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Abstract

We propose a two-stage instrumental variable estimator that is consistent if there
is selective compliance in the treatment group of a randomized experiment and the
outcome variable is a censored duration. The estimator assumes full compliance
in the control group. We use the estimator to reanalyze data from the Illinois re-
employment bonus experiment.



1 Introduction

In theory, data from a randomized experiment produce an unbiased estimate of
the effect of an intervention or program on an outcome variable. The difference of
the average outcomes of the treatment and control samples estimates the average
treatment effect. In practice, a randomized experiment may suffer from the same
problems that affect behavioral studies. In particular, the random assignment of the
intervention is often compromised by non-compliance to the assigned intervention,
i.e. members of the treatment sample may drop out from the program, and members
of the control group may participate. Non-compliance complicates the analysis of
data from a randomized experiment in the same way as non-response in (random)
sample surveys and panel attrition in longitudinal studies. If the non-compliance
is selective, i.e. is correlated with the outcome variable, then the difference of the
average outcomes is a biased estimate of the average effect of the intervention.

Sample selectivity is a familiar problem for economists, and over the years a
number of approaches have been suggested to reduce selectivity bias. Since Heck-
man (1979) the dominant approach has been to model the selection process. This
is the natural approach if the selection process is of independent interest, and the
econometrician understands the process well enough to propose a reasonably ac-
curate model. The first generation of these models required an assumption on the
joint distribution of the response variable and the (latent) variable that determined
participation in the program. In the second generation (Dehejia and Wahba (1995),
Heckman, Ichimura, Smith, and Todd (1995) ) this assumption is replaced by an
elaborate model of the selection process under the assumption that an unbiased
estimate of the intervention effect is obtained by comparing units with an (approx-
imately) equal probability of participation.

Often, and the application considered below is a good example, there is not
enough information to specify a model of the selection process. Moreover, the avail-
able characteristics of the units, although significantly correlated with compliance,
do not explain compliance well enough to enable a comparison between members
of the treatment and control groups in a sub-sample with the same probability of
compliance. Under these circumstances an approach that does not require a model
of the selection process is preferable.

The method of instrumental variables (IV) gives an unbiased estimate of the
intervention effect and does not require a model of participation. This method as-
sumes that the treatment assignment results from a two-stage process, where in the
first stage the sample is divided randomly in two (or more) groups and in the sec-
ond stage units are free to decide whether to participate in the program or not. In
the clinical literature this experimental design is called the intention-to-treat (ITT)
design. As shown by Angrist, Imbens, and Rubin (1996), the IV method does not
estimate the average treatment effect, if the effect of the intervention varies in the
population, and this variation can not be captured by observed characteristics. In
the sequel, we assume that the effect heterogeneity can be fully explained by ob-
servables, so that IV estimates the usual average treatment effect (see also Heckman
(1997)).

Another method that does not require a model of compliance are the nonpara-
metric bounds proposed by Horowitz and Manski (1997). These bounds are rea-
sonably narrow, if the response variable is binary. The generalization to the type
of intervention and outcome variable considered below is nontrivial, and is not at-
tempted here.

An issue that is usually ignored in discussions of the identification of treatment
effects is the nature of the outcome variable. Often it is implicitly assumed that
the intervention has an additive effect on the outcome. The response variable in the
re-employment bonus experiment is the duration of unemployment. A duration or
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waiting time is often considered to be the outcome of a complex random experiment
that consists of a sequence of Bernoulli or 0-1 experiments with a 0 for the experi-
ment at time t (the spell starts at time 0) meaning that the spell of unemployment
continues until t + dt and a 1 indicating that spell ends in that interval. The (con-
ditional upon survival) probability of a 1 in any of these experiments is the hazard
rate (times dt) at t. Economic models for durations, e.g. search models, often have
direct implications for the hazard rate. Another reason to consider the effect of an
intervention on the hazard rate is that duration data are usually censored. Censor-
ing limits the observation period, but is not a feature of the program. Hence, the
estimated effect should be independent of the censoring time. Because the hazard
rate is invariant to censoring, it is natural to relate the intervention to this quan-
tity. Also interventions may be time-varying. In the case of the bonus experiment
only individuals who find a job within 11 weeks qualify for the bonus. In general,
the intervention may even depend on information that accumulates during the un-
employment spell. With a time-varying intervention, the effect of the intervention
becomes dependent on the outcome. Relating the time-varying intervention to the
hazard instead of e.g. the mean seems the natural solution.

If the specification of the hazard rate model is incomplete, then randomization
at the start of the spell does not ensure an unbiased estimate of the treatment effect,
if the intervention affects the hazard rate multiplicatively. To see this we consider
a population that consists of two types: H types with a large hazard who leave
unemployment quickly and L types with a small hazard who typically have long
unemployment spells. A simple intervention that lasts until the end of the spell is
assigned at random at time 0. At the start the fraction H types is the same in
the treatment and the control group. Clearly H types leave at a faster rate than L
types, so that over time L types are an increasing fraction of the survivors. Moreover,
because of the multiplicative effect on the leaving rate, H types in the treatment
group leave even faster than H types in the control group, and this induces a
correlation between the type and the intervention indicator. It is not difficult to see
that the resulting bias in the intervention effect is toward zero. Note that there is
no bias if the intervention has an additive effect on the hazard rate.

Finally, duration data are often not observed from the start. For instance, the
durations may be a sample of ongoing spells. Such spells are not directly comparable
to unemployment spells that are observed from the beginning. Ham and LaLonde
(1996) document the large biases that result if one ignores the observation plan.
Again, these biases can be dealt with if the duration distribution is described by its
hazard rate.

In this paper we propose an estimator that is consistent for the intervention
effect, if there is selective compliance to the intervention, the outcome variable is
a censored duration, and the intervention varies over the duration. The duration
model is the popular mixed proportional hazard (MPH) model, although we need
not impose the restriction on the disturbance distribution that is implicit in the
MPH model. The estimator is a generalization of the linear rank estimator of Tsi-
atis (1990) and Robins and Tsiatis (1991). In particular, we allow for a nonconstant
baseline hazard, which amounts to a transformation of the dependent duration in
the regression representation of the MPH model. The estimator requires prelimi-
nary estimates of the baseline hazard. If there is compliance in the control group,
which is often the case in social experiments where the number of participants is a
small fraction of the population and controls are not informed of the existence of the
experimental program or can easily be excluded from participation, then these pre-
liminary estimates can be obtained from the control group sample. The preliminary
estimates are substituted in the second stage estimating equation of the interven-
tion effect. The two stage procedure that we call the two-stage linear rank (2SLR)
estimator, is computationally attractive, because it avoids the choice of weighting
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functions for the estimation of the parameters of the baseline hazard. If the con-
trol group sample is also used in the second stage, the additional variability due
to the preliminary estimates and the induced correlation between the preliminary
estimates and the second stage estimating equation complicates the computation of
the asymptotic variance. Using the counting process representation of the first stage
score we can obtain an estimable expression of this rather complicated variance.

The estimator is used to reanalyze data from the Illinois unemployment bonus
experiment. These data have been analyzed before with increasing sophistication
by Woodbury and Spiegelman (1987) and Meyer (1996). In this experiment a group
of individuals who became unemployed during four months in 1984 were divided
at random in three groups of about equal size: two treatment groups and a control
group. The unemployed in the claimant bonus group qualified for a cash bonus if
they found a job within 11 weeks and would hold this job for at least four months.
In the other treatment group, the employer bonus group, the bonus was paid to
their employer. The members of the two treatment groups were asked, whether
they were prepared to participate in the experiment. About 15% of the claimant
bonus and 35% of the employer bonus groups refused participation. The reason for
this refusal is not known, and it is hard to think of an economic model for this
decision1. The refusal is not completely random, because it is significantly related
to some characteristics of the participants, characteristics that are also important
determinants of the re-employment hazard. Hence, we can not exclude the possibility
that some unobserved variables affect both the compliance decision and the re-
employment hazard. Indeed we find that the corrected estimates differ substantially
from the uncorrected estimates. In other words, our estimates show that compliance
in the Illinois bonus experiment was indeed selective. We also investigate whether
evidence of effect heterogeneity by income before unemployment (Meyer (1996)) and
by the probability of benefit exhaustion (O’Leary, Decker, and Wandner (1998)) is
biased by selective compliance.

The plan of the paper is as follows. In section 2 we introduce the 2SLR estimator
and we discuss some of its properties. Section 3 gives the results of a sampling
experiments. The application of the 2SLR estimator to the re-employment bonus
experiment is in section 4. We draw some conclusions in section 5.

2 The Two-stage Linear Rank estimator

Our exposition begins with a discussion of the type of evaluation design, in which
the Two-stage Linear Rank (2SLR) estimator can be used. Next, we introduce the
model for the outcome variable. Finally, we introduce the estimator. Because the
emphasis is on the application, the derivation of the properties of the estimator is
heuristic.

2.1 Randomized experiments with non-compliance to treat-
ment

As in the re-employment bonus experiment, we assume that the evaluation design
has random assignment of treatment. The randomization indicator is denoted by
R with R = 1 for the treatment group and R = 0 for the control group. The out-
come variable is a duration, in the case of the re-employment bonus experiment

1Following Moffitt (1983), Meyer (1995) suggests that partial take–up (which in addition to
nonparticipation includes failure to collect the bonus) can be explained by stigma or transaction
costs. However, these explanations do not provide identifying restrictions in the bonus experiment.
It should be stressed that the estimated program effects in this study correct for bias due to
nonparticipation. We do not try to estimate the effect under the (counterfactual) assumption that
all eligible individuals indeed collect the bonus
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an unemployment duration. Randomization occurs at time 0, which corresponds to
the start of the spell. In the sequel time is duration time, not calendar time. The
treatment indicator is denoted by D(t), i.e. we allow for treatments that vary over
time. If the unit is in the treatment regime at time t, then D(t) = 1, and D(t) = 0
if not. We assume that D(t) only depends on events that occurred during the time
interval [0, t], i.e. the treatment indicator is assumed to be weakly exogenous or
predictable in the terminology of the general theory of counting processes. This
allows for dependence on observables and unobservables that are random variables
with a realization dated at time 0. In the re-employment bonus experiment the
unemployed who participate in the program, qualify for a bonus during the first 11
weeks of unemployment. Hence, the treatment path {D(t), t ≥ 0} is determined at
time 0, and the duration of the intervention is known and exogenous. This particu-
lar restriction on the treatment path simplifies the computation of the asymptotic
variance of the 2SLR estimator.

The 2SLR estimator can be used in experiments in which a randomly selected
sub-population is excluded from participation in the program. This condition is met
if there is full compliance in the control group, i.e. if for all units in the population

R = 0 =⇒ D(t) = 0, t ≥ 0 (2.1)

If a randomly selected sub-population is excluded from the program, we can use a
sample from this sub-population to estimate some nuisance parameters that enter
the distribution of the outcome variable for both the treatment and control group.
In the re-employment bonus experiment full compliance in the control group is
likely, because members of the control group were not informed of the existence of
the re-employment bonus2.

In many evaluation studies, and the bonus experiment is no exception, some
units that are assigned to the treatment regime, do not participate in the program,
i.e. they do not comply to their assigned treatment. In section 4 we show that
in the bonus experiment non-compliance depends on observed characteristics of the
units. Because predictions of compliance conditional on these characteristics are not
perfect, unobservables must also play a role. The observable characteristics that are
correlated with compliance also have a significant impact on re-employment. The
resulting potential bias in the estimate of the program effect can be eliminated
by conditioning on these observed characteristics. However, if compliance and re-
employment have common unobserved determinants, (non)compliance is selective
and conditioning on observables does not remove the selectivity bias.

2.2 The Mixed Proportional Hazard model for duration data

The response variable is the waiting time to an event, in the bonus experiment the
event of re-employment. If the response variable is a waiting time or duration, a
comparison of means is usually not the appropriate method to estimate the program
effect. The two main reasons are censoring and time-varying interventions. Censor-
ing is a feature of the observation plan and not of the program. For that reason the
estimate of the program effect should be independent of censoring. Although the
2SLR estimator can deal with general independent censoring, i.e. censoring times
that are stochastically independent of the durations (conditionally on observed co-
variates), the exposition is simplified by the assumption of fixed censoring. Hence,
we assume that there is a fixed censoring time C that is common to all units. As
in the bonus experiment this censoring time usually corresponds to the end of the
observation period. Fixed censoring is a special case of independent censoring.

2In medical experiments there may be non-compliance in the control group, in particular if the
treatment is thought to be effective.

4



With censoring the observed variables are

∆ = I(T ≤ C) (2.2)
T̃ = min(T, C) (2.3)

where I(.) denotes the indicator of the event between parentheses, and ∆ is one if
T is observed.

Censoring and time-varying interventions can both be handled if we focus on
the effect of the intervention on the hazard rate of the duration distribution. It
is well-known that there is a one-to-one correspondence between hazard rates and
(censored) distributions. Although it is not essential for the 2SLR estimator we
choose a semi-parametric model for the duration. The reason is that we want to
allow for both a vector of observable and unobservable determinants of the hazard.
Moreover, we do not want to impose restrictions on evolution of the hazard rate over
the duration. A model that satisfies these requirements is the Mixed Proportional
Hazard (MPH) model, a generalization of the Proportional Hazard model originally
introduced by Cox (1972)3. The hazard of the MPH model is

θ(t | x, D(t), V ) = λ(t)eβ′x+γD(t)V (2.4)

In this equation, x is a vector of time-constant characteristics of the unit4, λ is
the baseline hazard, and V is a random variable that captures variables not in
x. Both x and V are thought to be determined at time 0 (or before). If D(t) is
the observed treatment indicator, then with selective compliance D(t) or its path
{D(t), t ≥ 0}may depend on x or V or both. Note that if the (path of the) treatment
indicator only depends on x, we can estimate the parameter of interest γ by a
number of procedures: parametric maximum likelihood after specifying λ and the
distribution of V , nonparametric maximum likelihood (Heckman and Singer (1984))
after specifying λ or the Gamma–frailty estimator of Nielsen et al. ( Nielsen, Gill,
Andersen, and Sørensen (1992)) that does not require a specification of λ.

In the sequel we allow for dependence on both x and V . The distribution of
V is left unspecified, because the 2SLR estimator does not require assumptions on
this distribution. This is a major advantage, because inference on the distribution
of V is notoriously unreliable (see e.g. Baker and Melino (1997) and the simulation
results in section 3) and this unreliability may bias the estimate of the treatment
effect in samples as large as those in the bonus experiment (about 4000 observations
in both the control and treatment groups).

The c.d.f. and p.d.f. of the distribution of the duration T can be expressed as
functions of the hazard rate. These expressions can be used to obtain MLE’s of
the parameters of the model. To understand the 2SLR estimator we use a different
(but of course equivalent) representation of the relation between the hazard rate
and the random duration. In particular, we use the framework of counting processes
for repeated events. The main advantage of this framework is that it allows us to
express the duration distribution as a regression model with an error term that is a
martingale difference. Regression models with martingale difference errors are the
basis for inference in time series models with dependent observations. Hence, it is
not surprising that inference is much simplified by using a similar representation in
duration models.

The hazard in equation (2.4) is the intensity of the counting process {N(t); t ≥ 0}
that counts the number of times that the event occurs during [0, t]. The counting

3This generalization was introduced independently by Lancaster (1979) and Manton, Stallard,
and Vaupel (1981).

4The restriction to time-constant covariates is not essential. It only simplifies the notation.

5



process has a jump +1 at the time of occurrence of the event5. A jump occurs if and
only if dN(t) = N(t)−N(t−) = 1. In the bonus experiment, the event can only occur
once, because the unemployed are only observed until re-employment. Therefore we
introduce the observation indicator Y (t) = I(T̃ ≥ t) that is 0 after re-employment.
By multiplying the intensity by this observation indicator we effectively limit the
number of occurrences of the event to 1. It is essential that the observation indicator
only depends on events up to time t. We also define the history of the process up
to time t by

H(t) = {Y (s), D(s); 0 ≤ s ≤ t} (2.5)
HV (t) = {H(t), V } (2.6)

The history H(t) only contains observable events, while the history HV (t) also
includes the unobservable V . Note that, without loss of generality, we have omitted
x.

As with dynamic regressors in time-series models, the time-varying D(t) may
depend on the dependent variable up to time t but not after time t (conditionally on
V ), i.e. D(t) only depends on HV (t− dt). In the counting process literature such a
time-varying covariate is called predictable. This corresponds to the assumption of
weak exogeneity in econometric time-series models. If the conditional distributions
of N(t) given either HV (t) or H(t) are well-defined (see Andersen, Borgan, Gill, and
Keiding (1993) for assumptions that ensure this, we have can express the probability
of an event in (t− dt, t] as

Pr(dN(t) = 1 | HV (t− dt)) = Y (t− dt)θ(t − dt | x, D(t− dt), V ) dt (2.7)

and using this representation of the intensity of the counting process we have by
the Doob-Meier decomposition6

dN(t) = Y (t)θ(t | x, D(t), V ) dt + dM(t) (2.8)

with {M(t); t ≥ 0} a (local square integrable) martingale. The conditional mean
and variance of this martingale are

E(dM(t) | HV (t)) = 0 (2.9)

Var(dM(t) | HV (t)) = Y (t)θ(t | x, D(t), V ) dt (2.10)

The (conditional) mean and variance of the counting process are equal, so that the
disturbances in equation (2.8) are heteroscedastic. The probability in equation (2.7)
is 0, if the unit is no longer under observation. A counting process can be consid-
ered as a sequence of Bernoulli experiments, because if dt is small equations (2.7)
and (2.10) give the mean and variance of a Bernoulli random variable. The rela-
tion between the counting process and the sequence of Bernoulli experiments is
given in equation (2.8), that can be considered as a regression model with an ad-
ditive error that is a martingale difference. This equation resembles a time-series
regression model. The Doob-Meier decomposition is the key to the derivation of the
distribution of the estimators, because the asymptotic behavior of partial sums of
martingales is well-known.

5The sample paths are assumed to be right-continuous.
6Because the sample paths of {Y (t), D(t), t ≥ 0} are assumed to be left-continuous (as is the

baseline hazard), we may substitute t for t− dt in (2.7).
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The 2SLR estimator is defined on transformed durations. The intensity (2.7)
varies between units, because of its dependence on the covariates xi and over time,
because of the variation on the baseline hazard. We consider the transformation

U = b

∫ T

0

λ(s)eγD(s) ds ≡ h(T ) (2.11)

with b = exp{β′x}. This transformation is increasing and leaves the origin of time
unchanged. Moreover, if we denote the population b, γ, λ by b0, γ0, λ0, and we let
functions that depend on these population parameters also have a superscript 0,
then it is easily seen that

U0
d=

A

V
(2.12)

where A has a standard exponential distribution, which has a constant hazard rate
equal to 1. Hence, in the population the transformed duration has a constant (over
time) hazard rate that varies only over the population by V .

Just as the distribution of T , that of U can be represented by a (transformed)
counting process {NU (u); u ≥ 0}. The relation between the original and transformed
counting process, observation indicator, and time-varying treatment is

NU (u) = N(h−1(u)) (2.13)
Y U (u) = Y (h−1(u)) (2.14)
DU (u) = D(h−1(u)) (2.15)

The corresponding history is HU (u) = {Y U (s), DU (s); 0 ≤ s ≤ u} or HUV (u) =
{HU (u), V } if V is included. The intensity of the transformed counting process
(with respect to history HUV is (see Andersen, Borgan, Gill, and Keiding (1993),
p. 87)7

Pr(dNU (u) = 1 | HUV (u)) = Y U (u)
b0

b

λ0(h−1(u))
λ(h−1(u))

e(γ0−γ)DU (u)V du (2.16)

which for the population parameters simplifies to V which is consistent with (2.12).
This simplification only occurs if we substitute the population parameters. The

observed intensity of the transformed counting process for other values of the param-
eters is obtained by the innovation theorem (Andersen, Borgan, Gill, and Keiding
(1993), p. 80)

Pr(dNU (u) = 1 | HU (u)) = (2.17)

Y U (u)
b0

b

λ0(h−1(u))
λ(h−1(u))

e(γ0−γ)DU (u)E(V | HU (u)) du

i.e. we integrate with respect to the conditional distribution of V given HU (u). If we
consider (transformed) durations from a randomized experiment, we must add the
randomization indicator R that is determined at time 0 to the conditioning variables
in (2.16). Another application of the innovation theorem to the treatment indicator

7If U = h(T ) and λT is the hazard rate of the distribution of T , then the hazard rate of the
distribution of U is

λU (u) = λT (h−1(u))
1

h′(h−1(u))
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D(t), gives the intensity of the transformed process if the history is restricted to
Y

U
(u) = {Y U (s); 0 ≤ s ≤ u}

Pr(dNU (u) = 1 | Y U
(u), R) = (2.18)

Y U (u)
b0

b
E

(
λ0(h−1(u))
λ(h−1(u))

e(γ0−γ)DU (u)V

∣∣∣∣ Y
U

(u), R
)

du

Note that because by randomization R and V are stochastically independent,
this intensity is independent of R if we substitute the population parameter values,
but not for other values of the parameters. This result is the basis for identification
of the parameters, and in particular of the treatment effect γ0. Independence of
R and the hazard rate of U0 implies (infinitely) many orthogonality restrictions or
moment conditions. For instance, if we assume independence of the hazard of U0

and R for u ≤ CU , we can choose CU so that it corresponds to a specific quantile
of the distribution of U0. In other words, the moment conditions can be seen as
simultaneous quantile independence restrictions.

If the durations are censored at C, the observed transformed durations are

Ũ = min(h(T ), h(C)) = h(T̃ ) (2.19)

with the observation indicator ∆ unchanged. One is tempted to assume that the
same orthogonality conditions apply to the intensity of the censored transformed
durations. However, with censoring some of these orthogonality conditions are no
longer valid. To see why we consider the case of fixed censoring and we assume that
b and λ are as in the population. Moreover, we consider a time-constant intervention
D. Hence

U = b0e
γDΛ0(T ) (2.20)

with Λ the integral of λ. For all units, irrespective of treatment regime, censoring
occurs at time C. Hence, if D = 0 the censoring in the transformed time is at
b0Λ0(C), but if D = 1 the censoring time is b0e

γΛ0(C). Hence, if γ > 0, then all
transformed durations in the interval [b0Λ0(C), eγb0Λ0(C)] have D = 1, i.e. belong
to the treatment group (for γ < 0 the boundaries are reversed). The intensity of U0

on this interval is clearly not independent of D and hence of R. The independence
of the intensity of U0 and R only holds up to the lower bound of the interval.
This implies that in the 2SLR estimator, which exploits this independence, the
transformed durations that fall in the problematic interval have to be censored.
Note that there is an asymmetry between the cases of a positive and a negative
treatment effect. In the case of a negative treatment effect a lower bound on γ
that should be below the population value is used to determine which transformed
durations must be censored.

2.3 The Two-Stage Linear Rank estimator

The two-stage linear rank estimator (2SLR) exploits the independence of the haz-
ard rate of U0 and R. The data are i.i.d. observations of (∆i, T̃i, D(T̃i, Ri, Vi)) with
i = 1, . . . , n + m and D(t, R, V ) = {D(s, R, V ); 0 ≤ s ≤ t}, the treatment path up
to t. The observations 1, . . . , n correspond to the control group, and the observa-
tions n + 1, . . . , n + m to the treatment group. In the first stage of the estimation
the data from the control group are used to estimate the regression parameters β
and the parameters of the baseline hazard. The estimates are obtained by maxi-
mum likelihood using a discrete mixture for the distribution of V (Heckman and
Singer (1984)). The estimates of the regression parameters and the parameters of
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the baseline hazard are used to compute the transformed durations and the new
uninformative censoring times CU (xi) for the transformed durations (obtained by
setting γ either equal to 0 or to some negative lower bound). These transformed
durations are a function of γ, i.e. they are denoted by Ũi(γ), i = 1, . . . , n + m. Note
that the observations from the control group are re-used in the second stage.

We consider the estimating equation

Sn+m(γ) =
n+m∑
i=1

∆̃i

{
Ri −

∑n+m
j=1 Y U

j (Ũi(γ))Rj∑n+m
j=1 Y U

j (Ũi(γ))

}
(2.21)

with ∆̃i the observation indicator for the adjusted censoring times. This can be
expressed as an integral with respect to the counting process {N Ũ

i (t); t ≥ 0} (the
counting measure can be seen as a discrete ’probability distribution’ that assigns
weight 1 to uncensored transformed durations and is zero elsewhere)

Sn+m(γ) =
n+m∑
i=1

∫ CU (xi)

0

{
Ri −

∑n+m
j=1 Y U

j (u)Rj∑n+m
j=1 Y U

j (u)

}
dN Ũ

i (u) (2.22)

Substituting the Doob-Meier decomposition for the counting process N Ũ and his-
tory (Y

U
(u) = {Y U (s); 0 ≤ s ≤ u}, R) so that the intensity is given by (2.18), in

this equation results in the sum of two integrals. One of the integrals is with respect
to a martingale difference and has expectation 0. For the population parameters
the second integral converges to the covariance of R and the intensity of U0 on the
interval [0, CU (xi)]. This covariance is 0 because of the randomized assignment. For
that reason, the second stage estimate of the treatment effect is obtained by setting
(2.22) equal to 0. Because Sn+m(γ) is a discontinuous function of γ, the estimator
is the solution to

γ̂ = inf{γ | Sn+m(γ−).Sn+m(γ+) ≤ 0} (2.23)

The name of the estimator derives from Sn+m(γ), which is the linear rank test
statistic (Prentice (1978)). Tsiatis (1990) suggested the use of this statistic as an
estimating equation for a censored linear regression. The − and + in the definition
are the left- and right-hand limit at γ̂: γ̂ is the value at which the function changes
sign. In case that the function is 0 on an interval, we choose the lower bound of
that interval.

It is illuminating to express Sn+m(γ) in the ordered (censored) transformed
durations that we denote by

Ũ(1)(γ) ≤ Ũ(2)(γ) ≤ . . . ≤ Ũ(n+m)(γ) (2.24)

to obtain

Sn+m(γ) =
n+m∑
i=1

∆̃(i)

{
R(i) −

∑n+m
j=i R(j)

n + m− i + 1

}
(2.25)

The indicator ∆̃(i) does not depend on γ. Sn+m(γ) is constant on intervals that
leave the order of the residuals unaltered. A discontinuity occurs if γ makes two
residuals, say Ũ(k)(γ) and Ũ(k+1)(γ), equal. To concentrate on essentials, we take
D(t, R, V ) = D where we suppress the dependence on R, V . Consider a value of γ
with Ũ(k+1)(γ) > Ũ(k)(γ). Hence

Ũ(k+1)(γ)

Ũ(k)(γ)
=

b(k+1)Λ(T̃(k+1))

b(k)Λ(T̃(k))
exp{γ(D(k+1) −D(k))} > 1 (2.26)
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If D(k+1) = D(k), then this ratio does not depend on γ, and the residuals can not
be made equal by increasing or decreasing γ. The order of such a pair of residuals
does not depend on γ, and it does not result in a discontinuity in Sn(γ). If D(k+1) >
D(k), then equality of residuals, and a discontinuity in Sn+m(γ), occurs if γ is
decreased to the value that makes the ratio of the residuals equal to 1. If ∆(k+1) =
∆(k) = 1, the jump is

R(k) −R(k+1)

n + m− k
(2.27)

If D(k+1) < D(k), γ has to be increased, and the jump is again given by equa-
tion (2.27). If ∆(k+1) = ∆(k) = 1 and D(k+1) > D(k) implies R(k+1) ≥ R(k) or
D(k+1) < D(k) implies R(k+1) ≤ R(k)

8, then the function has a negative jump at
the value of γ that makes the two (uncensored) residuals equal. Hence, if there
is no censoring and no strict disagreement between censoring and randomization
indicators, then Sn+m(γ) is a decreasing step function of γ.

If these conditions do not hold, the monotonicity is lost. However, it is easily
shown (Tsiatis (1990)), that the discontinuities are bounded by 2/(n + m − k)
with n + m − k the number of units under observation. Hence for k fixed, the
discontinuities become small if the number of observations increases. This makes it
possible to find the 2SLR estimator by search methods for the root of a continuous
equation, which makes the second stage estimator computationally easier than other
semi-parametric estimators, as e.g. the Maximum Score estimator (Manski (1975))9

This result could have been anticipated from the observation, that equation (2.22)
converges to a function that is continuous in γ.

In the derivation of the asymptotic distribution we use the linearization of
Sn+m(γ) suggested by Tsiatis (1990). Denote the parameters that are estimated
in the first stage by θ, and let dγ,i(γ0, θ0) and dθ,i(γ0, θ0) be the derivative of the
hazard rate in (2.18) with respect to γ and θ, respectively, both evaluated for the
population values of the parameters. Then by a linear approximation of the hazard
rate, we obtain the following expression (R(u, γ) is the average of the Ri among the
survivors at u)

√
n + m(γ̂ − γ0) = (2.28)

1√
n+m

∑n+m
i=1

∫ CU (xi)

0

{
Ri −R(u, γ0)

}
dM0

i (u) + a(θ0)
√

n(θ̂ − θ0)
1

n+m

∑n+m
i=1

∫ CU (xi)

0

{
Ri −R(u, γ0)

}
dγ,i(γ0, θ0) du

where

a(θ0) =
√

n + m√
n

1
n + m

n+m∑
i=1

∫ CU (xi)

0

{
Ri −R(u, γ0)

}
dθ,i(γ0, θ0) du (2.29)

Because the first stage score vector can be expressed as an integral with respect to
the martingale difference dM0

i (u) an explicit expression for the covariance between
the estimating equation and the first-stage MLE can be obtained. Here it suffices
that closed form and estimable expressions for both the variance of the numerator
and for the denominator can be obtained10. We conclude that the 2SLR estimator
is consistent and asymptotically normal with an estimable variance11.

8In other words, there is no strict disagreement between the treatment and randomization
indicators

9With the 2SLR estimator there is no need for smoothing as proposed by Horowitz (1996) for
the Maximum Score estimator.

10The expressions are rather lengthy and can be obtained from the authors upon request
11In the derivation of the variance we use certain simplifications that are specific to the bonus

experiment. In a more general setting it may be preferable to use the bootstrap to approximate
the sampling distribution of the estimator.
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It is instructive to consider the asymptotic variance for a special case. Let us
assume that the population value θ0 is known, that the intervention has a fixed and
exogenous duration (as in the bonus experiment), and that the distribution of U0

is standard exponential. In that case the asymptotic variance is equal to

1
R(1 −R) Pr(D = 1 | R = 1)2

1
n+m

∑m+n
i=1 e−CU (xi)(

1
m

∑m+n
i=n+1 e−PU (xi)

)2 (2.30)

The effect of the censoring and the finite duration of the intervention is in the
second factor. The first factor is minimal if there is an equal number of treatments
and controls and it decreases in the compliance rate. In the second factor PU (xi)
is defined as CU (xi) if we replace the fixed censoring time by the fixed time at
which the intervention ends. The variance decreases if the intervention lasts longer.
It seems that the variance can be reduced by decreasing the censoring time. This
is true as long as the censoring time is later than the end of the intervention. If
censoring is before this time, PU (xi) is equal to CU (xi) and the variance increases if
C decreases. The asymptotic variance shows that it is optimal to let the censoring
time coincide with the end of the intervention.

3 Sampling Experiments

We performed two sampling experiments to study the small sample performance
of the 2SLR estimator. Besides the usual concerns of small sample bias and the
approximation of the sampling distribution, the computation of the estimator is of
particular interest. As stressed in section 2 the 2SLR estimator is the root of a dis-
continuous function. The discontinuities decrease with the number of observations,
and the function is approximately linear near this root. So standard root finding
algorithms, as the quasi-Newton algorithm, may work well, even though they use
numerical derivatives in the computation of the search step. Moreover, if there is
no censoring, the function is decreasing, so that there is only one root12. With cen-
soring the function is not monotone, and hence there may be multiple solutions.
In the sampling experiments we check for multiple roots under conditions that are
close to those in our empirical application.

The sampling experiments are designed to resemble the bonus experiment in
section 4. The response model is an MPH model and we consider censored and un-
censored data. The compliance depends on observed and unobserved characteristics
of the units. In the first experiment the compliance only depends on observed char-
acteristics (exogenous intervention), while in the second experiment the unobserved
characteristics also play a role (endogenous intervention). We compare the 2SLR
estimator with two alternative estimators: the Intention–To–Treat (ITT) estimator
and the ML estimator. The ML estimator is the estimator that ignores selective
compliance, i.e. we estimate the parameters of an MPH model with an endogenous
covariate. The ITT estimator is obtained by replacing the endogenous treatment
indicator by the instrumental variable R. Although R is exogenous, the ITT esti-
mator suffers from an errors-in-variables bias. The first stage estimates of the 2SLR
procedure are ML estimates on the duration data from the sub-sample of the control
group.

In both experiments we have 8000 individuals randomly divided into two groups
of equal size, the treatment group and the control group. The individuals in the
control group are excluded from participation in the program. For a comparison
with the empirical application, we take the unit of time as one week. The durations

12With probability 0 the function is 0 on an interval.
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are right–censored at a fixed censoring time of 26 weeks and are generated according
to an MPH model with hazard rate

θ(t | x, D, V ) = V λ0(t) exp(β1x + γD), (3.1)

where V follows a discrete distribution with three points of support 0.25, 2.5, and
5.5 with probabilities 0.8, 0.1, and 0.1. The mean of this distribution is equal to
1. The baseline hazard is constant on intervals: the intervals are 0-4, 4-11, 11-24,
24-, and the hazard values are 0.09072, 0.06721, 0.06721, 0.1003. The intervention
indicator is equal to D(x, V )I(t ≤ 11)R. For the individuals in the treatment group
compliance with their assigned treatment is determined by

D(xi, Vi) = I(ξ1xi + ξ2Vi > ξ3) (3.2)

where the ξ’s are chosen to obtain a level of compliance close to that observed in our
application (65%, the compliance rate in the employer bonus experiment), and to
obtain nonzero correlations between (1) the treatment indicator and x, and (2) the
treatment indicator and V . These correlations are 0.8 and 0 and 0.7 and -0.4, in the
first and second experiments, respectively. The exogenous x is normal with mean
0 and variance 8. The regression coefficient of x is 0.2 and the treatment effect is
equal to 0.25. The mean and standard deviation of the durations are 16.6 and 10.5 in
both experiments. The fraction of durations that is censored is 47%. If compliance is
exogenous (experiment 1), the MLE is the efficient estimator, and we can estimate
the relative efficiency of the 2SLR estimator. The number of replications is 100.

Table 3.1 reports the results for the parameter of interest, the treatment effect,
and for the first-stage MLE’s of the other parameters13. For the two experiments we
give the average bias and its standard error, the standard deviation of the estimate,
the average asymptotic standard error, and the root mean squared error (RMSE) of
the estimate. The 2SLR estimate performs well in both experiments. The relative
bias is small (less than 7%) and not significantly different from 0. The asymptotic
standard errors are a reasonable approximation to the true standard errors. The
latter result also holds for the ML and ITT estimators. The biases in the ML and
ITT estimators of the program effect are large. The bias in the ITT estimator is
always significantly negative, as one would expect. In the second experiment, with
endogenous compliance, the relative bias in the ML estimator is large and highly
significant. Its size and sign depend on the magnitude and sign of the correlation
between D and V . With a positive correlation, individuals with a large V have a
higher probability of complying with their assigned treatment, and the MLE over-
estimates the treatment effect, because individuals with characteristics favorable
to re-employment are more likely to participate. A negative correlation between
compliance and the unobserved component induces a negative bias in the MLE.

In the first experiment (exogenous compliance) the MLE is consistent and asymp-
totically efficient. A comparison of the sampling variances of the MLE and 2SLR
shows that the relative efficiency of the 2SLR estimator is about .44.

The sampling distribution of the 2SLR estimator in the two experiments is
depicted in figure 3.1. We also plot the asymptotic normal approximation to this
sampling distribution (the mean is the true value and the variance is the average
asymptotic variance).

13We use a reparameterization: the αk for k = 1, 2, 3, 4 are the log of the hazard values on the
duration intervals, a log transformation is also applied to the points of support of the discrete
distribution of V , and δj = − ln(−ln(pj)) for j = 1, 2, 3 are the parameters associated with the
probabilities of this distribution. In both experiments we could not compute the variance of the
latter parameters in every simulation, 7 respectively 5 times. Therefore, for those parameters we
only averaged over the simulations in which we could compute the variance.
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The MLE for the regression coefficient of the exogenous regressor and the pa-
rameters of the baseline hazard are unbiased with exogenous compliance, but sig-
nificantly biased with endogenous compliance. The parameters of the distribution
of V are biased even if the specification is correct (exogenous compliance). Even
in large samples inference on this distribution is inaccurate. In experiments with
smaller samples we could not find evidence of unobserved heterogeneity, i.e. the dis-
tribution of V became degenerate, in a significant fraction of the replications. The
bias in the MLE is independent of the sample size. Hence, an empirical strategy in
which failure to find evidence of unobserved heterogeneity leads to the conclusion
that compliance is exogenous can result in a large bias in the estimated treatment
effect.

We used two methods to compute the 2SLR estimator: the Brent algorithm,
an improved bisection method, that does not use numerical derivatives, and the
quasi-Newton algorithm that does. In all instances the quasi-Newton and Brent
algorithm converged to the same solution. We conclude that, as argued before,
the discontinuities in the 2SLR equation are indeed inessential. We also did not
encounter multiple solutions.

4 Application to re-employment bonus experiment

4.1 The re-employment bonus experiment

Between mid–1984 and mid–1985, the Illinois Department of Employment Security
conducted a controlled social experiment14. The experiment provides the opportu-
nity to explore, within a controlled experimental setting, whether bonuses paid to
Unemployment Insurance (UI) beneficiaries (treatment 1) or their employers (treat-
ment 2) reduce the unemployment of beneficiaries relative to a randomly selected
control group. Both treatments consisted of a $500 bonus payment, which was about
four times the average weekly unemployment insurance benefit.

In the experiment, newly unemployed claimants were randomly divided into
three groups15:

1. The Claimant Bonus Group. The members of this group were instructed that
they would qualify for a cash bonus of $500 if they found a job (of at least
30 hours) within 11 weeks and, if they held that job for at least four months.
4186 individuals were selected for this group. Of those 3527 (84%) agreed to
participate.

2. The Employer Bonus Group. The members of this group were told that their
next employer would qualify for a cash bonus of $500 if they, the claimants,
found a job (of at least 30 hours) within 11 weeks and, if they held that job
for at least four months. 3963 were selected for this group and 2586 (65%)
agreed to participate.

3. The Control Group, i.e. all claimants not assigned to one of the other groups.
This group consisted of 3952 individuals.

The individuals assigned to the control group were excluded from participation in
the experiment. In fact, they did not know that the experiment took place. Table 4.1

14A complete description of the experiment and a summary of its results can be found in Wood-
bury and Spiegelman (1987).

15The eligible population for either the Claimant Experiment or the Employer Experiment
consisted of those who filed an initial claim for UI between July 29, 1984 and November 17,
1984 and who registered with one of the 22 Job Service offices in northern and central Illinois.
Individuals had to be eligible for 26 weeks of UI benefits, had to be between ages 20 and 55 and,
had to have no (non)monetary eligible claims.
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reports some descriptive statistics for the three groups. The table confirms that the
randomization resulted in three similar groups.

4.2 Results of previous analyses

Woodbury and Spiegelman (1987) concluded from a direct comparison of the con-
trol group and the two treatment groups that the claimant bonus group had a
significantly smaller average unemployment duration. The average unemployment
duration was also smaller for the employer bonus group, but the difference was not
significantly different from 0. These results are confirmed in table 4.2. Note that
the response variable is insured weeks of unemployment. Because UI benefits end
after 26 weeks, all unemployment durations are censored at 26 weeks. Benefit spells
are censored (at time of benefit exhaustion) unemployment spells. In table 4.2 no
allowance is made for censoring. In the table we distinguish between compliers and
non-compliers. We see that the claimant bonus only affects the compliers and that
the average unemployment duration of the non-compliers and the control group are
almost equal.

Meyer (1988 and 1996) analyzed the same data with a PH model with a flex-
ible specification of the baseline hazard. He used the randomization indicator as
an explanatory variable, i.e. he used the ITT estimator. He found a significantly
positive effect of the claimant bonus. In his PH model with flexible baseline hazard,
he did not find evidence of unobserved heterogeneity. The sampling experiments in
section 3 indicate that the ITT estimator has a downward bias. Moreover, inference
on unobserved heterogeneity is inaccurate, and tests for unobserved heterogeneity
are likely to be biased, so that failure to find evidence of unobserved heterogeneity
does not imply that compliance is exogenous.

The reported unemployment durations are affected by measurement error. In
Illinois UI recipients must confirm their unemployed status every two weeks by
sending in a certification form. This induces rounding to even weeks, so that the
hazard is higher in such weeks. To deal with this rounding, it is important to allow
for a flexible baseline hazard, e.g. a piecewise constant baseline hazard with weekly
duration intervals (this is also Meyer’s choice).

In table 4.3 we report the results of a probit analysis of the compliance decision.
The estimates show that compliance is related to observed characteristics of the
unemployed. The model does not predict compliance well16. Other (unobserved)
variables seem to be important. Whether unobserved characteristics that also af-
fect the re–employment rate play a role in the compliance decision can only be
investigated with an estimator that is consistent even with selective compliance.

4.3 Estimation

We use the 2SLR estimator to estimate the effect of the claimant and employer bonus
on the unemployment duration, and we compare these estimates with the ML and
ITT estimates. In the first stage of the 2SLR procedure we use the control group data
to estimate the regression parameters and the parameters of the baseline hazard. We
include the following explanatory variables: age (AGE), the logarithm of the pre–
unemployment earnings (LNBPE), gender (MALE= 1), ethnicity (BLACK= 1),
and the logarithm of the weekly amount of UI benefits plus dependence allowance
(LNBEN).

We employ two specifications for the baseline hazard. In the flexible specification
we choose a piecewise constant baseline hazard on small duration intervals. In the
data, spells are observed in weeks and all spells are censored at 26 weeks. The

16McFadden’s R2 is .007 for the claimant and .014 for the employer bonus sample
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most flexible baseline hazard has 26 parameters αk that are the logs of the (time-
average) baseline hazard values in the first 26 weeks. We consider two specifications
for the effect of the bonus: (1) the bonus affects the re-employment rate during the
whole unemployment period and (2) the bonus has an effect on the re-employment
hazard only during the first 11 weeks of unemployment. The second specification is
consistent with the design of the program.

The results with a flexible specification of the duration dependence are reported
in tables 4.4 and 4.5. The parameters of the baseline hazard are reported in table 4.9,
and the implied baseline hazard is depicted in figure 4.1. Again, the MLE for the
baseline hazard and the regression parameters for the 2SLR procedure are the first-
stage MLE in the control group. These estimates are not directly comparable to the
other columns.

A comparison of the results in table 4.4 and table 4.5 (the last two columns)
show that both the ML and ITT estimators underestimate the program effect. In
particular, the bias in the effect of the employer bonus is sizable. The 2SLR estimator
of the effect is significantly different from 0, while the ITT and ML estimates are
not. Although the effect of the claimant bonus is still larger, the relative difference
between the 2SLR estimates of the effects is much smaller than that of the biased
MLE’s. In the MPH model with flexible duration dependence, we cannot reject the
hypothesis of no unobserved heterogeneity. As argued in section 3, this preliminary
test may be biased and says little about the bias in the ML estimate of the program
effect. Note that the estimated effects are larger, if we allow for the finite duration
of the bonus offer.

To check the sensitivity of the 2SLR estimate to the specification of the baseline
hazard, we also estimate the program effects using a simpler MPH model in the
first stage: an exponential model without unobserved heterogeneity. The results for
this specification are reported in the first two columns of table 4.5. The top of the
table shows the first-stage MLE. We find that, with the Illinois data, the program
estimates are not very sensitive to the specification of the first stage MPH model.

4.4 Effect heterogeneity: program effects in subgroups

Until now we have assumed that the program effects are identical for all individuals.
We now allow for effect heterogeneity by observed characteristics of the individuals.
In particular, we stratify the sample on observed characteristics, and we compute
separate 2SLR estimates on the subgroups. In our choice of observed characteristics,
we shall follow previous research. We are particularly interested in the question,
whether some of the conclusions are affected by selectivity bias. This could be the
result of differences in the selectivity of compliance in subgroups.

Previous studies have considered effect heterogeneity by previous earnings (Meyer
(1996)) and by the probability of benefit exhaustion. Meyer (1996) shows that both
labor supply theory and search theory predict a larger effect of the bonus on lower
income groups. O’Leary, Decker, and Wandner (1998) study the targeting of the
bonus to groups for which the bonus has a relatively large effect, in order to increase
the cost effectiveness of the bonus program. They distinguish the unemployed by
their probability of benefit exhaustion, and they search for the subgroup with the
largest program effect.

Meyer could not find a compelling relationship between previous earnings and
the effect of the (claimant) bonus. However, previous earnings are most likely corre-
lated with the unobserved characteristics that influence both the compliance deci-
sion and the unemployment duration. Therefore, the predicted log wage, computed
from an OLS regression of the logarithm of pre–unemployment earnings on charac-
teristics, may be a better choice to study the relation between the program effect
and previous earnings.
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The OLS estimates are shown in table 4.6. We divide the individuals into 3
groups based on quantiles of the distribution of the predicted log wage. We estimate
the program effects by 2SLR and by ML on the three subsamples. The results in
table 4.8 show that the effect of the claimant bonus does not vary with predicted
previous earnings. The smaller effect for the top 25% in the MLE is spurious. The
effect of the employer bonus decreases with predicted previous earnings.

Profiling is now used in all states as part of the Worker Profiling and Re-
employment Services system. It involves predicting an individual’s probability of
exhausting UI benefits based on a logit or probit model on historical data for the
state. O’Leary, Decker, and Wandner (1998) simulate the use of a profiling mech-
anism for the re–employment bonus experiment. In our estimates, the subgroups
are selected with the predicted benefit exhaustion probabilities computed with the
estimates in table 4.7. We use quantiles of the distribution of predicted probabilities
to divide the sample. We distinguish the bottom 50%, the next 50% to 75% and the
top 25% of this distribution. The results of the ML and 2SLR estimates on these
three subsets are shown in the bottom half of table 4.8. For both the claimant and
employer bonus the effect is largest for individuals with a benefit exhaustion prob-
ability between the median and the third quartile. Note that the relation between
the exhaustion probability and the bonus effect is rather different in the MLE. Fi-
nally, note that the effect of the claimant and employer bonus is almost identical for
the individuals who have a benefit exhaustion probability above the median. The
difference between the estimated program effects is concentrated in the lower half
of the distribution.

5 Conclusion

In this paper we have proposed and implemented an instrumental variable estima-
tor that generalizes an estimator proposed by Robins and Tsiatis (1991) to MPH
models. Sampling experiments indicate that the estimator performs well for sample
sizes that are encountered in applications. A re-analysis of data from the Illinois re-
employment bonus experiment shows that the ML and ITT estimates are downward
biased, most likely due to selective non-compliance. We also find that conclusions
on effect heterogeneity are different for the 2SLR and ML estimators.

Some issues have to be addressed in future research. First, the efficiency of
the 2SLR procedure can can be increased by replacing the instrument, the ran-
domization indicator R, by an appropriately chosen function g(u, R). The choice
g(u, R) = R gives an efficient estimator if the transformed duration has a standard
exponential distribution, e.g. if there is no unobserved heterogeneity. Second, the
2SLR estimator is a device to reduce the computational burden by dividing the
computation in two steps. This is appealing because in the 2SLR is the solution
to an equation that is discontinuous in the parameters. It is possible to estimate
the program effect, the regression parameters, and the parameters of the base–line
hazard simultaneously. However, the choice of instruments requires knowledge of
the distribution of the transformed duration.
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Table 3.1: Sampling experiments: 2SLR, ITT and ML estimator of program effect;
8000 observations and 100 replications; true values between parentheses.

ave. bias std. error bias std. error est. asymp. std. error RMSE
Exogenous Compliance

2SLR (.25) 0.0136 0.0089 0.0894 0.1018 0.0905
MLE (.25) 0.0023 0.0060 0.0597 0.0580 0.0597
ITT (.25) -0.0594 0.0056 0.0559 0.0541 0.0816

MLE
β (.2) 0.0008 0.0011 0.0110 0.0103 0.0110
α1 (-2.4) 0.0327 0.0131 0.1311 0.0895 0.1351
α2 (-2.7) 0.0421 0.0150 0.1499 0.1096 0.1557
α3 (-2.7) 0.0418 0.0154 0.1535 0.1228 0.1591
α4 (-2.3) 0.0390 0.0170 0.1704 0.1448 0.1748
ln(v1) (-1.39) -0.1320 0.0364 0.3473 2.7190 0.3715
ln(v2) (.92) -0.2973 0.0711 0.6779 1.1070 0.7402
ln(v3) (1.70) 0.2152 0.0979 0.9339 0.7910 0.9584
δ1 (1.50) -0.1709 0.0476 0.4539 0.7027 0.4850
δ2 (-.83) 0.1694 0.0423 0.4035 0.6521 0.4377

Endogenous Compliance
2SLR (.25) -0.0102 0.0088 0.0882 0.0942 0.0887
MLE (.25) -0.6833 0.0061 0.0613 0.0626 0.6861
ITT (.25) -0.0878 0.0057 0.0565 0.0532 0.1044

MLE
β (.2) 0.0341 0.0013 0.0134 0.0115 0.0366
α1(-2.4) 0.1699 0.0095 0.0946 0.0762 0.1944
α2 (-2.7) 0.1733 0.0103 0.1034 0.1012 0.2018
α3 (-2.7) 0.0121 0.0122 0.1217 0.1163 0.1223
α4 (-2.3) 0.0566 0.0151 0.1510 0.1431 0.1612
ln(v1) (-1.39) -0.1928 0.0471 0.4595 0.3444 0.4983
ln(v2) (.92) -0.5927 0.0817 0.7960 0.5228 0.9924
ln(v3) (1.70) -0.0690 0.0927 0.9040 0.4823 0.9066
δ1 (1.50) -0.5994 0.0464 0.4522 0.4209 0.7509
δ2 (-.83) 0.4314 0.0346 0.3373 0.3809 0.5476
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Table 4.1: Descriptive statistics for Control, Claimant Bonus and Employer Bonus
group (standard error of average).

Control Claimant Employer
Group Bonus Bonus

N fraction N fraction N fraction
White 2497 0.632 2723 0.651 2565 0.647
Black 1072 0.271 1050 0.251 1014 0.256
Other 383 0.097 413 0.099 384 0.097

Male 2162 0.547 2357 0.563 2131 0.538

Age 20–29 1680 0.425 1827 0.436 1679 0.424
Age 30–39 1315 0.333 1357 0.324 1292 0.326
Age 40–49 708 0.179 776 0.185 740 0.187
Age 50–54 248 0.063 226 0.054 252 0.064

Weekly benefit
-$51 347 0.088 355 0.085 333 0.084
$52–$90 794 0.201 887 0.212 861 0.217
$91–$120 666 0.169 738 0.176 711 0.179
$121–$160 749 0.190 822 0.196 716 0.181
$161– 1396 0.353 1384 0.331 1342 0.339

Dependence
allowance

1834 0.323 1955 0.345 1883 0.332

Average pre–claim 3188 3222 3215
earnings (35.89) (36.91) (37.83)
Average age 33.0 32.9 33.1

(0.14) (0.20) (0.21)
Average weekly 119.9 118.8 118.5
benefit (0.65) (0.63) (0.64)

Table 4.2: Average unemployment durations: control group and (non-)compliers
(standard error of average).

Control Claimant Employer
Group Bonus Bonus

All Compl. Non-compl. All Compl. Non-compl.
Benefit weeks 18.33 16.96 16.74 18.18 17.65 17.62 17.72

(0.20) (0.20) (0.22) (0.50) (0.21) (0.26) (0.35)
N 3952 4186 3527 659 3963 2586 1377
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Table 4.3: Probit analysis of the compliance decision.
Claimant Employer

Bonus Bonus
Constant 0.9973 0.3108

(0.0384) (0.0329)
AGE -0.0029 -0.0025

(0.0027) (0.0024)
LNBPE 0.0763 -0.1328

(0.0544) (0.0559)
BLACK -0.1866 0.0565

(0.0527) (0.0484)
MALE 0.1073 0.1360

(0.0478) (0.0421)
LNBEN -0.1973 -0.1535

(0.0958) (0.0939)
Log likelihood -1810.21 -2524.71
LR test (5 d.f.) 24.60 69.69
N 4186 3963
No. of compliers 3527 2586

Table 4.4: Proportional hazard model with flexible duration dependence: regression
parameters and program effects for ITT and ML (parameters baseline hazard in
Table 4.9). (1) Model with time-constant treatment effect (2) Model with treatment
effect only during first 11 weeks.

ML ITT
(1) (2) (1) (2)

AGE -0.4299 -0.4298 -0.4316 -0.4313
(0.0472) (0.0473) (0.0472) (0.0472)

LNBPE 0.2608 0.2607 0.2592 0.2591
(0.0334) (0.0335) (0.0334) (0.0334)

BLACK -0.5064 -0.5062 -0.5069 -0.5067
(0.0296) (0.0296) (0.0296) (0.0296)

MALE 0.0657 0.0653 0.0675 0.0675
(0.0242) (0.0242) (0.0242) (0.0242)

LNBEN -0.4718 -0.4710 -0.4710 -0.4712
(0.0549) (0.0549) (0.0549) (0.0549)

Claim. bonus 0.1029 0.1666 0.1104 0.1672
(0.0274) (0.0340) (0.0290) (0.0362)

Empl. bonus 0.0382 0.0961 0.0555 0.0981
(0.0307) (0.0384) (0.0296) (0.0371)

Log L -29872 -29866 -29871 -29868
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Table 4.5: Sensitivity of 2SLR to the specification of the MPH model; first-stage
MLE of regression parameters and 2SLR of program effect (parameters of baseline
hazard in Table 4.9). (1) Model time-constant treatment effect (2) Model with
treatment effect only on first 11 weeks.

Exponential Duration dependence
α -3.2828 (0.0322) . .
AGE -0.4476 (0.0790) -0.4247 (0.0835)
LNBPE 0.3153 (0.0566) 0.2969 (0.0600)
BLACK -0.5309 (0.0501) -0.5071 (0.0521)
MALE 0.1062 (0.0409) 0.1027 (0.0432)
LNBEN -0.5951 (0.0928) -0.5648 (0.0982)
Log L -9817.60 -9594.37
Claim. bonus (1) 0.1446 (0.0342) 0.1312 (0.0346)

(2) 0.2205 (0.0529) 0.2140 (0.0483)
Empl. bonus (1) 0.1011 (0.0451) 0.0926 (0.0452)

(2) 0.1582 (0.0732) 0.1517 (0.0658)

Table 4.6: OLS regression of ln(BPE).
Constant 5.5312

(0.0932)
AGE 0.1128

(0.0055)
AGE2 -0.0013

(0.0001)
BLACK -0.2206

(0.0141)
MALE 0.2286

(0.0124)
R2 0.132
N 12074

Table 4.7: Probit analysis of benefit exhaustion probability.
Constant -0.2640

(0.0331)
AGE 0.3896

(0.0809)
LNBPE -0.2907

(0.0576)
BLACK 0.4547

(0.0463)
MALE -0.1140

(0.0417)
LNBEN 0.5185

(0.0951)
Log L -2596.98
LR test (5 d.f.) 180.11
N 3944
No. benefit exhaustion 1669
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Table 4.8: The effect of bonus on subgroups. Groups distinguished by quantiles of
(1) Predicted ln(BPE) and (2) Estimated probability of benefit exhaustion.

2SLR MLE
Claimant Employer Claimant Employer

Sample used Predicted ln(BPE)
Bottom 25% 0.2140 0.2140 0.1730 0.1119

(0.0990) (0.1197) (0.0678) (0.0740)
25%-75% 0.2140 0.1517 0.2163 0.1268

(0.0664) (0.0938) (0.0483) (0.0547)
Top 25% 0.1975 0.0649 0.0649 -0.0001

(0.0985) (0.1456) (0.0686) (0.0796)
Probability of benefit exhaustion

Bottom 50% 0.1287 0.0077 0.1814 0.1375
(0.0648) (0.0971) (0.0444) (0.0504)

50% - 75% 0.3192 0.3122 0.1527 0.0651
(0.0913) (0.1145) (0.0718) (0.0791)

Top 25% 0.2655 0.2733 0.1568 0.0212
(0.1174) (0.1440) (0.0797) (0.0895)

Table 4.9: Parameters baseline hazard: Control group (first stage of 2SLR), MLE
and ITT. (1) Model with time-constant treatment effect (2) Model with treatment
effect during first 11 weeks. Log baseline hazard values in weeks 1-26.

Control ML ITT
(1) (2) (1) (2)

α1 -2.4584 (0.0629) -2.4073 (0.0369) -2.4400 (0.0381) -2.4264 (0.0392) -2.4614 (0.0414)
α2 -2.8754 (0.0777) -2.7897 (0.0440) -2.8221 (0.0450) -2.8088 (0.0460) -2.8437 (0.0480)
α3 -3.5240 (0.1063) -3.3484 (0.0570) -3.3806 (0.0580) -3.3675 (0.0583) -3.4023 (0.0600)
α4 -2.8171 (0.0787) -2.8267 (0.0464) -2.8588 (0.0473) -2.8459 (0.0481) -2.8806 (0.0499)
α5 -3.6049 (0.1152) -3.4278 (0.0616) -3.4598 (0.0625) -3.4470 (0.0629) -3.4816 (0.0645)
α6 -3.0442 (0.0899) -3.0142 (0.0520) -3.0461 (0.0528) -3.0334 (0.0536) -3.0680 (0.0552)
α7 -3.6219 (0.1198) -3.5161 (0.0666) -3.5479 (0.0673) -3.5354 (0.0677) -3.5700 (0.0691)
α8 -3.1592 (0.0977) -3.0753 (0.0554) -3.1069 (0.0562) -3.0945 (0.0570) -3.1290 (0.0585)
α9 -3.7841 (0.1340) -3.6864 (0.0745) -3.7180 (0.0751) -3.7057 (0.0756) -3.7401 (0.0768)
α10 -3.1876 (0.1026) -3.1399 (0.0589) -3.1714 (0.0596) -3.1591 (0.0604) -3.1934 (0.0618)
α11 -3.7723 (0.1378) -3.5995 (0.0741) -3.6310 (0.0747) -3.6187 (0.0752) -3.6530 (0.0764)
α12 -3.4071 (0.1169) -3.3951 (0.0682) -3.3572 (0.0672) -3.4142 (0.0694) -3.3583 (0.0672)
α13 -3.8524 (0.1466) -3.8694 (0.0862) -3.8314 (0.0854) -3.8885 (0.0872) -3.8326 (0.0854)
α14 -3.2628 (0.1125) -3.1994 (0.0642) -3.1615 (0.0631) -3.2185 (0.0656) -3.1627 (0.0631)
α15 -3.9029 (0.1546) -3.8571 (0.0883) -3.8192 (0.0876) -3.8761 (0.0893) -3.8204 (0.0876)
α16 -3.5458 (0.1318) -3.3996 (0.0723) -3.3618 (0.0713) -3.4187 (0.0735) -3.3630 (0.0713)
α17 -3.9537 (0.1624) -3.9387 (0.0943) -3.9010 (0.0936) -3.9577 (0.0951) -3.9021 (0.0936)
α18 -3.4659 (0.1302) -3.4386 (0.0755) -3.4009 (0.0745) -3.4576 (0.0765) -3.4020 (0.0745)
α19 -3.9843 (0.1684) -3.9393 (0.0968) -3.9016 (0.0961) -3.9582 (0.0977) -3.9027 (0.0961)
α20 -3.3508 (0.1264) -3.3857 (0.0755) -3.3481 (0.0745) -3.4047 (0.0766) -3.3492 (0.0745)
α21 -3.7736 (0.1566) -3.8413 (0.0948) -3.8036 (0.0940) -3.8603 (0.0956) -3.8047 (0.0940)
α22 -3.0442 (0.1126) -3.3075 (0.0747) -3.2697 (0.0738) -3.3266 (0.0757) -3.2709 (0.0738)
α23 -3.9743 (0.1785) -3.9616 (0.1033) -3.9238 (0.1026) -3.9808 (0.1041) -3.9249 (0.1025)
α24 -3.1769 (0.1233) -3.1990 (0.0729) -3.1611 (0.0719) -3.2181 (0.0740) -3.1622 (0.0719)
α25 -3.5932 (0.1532) -3.6702 (0.0926) -3.6323 (0.0918) -3.6892 (0.0934) -3.6334 (0.0918)
α26 -2.7812 (0.1063) -2.8768 (0.0650) -2.8389 (0.0640) -2.8958 (0.0662) -2.8400 (0.0640)
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