q) is
bounded and the mapping F' : A — Y™ is an upper hemi-continuous mapping from the set
A to the collection of subsets of the set Y. Further, both sets A and Y" are nonempty,
convex, and compact. Next, let H be the mapping from Y™ to the collection of subsets of
A defined by

Hy)={ge A q'y < q'y for every q € A}, yeY™

Clearly, for every y € Y™ the set H(y) is nonempty, convex, and compact, and H is
upper hemi-continuous. Hence, the mapping D from the nonempty, convex, compact set
A x Y™ into the collection of subsets of A x Y defined by D(q,y) = H(y) x F(q) is upper
hemi-continuous and for every (¢q,y) € A x Y™, the set D(q,y) is nonempty, convex, and
compact. According to Kakutani’s fixed point theorem the mapping D has a fixed point
on A x Y ie. there exist ¢* € A and y* € Y satisfying y* € F(¢*) and ¢* € H(y").

Let o* = ¢*Ty*. From ¢* € H(y*) it follows that ¢'y* < o* for every ¢ € A. By
taking ¢ = e(i), where e(i) is the i-th unit vector, we obtain that yf < o*, i = 1,...,n.

Hence,

(6)

yr =a if gf >0,
yr <aof ifgf =0.
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Since > ; yf = 0, we obtain that a* > 0.

On the other hand, y* € F(q*) implies there exist nonnegative numbers A}, ..., A;
satisfying Z?Zl A =1and y* = Zle )\;chj for a family {F’, j = 1,... k} of graphs
such that ¢* € C*’. Without loss of generality we may assume that A7 > 0 for every
j=1,...,k Let S; C NV be the set of players on which Fj is defined, i.e. F; = (S}, A(S;))
for some set of arcs A(S;). By the boundary condition we have that ¢ = 0 implies that

i ¢ S7 for every j =1,...,k, and thus ¢/ = 1. Hence,
yi =Y X" ==>0 if ¢ =0. (7)
i=1 "

Suppose there exist an index i such that ¢f = 0. Then it follows from the equations (6)
and (7) that yF > 0 for all ¢, which contradicts 3" ; yF = 0. Consequently we have that
g > 0 and thus y7 = a*, 1 =1,...,n. Together with >"" ; y* = 0 this proves that y* = 0.
Consequently, {F',..., F*} is graph balanced. Since ¢* € Nf_,C* ’_ this completes the
proof. Q.E.D.

The proof of the nonemptiness of the balanced-core of a balanced graph game follows

by applying Lemma 4.2 under the conditions stated in the next theorem.

Theorem 4.3 (Nonemptiness Balanced-core)
A non-transferable utility graph game (', v) with power measure function m has a nonempty

balanced-core if

(i) for anyi € N, the graph Gy = ({i}, A({i})) with A({i}) = 0 belongs to T and for
some o; € R, the set v(Gpy) is given by v(Gy) = {z € R" | 2; < o4},

(ii)  for every S C N and for every G € T'NG(S), the set {(z;)ies € R® | z €
v(G) and x; > «; for all i € S} is bounded,

(iii)  for every G € T, the set v(QG) is closed and comprehensive, i.e. if x € v(G), then
y € v(Q) for ally < x,

(iv)  the game is graph balanced.

Proof.

Without loss of generality we may assume that 0 € v(Gy;y) for any i € N. To apply
Lemma 4.2, we define a closed covering {C¢ | G € T'} of A satisfying the conditions of
the lemma and show that an intersection point of a graph balanced collection of these sets
induces an element in the balanced-core of the game. For given M > 0 and for any q € A,
let the number )\, be given by

A, = max{\ € R | —Mq + A" € Uger v(G)}.
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Since 0 € v(Gy;;) and because of conditions (ii) and (iii), A, exists for every M > 0 and
for any ¢ € A. Moreover, following Shapley [21], by condition (ii) M > 0 can be chosen
so large that for every i € N and ¢ € A, ¢; = 0 implies that ¢ ¢ S for any S such that
—Mq+ M € v(G) for some G € T NG(S). Now, for G € T we define

CC={qge A|-Mqg+ e cv(G)}.

Since every v(G) is closed and comprehensive, the collection of sets {CY|G € T} is a
collection of closed sets covering the simplex A, and satisfies the boundary condition of
Lemma 4.2. Hence there is a graph balanced family F = {F',..., F*} of elements of T
such that ﬁg‘?:lCFj +£ (). Let ¢* be a point in this intersection, so ¢* € C* for j =1,... k.
Then z* = —Mq* + A€V lies in ﬂ?zlv(Fj), so that z* is a payoff vector supported by the
graph balanced family F = {F!, ..., FF}.

Since the game is graph balanced we have that N%_jv(F7) C o/(NV) and hence
z* € v'(N). Now, suppose there exist a coalition S, a graph G € I' N1 G(S) and a vector
y € v(G) such that y; > zf for all i € S. Since v(G) is comprehensive and cylindric, there
is a > 0 such that z* + pe’ € v(G). However, then —Mq* + (A + p)e’ € v(G), which
contradicts that —Mq* + Ae & v(G) for any \ > Ag+. Hence x* cannot be improved upon
by any coalition S. Together with the fact z* is supported by the graph balanced family
F ={F', ..., F*} this proves that z* is in the balanced-core of (T, v). Q.E.D.

As a result of the theorem we have the following corollaries.

Corollary 4.4

For some power measure function m, let (I',v) be a graph balanced non-transferable utility
graph game satisfying the conditions of Theorem 4.3. Then the core of the game is not
empty.

Corollary 4.5
For some power measure function m, let (I',v) be a graph balanced non-transferable util-
ity graph game satisfying the conditions of Theorem 4.3. Then the core of the induced

coalitional game (N,v') is not empty.

To conclude this section we remark that in Kamiya and Talman [13] a simplicial algorithm
was proposed to find a core element of a coalitional game. Similarly, we can apply the
simplicial algorithm on the unit simplex of Doup and Talman [9] to find approximately an

element of the balanced-core and so a core element of a balanced graph game.
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5 Noncooperative solutions and graph games

We consider an industry with two profit maximizing firms producing a homogeneous good.
Each firm 4, 7 = 1,2, has a convex and differentiable cost function ¢‘(g;), where ¢; is the
quantity produced by firm i, with ¢’(0) = 0. The demand ¢ for the good is given by the
concave and differentiable inverse demand function p = P(q), saying that the total demand
for the good equals the total production ¢ = ¢; + g2 when the price p is equal to P(q). So,
the profits of the two firms depend on the quantities produced by both firms and are given
by the profit functions 7* : RZ — R defined by

A well-known solution concept for this industrial model is the noncooperative Nash-Cournot
solution in which simultaneously each firm chooses an optimal quantity given the choice of
the other firm. For given i = 1,2, let ¢; > 0 be the quantity chosen by firm j # i. Then
the optimal reaction of 7 is the quantity solving the profit maximization problem

max ¢:P(qi +q;) — ¢'(a).

qiZ

Let r*(g;) be the solution to this problem, i.e. ¢; = r’(g;) is the optimal reaction of firm
i to the quantity g; set by firm j. Under the conditions stated above on the demand and
cost functions the two reaction functions r* : R, — R, i = 1,2, are well-defined. A pair

(g, ¢}") of quantities is a Nash-Cournot equilibrium if

g =r(q)), fori,j=1,2, j#i.

We also consider the Stackelberg leader-follower quantity competition game. In this
model the follower, say firm j, responds with his optimal quantity r7(g;) to the quantity
q; set by the leader i # j. So, the leader’s profit when choosing ¢; is given by the function
7t : Ry — R, defined by

T6(@:) = @P(q + 17 (@) — @), i=1,2, j#1i.

For i = 1,2, a pair of quantities (¢, ;) is a Stackelberg solution of the noncooperative

market game with firm ¢ as leader and j # 7 as follower when
(i) ¢ =1(¢), and
(i) ¢ solves maxy,>o m5(q;).

Finally, under the conditions on the demand and cost functions stated above, the profit

maximizing problem
max g P(q;) — c'(¢:)
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of firm 7 in case this firm could control the market as a monopolist has a unique solution,
say ¢. Let MC': R, — R given by MC'(¢;) = &:(;—((;i) be the marginal cost function of
firm ¢, ¢ = 1,2. We now assume that also the following conditions hold.

(i) For both firms 7 = 1,2, the Stackelberg leadership profit function 7% is concave in

4i-
(i)  For both firms i = 1,2, it holds that P(¢™) > MC(0), j # i.

The first condition guarantees that there exists a unique Nash-Cournot equilibrium,
see for instance Tirole [22], page 225-226. The second condition, saying that the market
price in case firm ¢ operates as a monopolist is higher than the marginal cost of firm j # i
at ¢; = 0, guarantees that at the unique Nash-Cournot equilibrium both firms are on the
market, i.e. ¢~ > 0 for i = 1,2. Observe that in a Nash-Cournot equilibrium each player
has a nonnegative profit, because a firm always has the possibility to set its production
equal to zero, making profit equal to zero. Furthermore, under the first condition also the
profit maximizing problem of the leader in the Stackelberg game has a unique solution. In
the following we denote this solution with ¢, i.e. the pair of quantities (g7, 77(g”)) is the

unique pair of quantities solving the Stackelberg game with firm 7 as leader, i = 1, 2.

We want to show that the Nash-Cournot model can be formulated as a cooperative
graph game. To do so, take N = {1,2} and let ' € G be the collection {G1, G, G*, G?}
given by

(i) for i = 1,2, G; = ({i}, A({3})) (with A({i}) = 0),
(i) fori=1,2, G = ({1,2}, A%) with A" = {(5,i) | j # i}.

So, I' is the collection of graphs containing the two one-player graphs and the two two-
player graphs in which one of the players is dominated by the other player.

Next, we define the sets v(G) for G € T'. Consider first the graph G* € T', in which
player ¢ is dominated by the other player j, i.e. the firms play the Stackelberg game with
player j as the leader. Therefore we assign to this graph the set of payoffs, which can
be obtained when player j takes an arbitrarily chosen quantity ¢; and player ¢ takes his

optimal reaction ¢; = r'(g;), i.e.
v(G") = {z € R? | 3 ¢ such that z; < 7(g;,7'(g;)), @: < 7'(r'(g;),45)}, 1= 1,2.

To define the sets v(G;), i = 1,2, we assume that both players are aware that they can get
at least the payoff to be realized as a follower in the Stackelberg game. So, recalling that
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qf is the optimal quantity of j in the Stackelberg game with j as leader, this yields the
payoff sets

v(G;) = {z € R¥z; < 7ri(7“"(qf),q5.g)}7 i=1,2.

Clearly, condition (i) of Theorem 4.3 is satisfied. Moreover, since 7% is decreasing for
q; > qf, all sets v(G), G € T, satisfy conditions (ii) and (iii) of Theorem 4.3. Assigning
the positional power measure to the graphs yields the power vectors m?(G;) = e(i) and
mP(G") = e(j), j # i. From this it follows that when F is a graph balanced family then it
holds that F equals either {G1, Gy}, or {G*, G?}, or {Gy, G'} for some i € {1,2}. Notice
that

<

(G1) Nv(Gy) ={zeR?®|z; <7'(r'(¢}). ¢7), i=1,2} Co(G")U(G?),
(GH Nv(G?) c v(GH Uv(G?),
v(G) Nu(G) ={z e R’ |z; <7'(r'(¢)), ¢f)} Nv(G) Cou(G")Uv(G?).

Since v(G') Uv(G?) = v/({1,2}), it follows that for any graph balanced family the inter-
section of the payoff sets is in /(). Hence the graph game is graph balanced and thus
satisfies condition (iv) of Theorem 4.3. So, all conditions of the theorem are satisfied and
hence the graph game has a nonempty balanced-core.

Let z* = (x%,23)" be a payoff vector in the balanced-core. Then there are three
possibilities. First, suppose z* is supported by the graph balanced family {G;, G2}, i.e. the
collection of the two single player graphs. Then, z* € v(G;) and thus x} < Wi(ri(qf ) qf ),
1 = 1,2, i.e. each firm gets a payoff at most equal to his profit he gets as follower in the
Stackelberg game. This contradicts that z* is in the core of the graph balanced game,
since 7(r'(q}),¢5) < 7(q,q}) for i = 1,2 and the vector (7'(gl, ¢d'), (¢}, q{")) " lies
in both v(G') and v(G?). Secondly, suppose z* is supported by {G;, G¢} for some i = 1, 2.
Then z* € v(G") Nv(G;). Because z* € v(G”) there exists a quantity ¢} such that

r; <7 (q;,7(q))) and z} < 7' (r'(q)), q}).
Because z* € v(G;) it follows that
z; <m'(r'(q), qf).

When z* is in the core (and thus improvement is not possible) we must have that all

inequalities hold with equality. Hence
' (r'(q)), q;) = 7 (r'(q}), 45),

implying that ¢; = qf and the payoffs are the Stackelberg leader-follower game payoffs

with player j as leader and player ¢ as follower. However, then there exists a payoff vector
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z in the set v(G7) with j # i that dominates z*. To see this, observe that the profits of
both players increase if player ¢ continues to play ri(qf ) but player j decreases his quantity
from ¢§ to his optimal reaction r7(r*(¢f)) to the reaction r(¢7) of i to ¢f, yielding the
payoff vector x with z; = 7*(r'(¢5), 77 (r'(¢f))) > a7 and x; = 7 (17 (r'(q})), (¢} )) > «} in
v(G7). Hence this contradicts that z* is in the core. So, it follows that any balanced-core
element is supported by the graph balanced family (G, G?), i.e. the collection of the two
two-player graphs. Then z* € v(G?), i = 1,2. Because x* € v(G?) we have by definition of
the set v(G?) that there exists a quantity ¢ such that

zy < (g1, 7*(q1)) and @3 < 7(r*(q1), 7).
Analogously, from z* € v(G?') it follows that there exists a quantity ¢; such that
vy <7 (r'(g3),¢3) and @3 < 7(q3,7'(g3)).

Since z* is in the core (and thus improvement is not possible) we must have that all

inequalities hold with equality and hence it follows that
m(qi,r(q1)) = 7 (r'(a3), ¢3) and 7(g3,7'(g3)) = 7*(r*(a7), 41)-

From the unicity of the Nash equilibrium this implies that ¢ = 7*(¢}) and hence ¢; = qy,
i = 1,2. So, the quantities supporting the balanced-core payoff vector are the Nash-

Cournot quantities. This gives the following result.

Result 5.1
Let x* be an element in the balanced-core of the game (I',v). Then the corresponding
quantities qi and q; form the unique Nash-Cournot equilibrium for the noncooperative

quantity competition game.

The result shows that the Nash-Cournot outcome of the noncooperative game is supported
by the balanced-core outcome of an appropriately defined cooperative graph game. In fact,
it should be recognized that the noncooperative behavior is modelled in the way the set "

and the the payoff sets corresponding to the graphs in I' are defined.

We also want to consider the Stackelberg leader-follower quantity competition game.
To formulate a cooperative graph game yielding the Stackelberg solution with firm j as
leader as a balanced-core solution, we take the collection IV C GN as the collection of

graphs given by
FJ - {G17G27Gi for ¢ 7é ]}7

with G, Gy and G as defined above and thus G* the two-player graph in which player i is
dominated by player j. Again, the sets v(G1), v(G2) and v(G*) are defined as in the case

27



above and the game (I'V, v) satisfies conditions (i), (ii) and (iii) of Theorem 4.3. Assigning
the positional power measure to the graphs only the families {G*, G;} and {G;, Gy} are
graph balanced and it follows as above that for both graph balanced families the intersection
of the payoff sets is in v/({1,2} = v(G"). Hence the graph game is graph balanced and thus
also satisfies condition (iv) of Theorem 4.3. Therefore the graph game has a nonempty
balanced-core. Again it follows that a payoff vector z* = (z%,23)" in the balanced-core
can not be supported by the graph balanced family {G;,G>}. Hence we must have that
z* € v(G") Nv(G;). As shown above for the Nash-Cournot case this implies that the
payoffs are supported by the quantities ¢j = qf and ¢f = 7”((139 ) and hence the payoffs
are the Stackelberg leader-follower game payoffs with player j as leader and player i as
follower. Observe that in contrast with the Nash-Cournot case these payoffs cannot be
improved by a payoff vector in v(G’) by decreasing the quantity of the leader j because

now G” is not in the collection I'V. This gives the following result.

Result 5.2
Let z* be an element in the balanced-core of the game (I'V,v). Then the corresponding
quantities qi, q5 form the Stackelberg equilibrium for the noncooperative quantity competi-

tion game with player j as leader.

6 Concluding remarks

In this paper we introduced graph games and proved that the balanced-core of such a game
is nonempty if the game is graph balanced. This concept of balancedness is a generalization
of the well-known concept of balancedness of coalitions. Analogously the existence result
concerning the nonemptiness of the core is more general than for games in coalitional
structure. A game in coalitional structure is a special case in the family of games in
graph structure. Indeed, when I' is the collection of coalitional graphs, then the graph
game is a game in coalitional structure and graph balancedness coincides with coalitional
balancedness. In general the induced coalitional game (N, v') of a balanced graph game,
need not to be coalitionally balanced. Since a graph game and its induced coalitional game
have the same core, it follows that graph balancedness of the underlying graph game is
a sufficient condition for the nonemptiness of the core. Some applications show a close
relationship between cooperative and noncooperative modelling. Therefore the results of

this paper contribute to the Nash program.
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