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Abstract

In fixed income analysis, duration plays a central role as a proxy for interest rate risk
exposure. Although this role relies on the interpretation of duration as (minus) the yield

elasticity of the bond price, duration is measured as a bond’s present value weighted

average time to maturity and expressed in terms of years. Hence duration is regarded as
an elasticity with a time dimension. In this note we resolve this apparent duration

paradox and show that duration is a pure number.
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The problem

The Macaulay duration of a bond is defined as its present value weighted average time to

maturity. Macaulay [1938] specified this duration as a descriptive measure for bonds.
Since the weighted average time to maturity takes into account the timing of all cash

flows and not only of the principal, duration is more meaningful in this respect than a

bond’s maturity. In interest rate immunization theory, duration characteristics play a
central role in relating bond price variability to changes in the yield to maturity (or “the”

interest rate). The link between bond price variability and duration was originally

discovered by Hicks [1939] and Samuelson [1945], and rediscovered by Fisher [1966]
(although in a different context) and Fisher & Weil [1971]. Since then, duration has

positioned itself firmly in fixed income analysis as a proxy for interest rate risk exposure.

Although Hicks [1939,p.186] and Samuelson [1945, p.19] were interested in
duration as a yield elasticity, they equate duration with “average (time) period” in the

spirit of Macaulay. Hicks [1939, p.187, fn.I] remarks that “[t]he reader may also find it

rather surprising that an elasticity, usually supposed to be a pure number, independent of
units, turns out to be equal to a length of time. This is a consequence of compound

interest.” Although the importance of duration in modern financial theory relies on its

interpretation as (minus) an elasticity, duration is still and without exception measured in
terms of time periods (see authoritative texts as Fabozzi [1996, Ch.4], Fabozzi [1997,

Ch.5], Haugen [1997, pp.425ff] and Sharpe, Alexander & Bailey [1999, pp.424ff], e.g.).

Startled by Hick’s surprise, the purpose of this note is to show that duration is
indeed independent of time − as we would expect from its definition as an elasticity. The

same argument applies to higher order terms in the Taylor series expansion of the bond

price : (hyper-) convexities. The reason for the general confusion on this point is not
compound interest, but a sloppy description of the present value formula. We first review

the standard argument to present value calculations and bond duration whereafter we

resolve the apparent duration paradox.

The standard argument

Assuming an annual coupon, the value B  of an option-free bond on a coupon date

(immediately after receiving the coupon) is:
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where: )(⋅PV = the present value operator

tCF = the cash flow to be received at time t

T = the remaining time to maturity in years
t = time index in years

Y  = the yield to maturity of the bond per annum.
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When the term structure of interest rates is flat for all maturities, Y  is “the” interest rate.
The bond’s cash flows are:
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where: c = the coupon rate per annum

F = the bond’s face value.

Duration is defined as minus the (point) elasticity of the bond price with respect to one

plus the yield to maturity:
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Hence, the duration is the present value weighted average time to maturity in years.
When there are n  cash flow periods per year, the formulas can easily be adapted

by changing the unit of time from one period per year to n  periods per year, viz.

applying the following substitutions to the formulas (1), (2) and (3):

(4) nTT →
ncc /→
nYY /→

As a result, eq.(3) now gives the duration nD  measured in n  periods per year. Dividing

this duration by n  yields the duration in years:
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Modified duration is then computed as:
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(See Fabozzi [1996, Ch.4] and Fabozzi [1997, Ch.5]).

The paradox resolved

The valuation formula eq.(1) looks all too familiar and although we all understand the
implied valuation recipe, a more scrutinous inspection reveals that it doesn’t make any

sense at all. The sloppy definition of the present value in eq.(1) is the source of the
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interpretation error of duration. In order to show that duration is indeed dimensionless
− as we expect from its definition as an elasticity −  we must start from the proper general

expression for the value of an option-free bond on a coupon date:
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where: i = the index number for the cash flows

N = the number of remaining cash flows
m = the compounding frequency within one year

t∆ = the time interval (in years) between the cash flow dates.

Hence, the remaining time to maturity in years is tN ∆⋅ , the compounding interval for

the yield is 1−m  (in years) and the number of cash flows per year (the cash flow

frequency) is given by 1)( −∆ t . In this representation the cash flows are:
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where c is again the coupon rate per annum. For notational simplicity but without loss of

generality we have assumed that the cash flow dates are equally spaced; the necessary

adjustment for accomodating unevenly spaced cash flows is obvious.
Eq.(7) may look unnecessarily complex, but this expression clearly reveals the

dimensions of the relevant parameters. There are two crucial differences with eq.(1). First
note that the summation index i  now is indeed a pure number and has no longer the
dimension time attached. In addition, the compounding frequency m  appears explicitly

in the expression of the discount factor thus allowing the familiar transformation of

discrete compounding to continuous compounding:
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In eq.(1) it is silently and incorrectly assumed that 1=m . Defining the dimension
operator )dim(⋅ , we have:

(10) 1)dim( −= yearY
1)dim( −= yearm

yeart =∆ )dim(
1)dim( −= yearc

Hence, m  has the dimension time, so mY /  and mt ⋅∆  are just numbers without any

time dimension attached.
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Duration is minus the point elasticity of the bond price with respect to one plus

the yield to maturity measured over the compounding period 1−m :
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and this quantity is indeed dimensionless. The same applies to the Fisher & Weil [1971]
duration where the actual spot rates are used as discount rates. Since this duration is

measured with respect to the compounding period 1−m  for the discount rate, we can

easily transform it to the duration measured with respect to the compounding period 1−k

for the discount rate by multiplying it with the dimensionless quantity mk / .
With yearm /1=  and yeart 1=∆ , the valuation formula eq.(7) reduces to eq.(1),

provided that it is recognized that t  is not a time index but a number index. After all,

raising one plus the yield to the power of t  years is nonsense. This in turn implies that

even the Macaulay-type of duration in eq.(3) when derived from eq.(1) represents a

present value weighted average of cash flow numbers and hence is not measured in terms

of years. By the same argument it follows that convexity is not measured in (years)2 but
also represents a pure number.
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