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1 Introduction

In this paper we investigate whether airfare-frequency equilibria between all airlines in

a multiple airport region and global equilibria between all airlines and airports exist,

and if so, are unique. To be able to derive the desired equilibria some simplifying

assumptions are needed. We also comment on the effect of a relaxation of these

assumptions.

The model is based on a nested logit demand model. Multinomial logit models

(MNL) have been used extensively in the literature to analyze passenger preferences

concerning airports, airport access modes and direct/indirect routes (see e.g. Caves et

al. (1991) and Brooke et al. (1994) for UK studies, Hansen (1990) and Harvey (1987)

for US studies and Bondzio (1996) for German studies). In most studies, access time,

the airfare and the frequency of service are identified as important determinants of

airport choice. A notable exception is Harvey (1987) who does not include the airfare

because there appeared to be more variation among fare classes on a given flight to a

particular destination than among different flights to that destination. Frequency is

treated differently in the different studies mentioned above. It is included directly, in

some quadratic form or logarithmic form for various reasons. Ndoh et al. (1990) found

that a nested multinomial logit model (NMNL) is statistically preferable to a MNL to

analyze the combined route-departure airport choice. Pels et al. (1998) found a NMNL

to be preferred to a MNL to explain the combined airport-airline choice in the San

Francisco Bay Area, while Bondzio (1996) found that both the MNL and NMNL can

be preferred, depending on the passenger type (business, leisure) and choice (access

mode, airport).

Anderson et al. (1996) present various (theoretical) applications of discrete

choice models. These include quality choice models, in which the consumers’ utility is

determined by both the quality and price of a product. A two-level NMNL is used to

model a multi-product firm. In the upper level, a firm is selected by the consumer, in

the lower level, a product is selected. For both models, existence and uniqueness of

equilibria is proven.
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2 The passenger discrete choice model

Assume a passenger first chooses an airport i ∈ D, D = {1,…,d}and then an airline j, j

∈ L = {1,…,l}. Furthermore, assume L(i) ⊂ L, L(i) ∩ L(i’) = ∅ for i ≠ i’, and

( )∪ =
∈i D

L i L ; L(i) is the subset of airlines operating from airport i. The cross section

with subsets of airlines operating from other airports i’ is empty: airlines are restricted

to operate from one airport only.

The attractiveness of an airline j is determined by the number of flights fj it

offers to a particular destination and the airfare pj it charges. A common approach in

(spatial) economics is to model the discrete choice for an airline as:

( ) ( )P( ) exp expj A p A pj p j j p j
j L

= − −
∈
∑α α , where Aj represents the attractivity of the

alternative and αp is a non-negative parameter. Then, if Aj = Aj(fj), this probability is

rewritten as ( ) ( )P( ) exp ln( ) exp ln( )j p f p fp j f j p j f j
j L

= − + − +
∈
∑α α α α . Jaïbi and ten

Raa (1998) show this specification fits into the maximum utility framework of the logit

model.

The utility of using airport i depends on the airport tax taxi, the access time to

the airport ti and the maximum expected utility 
~

Vi  of the alternatives in the choice set

(of airlines) available from each departure airport i. Then the probability that a

combination (departure airport i, airline j) is chosen can be expressed as3:

P P P( ) ( ) ( )j,i j|i i=   (1)

P( )

exp(
ln( )

)

exp(
ln( )

)

j|i

p f

p f

j p j f j

j' p j j j

j L(i)

=

− +

− +

∈
∑

α α α

µ
α α α

µ

  (2)

                                                       
3 We assume the random utility component derived from using the combination (j,i) is (independent
and identically) Gumbel distributed with scale parameter µ. The random utility derived from using
departure airport i is distributed so that max ,

i
j iU  is Gumbel distributed with scale θ, where Uj,i is the

total utility of using the combination (j,i).
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with

( )~ ln
V

p f
i

j p j f j

j L(i)

=
− +









∈

∑
α α α

µ
 (4)

We assume the parameters αp, αf , βt and βa are larger than zero. The parameter µ

represents the degree of heterogeneity of airlines (flights) within (from) an airport. The

closer µ is to 0, the higher the degree of substitutability between airlines. θ is a

measure of heterogeneity between airports. It is necessary that θ > µ (see e.g.

Anderson et al., 1996). This means that airlines (flights) operating (originating) from

the same departure airports are closer substitutes than airlines (flights) operating

(originating) from different departure airports.

In the next Sections the nested logit model, as specified in equations 1,2,3 and

4, will be used to model airport and airline competition in a multiple airport region.

3 The airlines’ maximization problem

An airline will operate a route to a particular destination from departure airport i, if it

can generate non-negative profits (which implies the airfare pj exceeds the marginal

costs cj). The airline's profits obtained from operations (out) of airport i on a certain

route are:

( ) ( )π j j j j j j= p c N j,i k f K  i D, j L(i)− − − ∈ ∈P ,  (5)

where N is the total number of passengers in the system, P(j,i) is defined in equation

(1), pj is the price (airfare on that route), cj is the (constant) marginal cost per

passenger, fj is frequency on that route, kj is the constant marginal cost per flight and Kj

is the fixed cost. The profit function is maximized with respect to the optimal fare and

the frequency. Note that we do not assume the airlines play a two-stage game in
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which, for example, first the frequency and then the airfare is determined. Airfare and

frequency are determined in a one stage game4.

Maximizing profits with respect to the airfare yields:

( ) ( ) ( )

( ) ( )( ) ( )( )( )

∂π

∂
∂

∂

θµ

α µ θ

j

j

j j

j

j j

p

p
N j,i p c

N j,i

p

p c
j|i i j|i

= + − = ⇔

− =
− + −

P
P

P P P

0

1 1

 (6)

Maximizing profits with respect to the frequency of service yields:

( ) ( )

( )( ) ( ) ( )( ) ( )( )( )

∂π

∂
∂

∂

α µ θ

µθ

j

j

j j

j

j

f j j

f
p c

N j,i

f
k

f
N j,i p c

k

j|i i j|i

= − = ⇔

=
− − + −

P

P P P P1 1
 (7)

Equation 7 gives an expression for the optimum frequency at any given airfare; there is

a whole range of airfares for which optimal frequencies can be determined. These

airfares should satisfy equation (6) to be optimal. Substituting for the optimal airfare

yields:

( ) ( )
f

i j|i

k
Nj

f

p

=
α

α
P P

 (8)

Equations (6) and (7) give the optimal airfare and frequency for an airline j. At any

other combination (fj, pj) the optimum will not be reached (i.e. only for one particular

value of p the solution to the airline's best response frequency function (equation 7)

maximizes profits).

Before deriving airline j’s optimal airfare and frequency,  we first consider the

frequency elasticity of demand. One desirable property of the demand function is that

the frequency elasticity of demand, ( )ε f
l,d

l

P , is smaller than 1; otherwise a 1 percent

                                                       
4 In a “standard” two-stage game, the first order necessary conditions become much more complex.
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change in the frequency would lead to a more than 1 percent change in the demand.

As, in this model, the airline is assumed to have a constant load factor, the only way to

accommodate this demand is by expanding its size (frequency), which results in a more

than proportional increase in demand. Hence airline j’s demand exceeds its capacity. It

will try to increase its capacity to generate more profits, and so will airline j’s

competitors, but each increase in frequency leads to a bigger increase in demand; an

equilibrium cannot exist. In Appendix A it is shown that a sufficient condition for an

airfare-frequency optimum to exist is that the frequency elasticity of demand is smaller

than 1. Furthermore, it is shown the airfare-frequency equilibrium, if it exists, is

unique: for every possible (optimal) airfare-frequency combination of a competitor j’,

there exists a unique response from airline j. In the remainder of the analysis, we

assume ( )ε f

j,i

j

P < 1.

For a further analysis of the properties of the equilibrium at the airline market,

we analyze a symmetrical equilibrium for mathematical convenience. First, we derive

an equilibrium for airlines operating from the same airport, given the possible response

from competitors operating from alternate airports. Let there be li airlines in L(i), with

cj=cj’ and kj=kj’, j,j’ ∈ L(i), j ≠ j’. Then the following symmetric equilibrium is found.

( ) ( )( )( )p c+
l

l - i
i

*

p

=
+ −
i

i P

θµ

α θ µ1 1
 (9)

( )
f

l

i N

ki

*

i

f

p

=
1 α

α
P

           (10)

As the heterogeneity between both airports and airlines increases (θ,µ), so does the

airfare. Furthermore, as the marginal probability P(i) increases, so does the equilibrium

airfare. Finally, the equilibrium airfare is decreasing in li. These equilibrium expressions

for pi
* and fi

* only show how they are determined at airport i, given P(i). As P(i)

changes (e.g. due to a change in pi’ or fi’, pi
*) and fi

* change accordingly. What is

important, is that all airlines operating from airport i will still have equal prices and

frequencies. This allows for a simplification of 
~

Vi  to ( ) ( )µ α αln lnl p fi p i

*

f i

*− + . For

airport(s) i’ similar expressions for p*
i’, f*

i’ and 
~

Vi'  can be derived. Then, if d is the
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number of elements in D and li = li’, we find the following system wide symmetric

equilibrium.

( ) ( )( )p c+
l d

d l - d - 1
* i

p

=
+

θµ
α θ µ1

           (11)

f
d

N

kd

* f

p

=
1 α

α
           (12)

Only the airfare is dependent on the heterogeneity between airlines operating from both

the same airport and different airports. Both the equilibrium airfare and frequency are

decreasing in d (and li). This is an equilibrium between all the airlines in the system,

taking the airport authorities' behavior as given. Note that although airlines charge the

same prices and offer the same frequencies, airports do not necessarily have the same

airport taxes and access times. As is shown in Appendix B, for the symmetric

equilibrium to exist it is necessary that ( ) ( ) ( )( )∆ ≡ − − − −β βt i' i a i' itax tax t tln ln =0.

This relationship may be satisfied for taxi’ ≠ taxi and ln(ti’) ≠ ln(ti). Hence an airport

with excellent accessibility may charge higher airport taxes than an airport with lesser

accessibility. The relation ∆=0 says nothing about whether the airport taxes are optimal

from the airports point of view. Therefore, in the next Subsection airports will be

introduced as independent agents.

Summarizing the discussion of the airline model so far, if the frequency

elasticity of demand is smaller than 1 there exists a unique equilibrium. A special case

is the symmetric equilibrium. Airports may have different airport taxes and access

times; but for this equilibrium to exist it is necessary that

( ) ( ) ( )( )− − − − =β βt i' i a i' itax tax t tln ln 0

4 The airport's maximization problem

In this Subsection we will describe how airports in a multiple airport system can

compete for passengers. Airport i has a market share P(i), defined as in Section 3.

Clearly, this probability also depends on the airline's optimal fares and frequencies.
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Passenger demand for flights out of an airport i is given by P(i). Let the

airport's optimization problem be (see also Oum et al., 1996):

( ) ( ) ( ) ( )

( ) ( )

max
tax

tax
i i i

i

i i i i

i
i

i tax m N i rK g
N i

K

s.t. tax m N i rK

P dtax c P
P

c P

+ − − −








≡ − − ≥

∫

Π 0

             (13)

the airport maximizes social welfare with respect to the airport tax taxi under a cost

recovery constraint. We assume the marginal costs per passenger mci are constant. rKi

is the capital cost of airport i (where Ki is the airport's capital stock) and g(..) is an

external cost function; 
( )
( )

∂
∂
g ..

iP
> 0 . The first order conditions are:

( )
( )

( ) ( )( )tax m

g
N i

K

tax
i i

tax
                                                         

i i

i

d
tax

i

i

i i

− −









− − + =

= ≥ ≥










c

P

P P

∂

∂
β λ

∂
∂

λ λ

1 0

0 0 0

Π

Π Π; , .

             (14)

where 
∂
∂

Π i

itax
= ( ) ( ) ( ) ( )( )P P Pi tax mc i ii i

tax− − −
β
θ

1 . Then, if the cost recovery

constraint is binding (λ>0):

( )tax mc
rK

N ii i

i= +
P

           (15)

if ( )

( )
rK

N i

N i

K

tax
i i

iP

P

>







∂

∂
.

Hence, if the capital costs exceed the marginal external costs, the airport sets its tax at

average cost level. If the same holds true for (all) the other airports in the system, the

equilibrium taxes (15) are unique if airport i’s profit function is non-decreasing in the

airport tax; this is shown in Appendix D. It is a standard assumption that the profit

function is non-decreasing in the output price.
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For mathematical convenience, again we derive a symmetric equilibrium. Let li=2, Kapi

= Kapi’, mci = mci’ and ti = ti’. Then

tax mc
rK d

Ni i

i= +            (16)

( )p c+
d

d - 1
*

p

=
θ

α
           (17)

f
1

d

N

k
* f

p

=
α

α
           (18)

see Appendix D for details. The equilibrium airport tax is increasing in the number of

airports; as the number of airports increases the market share of a particular airport

will decrease (as by assumption all airports all equal in all aspects). Hence, to break

even the airport will have to increase its tax as the capital cost has not changed. For

the symmetric equilibrium it is necessary that airports are equal in all aspects. If e.g. ti

≠ ti’, the symmetric equilibrium as described in Section 3 is no longer valid.

When the cost recovery constraint is not binding (λ = 0), then the optimal

airport tax will be

( )
( ) ( ) ( )( )tax mc

g ..

i

N

K
i ii i

i

= + −






 −β

∂
∂ θ

1
1

1
P

P P           (15’)

which implies 
( )
( )

∂
∂ θ
g ..

i

N

KP i

1
1< . Without knowing the functional form of g(..) the

optimal taxes cannot be derived.

5 Comparative statics

From equation (6) we can compute airline j’s responses to changes in airport taxes and

changes in accessibility of the (alternate) airports. The reaction to a change in the

airport tax of airport i is:
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( ) ( ) ( )( )
( ) ( )( ) ( )( )( )

∂

∂
β θ

α µ θ

p

t

j|i i i

j|i i j|i

j

i

a

2

p

=
−

− + −
<

P P P

P P P

1

1 1
02            (19)

as the numerator is negative. Hence the airfare charged by an airline j operating out of

airport i increases as airport i’s accessibility (airport tax) increases (decreases). If the

airport attempts to increase its market share by investing in the accessibility, part of the

increase in demand will be offset by the price increase with which the airline(s) respond

(see (15)). The airport’s change in tax due to the increase in accessibility is

( )( )
( )

∂
∂

β
θ

tax

t

rK i

N i
i

i

i a=
−

>
1

0
P

P
           (20)

The taxes are set at average cost level. As P(i) increases due to the decrease in access

times, the tax also decreases. However, as the airline increases its price, so will the

airport as it needs to break even when the cost recovery constraint is active (P(i)

decreases):

( ) ( )( )
( )

∂
∂

α

θ
tax

p

rK j|i i

N i
i

j

p i=
−

>
P P

P

1
0            (21)

Hence there are two opposite movements. As the airport increases its market share,

airport taxes decrease as they are set at average costs. Then the airlines respond by

increasing the airfares to cash in on the increased attractiveness of airport i. As a

result, airport i is forced to adjust its taxes downward. The final effect on the airport

tax of an increase in accessibility depends on the parameter values of αp, βa, r and Ki

and is indeterminate. Only if these parameters are known and the probabilities (for an

asymmetric equilibrium) can be calculated equations (19) - (21) can be evaluated. In

the next Section, a numerical solution for an asymmetric equilibrium will be obtained

to illustrate the functioning of the model.
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7 The asymmetric case: a numerical solution

As analytical expressions for the asymmetric equilibrium are very complex it is difficult

to arrive at definite results for a comparative static analysis. Therefore, in this Section,

a numerical procedure is carried out.

Let there be two (origin) airports (A and B) and a single destination. At each of

the two airports, there are two airlines (A1, A2, B1 and B2). In order to use “realistic”

values of the parameters, we make use of some estimates we recently carried out in the

San Francisco Bay Area (Pels et al., 1998), with some parameters added from other

studies. The average travel time to the airport are: tA = 38 and tB = 44 (these are the

average access times to San Francisco International Airport and San Jose International

Airport, obtained from the 1995 Metropolitan Transportation Commission Airline

Passenger Survey). Let the capital costs be: rKA = 12000000 and rKB = 10000000. The

airline costs are: cA1 = 100, cA2 = 105, cB1 = 105 and cB2 = 95. kA1 = 115000, kA2 =

100000, kB1 = 90000 and kB2 = 110000. The parameter values used are: αp = 0.04,

which is an average of various parameter estimates encountered in the literature. αf =

1.15, which is somewhat lower than the estimates by Pels et al. (1998). As argued in

Section 4, a sufficient condition for the existence of an equilibrium is ( )ε f

l,d

l,d

P < 1. This

corresponds with values of αf that are “not too high”. βa = 0.04, which is an average of

the estimates by Pels et al. βt was not encountered in the literature (and could not be

estimated as taxes in the San Francisco Bay Area were constant across passenger

types). Hence βtax was assigned the same value as αp. θ was fixed at 1 and µ was set at

0.85 (Pels et al., 1998). Finally, N = 1000000. With these inputs, the following optimal

frequencies, airfares and taxes are found, see Table 1. In row I the airports set their

taxes at marginal cost (which, for simplicity, are fixed at 0). In row II, the airports set

their cost at marginal cost and there is a 2.5% reduction in access times. The latter may

be assumed to be the consequence of an investment in roads by the regional

government. By comparing I and II, we can analyze the consequence of such an

investment for the optimal airfares, frequencies and taxes. In row III, airports again set

their (optimal) taxes are set at average costs. In row IV, taxes are set at average costs

and again there is a 2.5% reduction in access times.
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Table 1 Optimal airfares, frequencies and airport taxes1

pA1 pA2 freqA1 freqA2 pB1 pB2 freqB1 freqB2 taxA taxB

I 136.77 128.02 87 18 132.85 131.27 69 100 0 0

II 137.95 127.76 91 16 132.61 131.23 66 98 0 0

III 135.03 128.52 80 23 133.14 131.33 71 99 3.00 1.67

IV 136.39 128.12 85 19 133.92 131.28 69 98 2.94 1.69

1)  I: airport taxes at marginal costs (= 0) and tA = 38, II: airport taxes at marginal costs (= 0) and tA

= 37, III: airport taxes at average costs and tA = 38, II: airport taxes at average and tA = 37.

Form Table 1 it can be seen that under both pricing regimes an improvement of airport

A’s accessibility leads to an increase of both airline A1’s airfare and frequency and

decrease of both airline A2’s airfare and frequency. At airport B, all airfares and

frequencies go down. Although airline A1’s airfare increases and airline A2’s frequency

decreases, the increase in accessibility, the increase of airline A1’s frequency and the

decrease of airline A2’s airfare are more than enough to accommodate an increase in

the demand at airport A; under the average cost pricing scheme airport A’s tax

decreases. A 2.5% decrease in access times result in a 2% decrease in airport taxes. In

Table 2 the marginal and conditional probabilities are given for both regimes of airport

taxation.

Table 2 marginal and conditional probabilities at the optimum1

I II III IV
P(A) 0.41 0.42 0.40 0.41

P(1|A) 0.85 0.87 0.80 0.84
P(2|A) 0.15 0.13 0.20 0.16
P(B) 0.59 0.58 0.60 0.59

P(1|B) 0.38 0.36 0.37 0.37
P(2|B) 0.62 0.64 0.63 0.63

1)  I: airport taxes at marginal costs (= 0) and tA = 38, II: airport taxes at marginal costs (= 0) and tA

= 37, III: airport taxes at average costs and tA = 38, II: airport taxes at average and tA = 37.

When airport A’s accessibility improves (columns II and IV), the marginal probability

airport A is chosen increases (a little). At both airports there is also a redistribution of

traffic: at airport A, airline A1’s market share increases, at airport B, airline B2’s

market share increases.

Optimal airfares and frequencies are determined by the parameter values and

marginal costs, but from Tables 1 and 2 it is not clear whether the marginal cost per

flight or the marginal cost per passenger plays a dominant role (if at all). Therefore, in

Table 3 pricing regime I (airport taxes fixed at marginal cost (which are fixed at 0)) is
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compared with the same regime with equal marginal costs per flight or equal marginal

cost per passenger. In Table 4 the corresponding marginal and conditional probabilities

are given.

Table 3 Optimal airfares, frequencies1

pA1 pA2 freqA1 freqA2 pB1 pB2 freqB1 freqB2 taxA taxB

I 136.77 128.02 87 18 132.85 131.27 69 100 0 0

I’ 134.18 139.75 91 129 122.43 128.47 10 40 0 0

I’’ 152.10 126.25 150 0 126.25 143.06 0 125 0 0

1)  I: airport taxes at marginal costs (= 0), I’: airport taxes at marginal costs and cA1 = cA2 = cB1 =
cB2 =100, II’: airport taxes at marginal costs and kA1 = kA2 = kB1 = kB2 =100000.

Table 4 marginal and conditional probabilities at the optimum1

I I’ I’’
P(A) 0.41 0.82 0.52

P(1|A) 0.85 0.45 1
P(2|A) 0.15 0.55 0
P(B) 0.59 0.18 0.48

P(1|B) 0.38 0.17 0
P(2|B) 0.62 0.83 1

1)  see comment made under Table 3.

Form Table 4 it can be seen that under regime I’ (equal marginal costs per passenger)

airport A’s position improves substantially. This is reflected by a substantial increase in

the frequency offered from airport 1. From Table 3 it appears that at airport A the

airline A2 (with the lowest marginal cost per flight) is the winner; it increases both the

airfare and frequency. Airline A2 also increases its frequency, probably as a response to

the more favorable position compared to the airlines operating from airport B.

Compared to airline A1, it looses ground (and reduces its airfare to compensate). At

airport B, both players “loose”. Under regime II’ (equal marginal costs per flight), at

both airports the players with the highest marginal cost per passenger disappear if the

marginal costs per flight are equal; differences in marginal cost per flight are apparently

necessary to justify the existence of more than one player at each airport. This

observation is not extended to the case of equal marginal cost per passenger. As a

result of the increased market power, the surviving airlines are able to increase their

airfares. Airport A’s position also improves under this regime, though less dramatic

than under regime I’.
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8 Conclusion

In this paper optimal airfares, frequencies and airport taxes in a multiple airport region

were analyzed using a nested logit demand model. It was found that if the frequency

elasticity of demand is smaller than 1 there exists an equilibrium. Moreover, it was

found that if an equilibrium exists, it is unique.

The model can be used to determine optimal airport taxes, given the (optimal)

behavior of the airlines. If a regional government plans to invest in improving

accessibility, the model can be used to determine the new optimal airport taxes.

Because the equilibrium, if it exists, is unique, one knows that, like in the old situation,

in the new situation there will be only one optimal airport tax. Although in the paper

symmetric equilibria were derived to show the workings of the model, the conclusion

also holds true for (more realistic) asymmetric equilibria.

In a numerical solution for the asymmetric case, it was concluded that an

increase in the accessibility of an airport leads to an decrease in the airport tax.

However, the increase in accessibility also led to a redistribution of traffic between the

airlines. If the increase in the airfare would outweigh the increase in frequency and

decrease in the competitor’s airfare, an increase in an airport’s accessibility may even

lead to a decrease of the airport’s market share (the “winning” airline cashes in on the

improved accessibility). Whether this happens or not depends on the parameter values

and the relative cost positions. It was also concluded that differences in marginal costs

per flight are necessary to justify the existence of more than 1 competitor at each

airport. Translated into real life, a “low cost” carrier competing with one or more

larger carriers, then will have low marginal costs per passenger but high marginal costs

per flight. There seems to be some truth to that, after the deregulation of the aviation

market some “low cost” carriers entered the market using older aircraft, which are

generally more expensive to operate.

The research agenda that follows from this paper is the following. First, more

research should be done to see whether the frequency elasticity of demand is in fact

smaller than 1. Caves et al. (1991), using a MNL with both the frequency and fare as

explanatory variables, found elasticities for the UK that were in fact smaller than 1.

Pels et al. (1998), using a NMNL with the frequency but without the fare as
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explanatory variables, found elasticities smaller than 1 for the San Francisco Bay Area.

Estimates using NMNL with both the fare and frequency as explanatory variables were

not encountered in the literature. Second, the cost functions were kept very simple and

these will have to be verified empirically. Finally, the model could be restated so that

competition between airports for a hub position in an airline network can be examined.
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Appendices

A Existence of the airfare-frequency equilibrium.

To show there exists an equilibrium we show the profit functions πj, j ∈ L, are quasi-

concave in (pj
*,fj

*).

The second order derivative of πj with respect to pj is:
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which, for every pj which solves the first order necessary condition for profit

maximization, equals
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as the numerator of the seconds RHS term is positive and the denominator of the

second RHS term is negative.

If we assume that (pj-cj) > 05, then the second order condition for profit

maximization with respect to the frequency is:
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A sufficient condition for (A3) to hold is that the frequency elasticity of demand
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5 Then as p cj
*

j− is invariably positive, ( )∂ π

∂
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j
2 j
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j
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'

jf
p c

f
= − will be invariably negative; hence

the profit function is quasi concave in the frequency if 
( )ε f

j,i

j

P < 1 .



18

Finally, for an optimum to exist, it is necessary that Η = −








 >

∂ π

∂
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∂ π
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2

2

2 2

0
j

j

j

j

j

j jp f p f
.

The analytical expression is rather involved, but simulations have shown that if

( )ε f

j,i

j

P < 1 , which is sufficient for 
∂ π

∂

2

2 0
j

j,if
< , Η > 0  near the optimum (f*

j,p
*

j)
6. For the

simulations, θ was standardized to 1, which implies µ < 1. Values for µ were drawn

form a uniform distribution between 0 and 1. For the simulation, values for P(i) and

P(j|i) were drawn from a uniform distribution between 0 and 1. The parameter αf and

αp were drawn from a uniform distribution between 0 and twice the maximum estimate

encountered in the literature7. Simulation results are presented in Table A1.

Table A1 Simulation results
( )εf

j,i

j

P < 1 ( )εf

j,i

j

P > 1

minimum Η 0.00 -7031877
average Η 0.19 -621.07
maximum Η 295.72 73.62
lower bound Η1 0.08 -1701.65
upper bound Η1 0.30 459.51

1) For a 95% confidence interval around the average.

Hence a sufficient condition for airfare-frequency optimum to exist is that the

frequency elasticity of demand is smaller than 1; then the profit function is quasi-

concave in (fj,pj). If all profit functions j, j ∈ L are quasi-concave in (fj, pj) (and the

strategy spaces are convex and compact) then there exists an equilibrium (Anderson et

al. (1992, page 161)).

                                                       
6 Note that the reverse is not necessarily true, it can also be that Η > 0  if the frequency elasticity of
demand is larger than 1.
7 Estimates for αf  were taken from studies including the frequency in logarithmic form. Maximum
values were: 1.29 (0.17) (Hansen, 1990, MNL) and 1.47 (0.06) (Pels et al., 1998b, NMNL). Fare
parameter estimates encountered were (in absolute values): 0.0045 (0.0010), (Hansen, 1990), 0.09
(not reported), (Thompson and Caves, 1993). Standard errors between parentheses.
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B Uniqueness of the airfare-frequency equilibrium.

To show that the equilibrium between airlines operating from the same airport is

unique, we have to show that airline j's best response function is a contraction8. First

we show that 
∂

∂

p

p
j

br

j'j' L(i), j' j

<
∈ ≠
∑ 1, where p j

br  is airline j’s best (airfare) response

function = =










∂π

∂
j

jp
0 ; if this condition is satisfied the airlines’ best airfare functions,

given the frequencies, converge to a single point. ∂ ∂p pj

br

j'  is an expression in P(i),

P(j|i) and P(j’|i). For simplicity we check the condition for li=2; then P(j’|i) = 1 - P(j|i).

Substituting for P(j’|i) and standardizing θ to 1:
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which was verified by simulation; after 99,999 simulations, with µ, P(i) and P(j|i)

drawn from uniform distributions between 0 and 1, it turned out that ∂ ∂p pj

br

j'  lies

within the interval 0 1, . Hence, given the frequency, the local airfare equilibrium is

unique.

Likewise, we have to show that 
∂

∂

f

f
j

br

j'j' , j' j

<
∈ ≠
∑ 1

L i( )

. Substituting for the optimal

airfare in equation 10 (i.e. evaluating the best response frequency function at the

unique optimal airfare) results in 
( ) ( )

f
i j|i

f
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br f
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1
1           A(6)

                                                       
8 f(x) is a contraction if ||f(x)-f(x’)|| < λ||x-x’||, 0 λ < 1; the function values of two points are closer than

the two points themselves. For a differentiable function f(x) this is the same as ( )∂ ∂ λf x xi j
j

∑ < .

(Friedman, 1989).
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if ( )α
µ

f j|i
<

−1 P
, as in equilibrium fj,i = fj’,i. The condition ( )α

µ
f j|i

<
−1 P

 ensures

that the frequency elasticity of the (local) demand is smaller than 1;

( ) ( )( )
( ) ( )( )ε

∂
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j

f
j|i

f
j|i

j

P
P

P= = − <
ln

ln
1 1. This will be the case if ( )ε f

j,i

j

P < 1, which, as

shown, is a necessary and sufficient condition for an equilibrium to exist. Hence, given

the (optimal) airfare, the frequency equilibrium is unique.

As shown in equations (7) and (8), for each optimal pj there is a single fj which

maximizes πj; as p*
j changes, so does f*

j. As pj’ changes, so does p*
j.; and from equation

A(5) it follows that the new airfare equilibrium is unique. f*
j also changes, and from

equations (7) and (8), again there is a single f*
j that maximizes πj. From equation A(6)

we know that the frequency equilibrium is unique. Hence, we conclude the local

airfare-frequency equilibrium is unique if the frequency elasticity of demand is smaller

than 1.

To show that the equilibrium between airlines operating from different airports

is unique, we show that 
∂
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. Again, for

simplicity, we check this for d=2. Then
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if ( )α
µ

f i
<

−1 P
. This will be the case if the frequency elasticity of demand is smaller

than 1, which is necessary for an equilibrium to exist. Hence, the global airfare-

frequency equilibrium, if it exists, is unique.

C Derivation of the symmetric airfare-frequency equilibrium.

Of the li airlines operating out of airport i, let there be li-1 airlines (charging pj’ and

(each) offering a frequency fj’) already in equilibrium. Hence we need to find an

equilibrium between the li-1 airlines already in equilibrium and the remaining airline j.

P(j|i) can be rewritten as:
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Then, if kj=kj’ and cj=cj’=c, j≠j, the symmetric equilibrium as in equations (9) and (10)

is found. Hence at the local equilibrium all li airlines have the same frequency and

airfare.

Let there be d airports, each of which accommodates li airlines (i.e. li = li’).

Furthermore, define ∆≡-βt(taxi’ - taxi)- βa(ln(ti’) - ln(ti), where the subscript i’ is used

for all alternate airports; i.e. all airports other than i have equal covariates. Of the d

airports in the system, let there be d-1 already in equilibrium. Then
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=
+ −
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exp exp1
, where Vi is the utility derived from using airport i (as

specified in equation (3)). Then, if li = li’ , solving the system of equations (9) and (11)

for both airport i and the alternate airports i’, we find a general solution:
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where Z0 is a root of exp(Ω)9;
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where ψ =-2Z-2ln(k) + 2ln(exp(Z)αpk(1-D) + αfN) - 2ln(αp). Solving ψ = 0 results in

Z
N
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f

p
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ln

α
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        (A12)

Substituting equation (A8) for Z and ψ = 0 in Ω yields Ω = 0 if ∆ =0. Substituting for

Z0 in the general solution results in equations (11) and (12).

D Derivation of the symmetric airfare-frequency-airport tax equilibrium.

Let the airport’s cost recovery condition be binding (i.e. λ>0). Then the airport's

optimal tax is given by equation 18 and the airport's best response function is the

airport's profit function. Furthermore, let Kapi=Kapi’ and τ ≡ ti’-ti. For Li=Li’=2, the

general solution to the system of equations 9, 10 and 15 is
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where Z0 is a root of exp(Ω);

                                                       
9 For convenience we give here the expression for L=1. When L>1, Ω L>1 would be far
more complicated. However, Z0 will attain the same value. It is crucial that Li=Li’.



23

( ) ( )( )( )
( ) ( )( )

( ) ( )( ) ( )( )
( ) ( )( ) ( )

( )( )( )

Ω =
+ +

− + +















+

+ +

− + +















+

ψφ θ β τ α α β α

ψφ θ β τ α α β α

ψφ θ β τ α α β α α

ψφ θ β τ α α β α α

ψφ α β τ

1 a f
2

p t f
3

d

1 a f
2

p t f
3

d

2

2 a f p
2 2

t p f
2

d
2

1 a f p
2

t p f
2

d

3 p
3

t

3

k + rKap d +

k - rKap
N

      
k + rKap d +

k - rKap
N +

      Z

2 exp

exp

exp exp

exp exp

exp

Z

Z

Z Z

Z Z

( )( )( )
( )( )( ) ( )( )( )

( )( )( )

k k rKap Z d

      2 Z k k rKap Z d +

      Z k - N

3
p
2

f t
2

d

2 2

3 p
3

t

3 3
p
2

f t
2

d

2

3 p
3

t

3

f
3 3

+ −

+ +

+

α α β

ψφ α β τ α α β

ψφ α β τ α θ

exp

exp exp

exp

        (A17)

where ψ =-2Z-2ln(k) + 2ln(exp(Z)αpk(1-d)+αfN)-2ln(αp),

φ1=½αp
3αf

2exp(Z)(αf-µ),

φ2=-½αp
2αf(exp(Z))2(αf-µ) and

φ3=½αp
3(exp(Z))3(αf-µ).

Solving ψ=0 yields Z =
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dk0
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 . Substituting 0 for ψ in Ω and solving Ω = 0

yields Z =
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dk0

f

p

ln
α

α









  if τ =0. Finally, substituting for Z in the general solution yields

equations 16, 17 and 18. To show that the symmetric equilibrium is unique we again

look at the best response functions; we show this for d=2. We have already shown that

the airlines' equilibrium airfares and frequencies are unique; hence we only look at the

airports' best response functions:
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if (taxi-mci)βt < 2θ. This condition implies that the airport's profit function is non-

decreasing in the airport tax. The argument runs along similar lines if we look at the

airport's best response to changes in airfare or frequency. Hence the equilibrium as

given by equations 16, 17 and 18 is unique.


