
HOW TO MAKE A HILL PLOT
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Abstract. An abundance of high quality data sets requiring heavy tailed models necessitates
reliable methods of estimating the shape parameter governing the degree of tail heaviness. The
Hill estimator is a popular method for doing this but its practical use is encumbered by several
di�culties. We show that an alternativemethod of plotting Hill estimator values is more revealing
than the standard method unless the underlying data comes from a Pareto distribution.

1. Introduction

It is becoming increasingly common to encounter large, high quality data sets for which appro-
priate models require heavy tailed distributions. Examples abound from the �elds of insurance
(McNeil, 1997; Resnick, 1997), �nance, economics (Jansen and de Vries, 1991) computer science
and telecommunications (Leland et al, 1994).
By a heavy tailed distribution we mean a distribution F , assumed for convenience to concen-

trate on [0;1), which satis�es

1� F (x) � x��L(x); x!1; � > 0(1.1)

where L is a slowly varying function satisfying

lim
t!1

L(tx)

L(t)
= 1; 8x > 0:

Suppose (Xn)n2N is a stationary sequence whose marginal, one-dimensional distribution is F ,
so that

PfXn > xg = 1� F (x):

A basic statistical calibration problem is to estimate the shape parameter � which is the negative
of the index of regular variation. A popular estimator of 
 := ��1 is the Hill estimator obtained
as follows. Suppose one observes X1; : : : ;Xn and orders these observations as

X(1) � � � � � X(n):
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Figure 1. Hill plot of 5000 Pareto observations, 
=1.

The Hill estimator based on k + 1 upper order statistics is

Hk;n :=
1

k

kX
i=1

log
X(i)

X(k+1)
(1.2)

for k = 1; : : : ; n� 1:
The Hill estimator is consistent for 
 in the following sense. If (kn)n2N is an intermediate

sequence, that is,

kn �!1; kn=n �! 0;(1.3)

then

Hkn;n
P
�! 
;(1.4)

provided either

(i) fXng is iid (Mason, 1982) or
(ii) fXng can be written as a �nite or in�nite order moving average process (Resnick and St�aric�a,

1995) or
(iii) fXng satis�es mixing conditions (Rootzen, Leadbetter, de Haan (1990)) or
(iv) fXng is an ARCH(1) process (Resnick and St�aric�a, 1998), a bilinear process (Davis and

Resnick (1997), Resnick and Van den Berg (1998)) or consists of random variables de�ned
on a Markov chain (Resnick and St�aric�a, 1998).

Because of condition (1.3) on the number of order statistics, it is not clear how to apply this
consistency result (1.4). One can try to choose an optimal k which minimizes asymptotic mean
square error. See Danielsson et al. (1997) and Drees and Kaufmann (1998). However, what is
usually done in practice is to construct a Hill plot, de�ned as

f(k;H�1k;n); 1 � k � n� 1g

and then to infer the value of 
 from a stable region in the graph. This is sometimes di�cult
since the plot may be volatile and/or may not spend a large portion of the display space in the
neighborhood of 
. In fact, it is becoming increasingly clear that the traditional Hill plot is most
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Figure 2. Hill plot of two independent samples from stable, � = 0:2.
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Figure 3. Hill plot of two independent samples from stable, � = 0:5.

e�ective only when the underlying distribution is Pareto or very close to Pareto. For the Pareto
distribution,

1� F (x) =
�x
�

���
; x > �; � > 0;

one expects the Hill plot to be close to 
 for the right side of the plot, since the Hill estimator
Hn�1;n is the maximum likelihood estimator in the Pareto model. This is born out in practice.
When only (1.1) holds, however, the Hill estimator is only an approximate maximum likelihood
estimator based on observations which are exceedances over X(k+1) divided by the threshold
X(k+1) and it is less clear what portion of the plot is most accurate.
Figure 1 is a Hill plot for 5000 iid observations from the Pareto distribution with � = 1: Notice

the right side of the graph clearly indicates the correct value of 1. However, Figures 2 and 3 each
display two independent samples of size 5000 from stable distributions with parameters 0.2 and
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Figure 4. Hill plot of two independent samples from logarimithmically perturbed
Pareto, � = 1.
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Figure 5. Hill plot of interarrival times of packets to a sever.

0.5 and due to the small amount of time the plots spend in the vicinity of the correct values, one
would have to be paranormal to discern with con�dence the true values. Figure 4 gives two Hill
plots for samples of size 5000 from the distribution of the random variable U�1 logU�1 where U
is uniform on [0; 1]. For this distribution F satis�es

1� F (x) � x�1= log x; x!1:

Figure 5 is a Hill plot for two real teletra�c data sets of length 3802 and 4867 respectively,
consisting of interarrival times of packets in a network. Finally Figure 6 is the Hill plot of the
Danish large �re insurance claim data of length 2156. This example shows that sometimes the
Hill plot can be quite clear and informative for real data.
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Figure 6. Hill plot of Danish loss data.

What do we do when the Hill plot is not so informative? C. St�aric�a (Resnick and St�aric�a, 1997)
has suggested a simple device called alt (alternative) plotting. Instead of plotting f(k;H�1k;n); 1 �

k � n� 1g, we construct the altHill plot by plotting

f(�;H�1
dn�e;n

); 0 � � < 1g;

that is, one uses a logarithmic scale for the k-axis. (Here dn�e denotes the smallest integer
greater than or equal to n�.) This has the e�ect of stretching the left half of the Hill plot and
giving more display space to smaller values of k. This will clearly not be bene�cial when the
underlying distribution is Pareto, but as the following plots show, is bene�cial in a wide variety
of circumstances.
Figure 7 redisplays the traditional Hill plot for sample of size 5000 from the stable(� = 0:2)

distribution alongside the alt plot which is more revealing since the plot spends more time in the
neighborhood of the true value. The information in the alt plot would be further enhanced by
applying a smoothing procedure given in Resnick and Starica (1997).
Corresponding to Figure 4 we observe in Figure 8 that the alt plot more clearly shows the

correct value of � = 1. Finally Figure 9 compares the traditional Hill with the alt plots for the
second ISDN data set; the alt plot makes plausible an estimate of � = 1:1.
The engineering conclusion we emphasize in this paper is that for iid observations whose

common distribution has a tail satisfying a second order condition, altplotting is superior. See
Theorem 2 and the accompanying discussion. For the Pareto distribution, the traditional Hill
plot is preferred. We quantify superiority in terms of the occupation time of the plots in a
neighborhood of the true value of 
. The percentage PERHILL of time the Hill plot up to Hl;n

spends in an �-neighborhood of the true value is de�ned as

PERHILL(�; n; l) :=
1

l

lX
i=1

1fjHi;n � 
j � �g
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Figure 7. Hill and altHill plot of stable observations, � = 0:2.
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Figure 8. Hill and altHill plot corresponding to Figure 4, � = 1.

and the percentage PERALT of time that the altplot up to Hdnue;n spends in the �-neighborhood
is

PERALT(�; n; u) =
1

u

Z u

0

1fjHdn�e;n � 
j � �gd�:

Note that for u = log(l + 1)= log n both statistics are based on the same set fHi;n; 1 � i � lg:
Asymptotic results for these two quantities are given in Section 2 which show the superiority of the
alt method, unless the distribution is Pareto, provided l = ln constitutes a suitable intermediate
sequence. In order to capture as much of the whole Hill plot or altplot as possible , we will choose
ln such that n=ln tends to in�nity slower than every power of n, e.g., ln = n= log n.
We would prefer results not limited by l or u and have achieved this in the Pareto case. See

Theorem 3. However, the regular variation condition (1.1) and its second order re�nement (2.2)
controls behavior only in the right tail and hence only a�ects the Hill plot away from the origin.
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Figure 9. Hill and altHill plot of ISDN2.

To control that part of the Hill plot corresponding to order statistics not determined by the right
tail, one needs a left tail assumption. We are loath to assume anything about the left tail for what
is essentially a right tail estimation problem and hence in Theorem 2 are left with the alternative
of giving results for the plots restricted by l and u.

2. Results

In the sequel, we assume that iid random variables fXn, n 2 Ng, with common distribution
function F are observed. In order to derive the asymptotics of the PERHILL and PERALT
statistics, we need second order conditions on the underlying distribution. Recall that (1.1) holds
if and only if the quantile function U(t) := F (1� 1=t) satis�es

logU(tx)� logU(t)! 
 log x(2.1)

as t ! 1. A more precise second order assumption which strengthens (2.1) is the following
condition:

lim
t!1

logU(tx)� logU(t)� 
 log x

A(t)
=

x� � 1

�
; x > 0;(2.2)

for some � � 0 and some function A : (0;1) ! R which ultimately is of constant sign. Then,
necessarily, jAj is regularly varying with index �. For further discussion of this condition and its
relation to other second order conditions, we refer to Dekkers and de Haan (1993), de Haan and
Stadtm�uller (1996) and de Haan et al. (1997).
Most important for our investigations of the asymptotic behavior of the PERHILL and PER-

ALT statistics will be the following approximation of the Hill process, which is of interest on its
own.

Theorem 1. Under condition (2.2), there exist versions of Hi;n, 1 � i � n � 1, n 2 N, and a
standard Brownian motion W such that for all intermediate sequences (jn)n2N and (ln)n2N

Hi;n �
�

 + 


W (i)

i
+
A(n=i)

1� �

�
= O

� log i
i

�
+ o(A(n=i)) a:s:(2.3)
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uniformly for jn � i � ln. Moreover, there exist iid standard exponential random variables ��n,

n 2 N, such that for S�i :=
Pi

n=1 �
�
n one has

Hi;n � 

S�i
i

= O(A(n=i)) a:s:(2.4)

uniformly for 1 � i � ln as n!1.

Kaufmann and Reiss (1998) established closely related approximations of the Hill process
under the assumption that U is normalized regularly varying, but these results are not directly
applicable for our purposes, since for small i their bounds, which do not depend on i, may be of
larger order than the statistic Hi;n� 
 which is to be approximated. See also Mason and Turova
(1994).
Often it is more convenient to parametrize the Hill process continuously.

Corollary 1. Let (kn)n2N denote an arbitrary intermediate sequence. Under the conditions of
Theorem 1, there exists a sequence of Brownian motions Wn, such that

sup
tn�t�Tn

(t1=2 ^ t���)
���Hdknte;n � �
 + k�1=2n 


Wn(t)

t
+ A(n=kn)

t��

1� �

���� = oP (k
�1=2
n +A(n=kn))

(2.5)

for all � > 0 and all tn ! 0, Tn !1 satisfying kntn !1 and knTn=n! 0. Moreover,

sup
0<t�Tn

(h(t)^ t���)
���Hdknte;n � �


 + k�1=2n 

Wn(t)

t
+A(n=kn)

t��

1� �

���� = oP (k
�1=2
n + A(n=kn))

(2.6)

if t 7! t=h(t) is an upper class function of a standard Brownian motion, for example, if

lim
t!0

h(t)(log log(3=t)=t)1=2 = 0:)

Note that (2.5) is less accurate than (2.3) for large t and that (2.6) is less accurate for both,
small and large t.
From Corollary 1 it is easily seen that the optimal rate of convergence which minimizes the

asymptotic mean squared error is obtained if the standard deviation and the bias are balanced,
i.e., if

k1=2n jA(n=kn)j �! 1:(2.7)

Therefore, it is natural to examine the asymptotic behavior of PERHILL and PERALT for a

neighborhood shrinking with the rate k
�1=2
n towards the true value 
. Observe that, according to

Theorem 1.5.12 of Bingham et al. (1987), relation (2.7) is satis�ed by an intermediate sequence,
which is unique up to asymptotic equivalence (see discussion item (2) after Theorem 2).

Theorem 2. Suppose that (kn)n2N and (ln)n2N are intermediate sequences satisfying (2.7) and
ln=kn !1, respectively, and let un := log(ln + 1)= log n. Then for � < 0 we have

ln
kn

PERHILL(k�1=2n �; n; ln) =
1

kn

lnX
i=1

1
fk1=2n jHi;n � 
j � �g

d
!

Z 1
0

1fj
W (t)=t + t��=(1� �)j � �g dt(2.8)
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and

log(ln + 1)PERALT(k�1=2n �; n; un) = log n

Z un

0

1
fk

1=2
n jHdn�e;n � 
j � �g

d�

d
!

Z 1
0

1fj
W (t)=t+ t��=(1� �)j � �g
dt

t
(2.9)

where the limit random variables are �nite almost surely. If, in addition, jAj is eventually de-
creasing, then we have for � = 0

ln
kn

PERHILL(k�1=2n �; n; ln)

8<
:

d
!
R1
0

1fj
W (t)=t+ 1j � �g dt; if � < 1;

P
!1; if � > 1;

(2.10)

and

log(ln + 1)PERALT(k�1=2n �; n; un)

8<
:

d
!
R1
0 1fj
W (t)=t+ 1j � �g

dt
t ; if � < 1;

P
!1; if � > 1;

(2.11)

where the limits are �nite a.s. if � < 1.

Discussion:

(1) The limiting random variables can be expressed in terms of the local time of a standard
Brownian motion de�ned by

Lat := lim
�#0

1

2�

Z t

0
1(a��;a+�)(W (s)) ds = 2

�
(W (t)� a)+ � a1(�1;0)(a) +

Z t

0
1fW (s)>ag dW (s)

�
:

According to Revuz and Yor (1991), Ex. (VI.1.15), one hasZ 1
0

1fj
W (t)=t+ t��=(1� �)j � �gt
�� dt =

Z 1
�1

Z 1
0

1fj
a=t+ t��=(1� �)j � �gt
�� dLat da:

(2) From Theorem 2, we have

PERHILL(k�1=2n �; n; ln) = Op(
kn
ln
)

and

PERALT(k�1=2n �; n; un) = Op(
1

log(ln + 1)
)

if � < 0, or � = 0 and � < 1. Hence, if n=ln is of smaller order than every positive power of n (e.g.,
ln = n= log n), then the rate of convergence to 0 is faster for PERHILL con�rming the claimed

superiority of the altHill plot. To see this, recall that k
1=2
n jA(n=kn)j ! 1, which is equivalent to

~A(n=kn) � n1=2 where ~A(t) := t1=2=jA(t)j is a (1=2� �){varying function. According to Theorem

1.5.12 of Bingham et al. (1987), there exists an asymptotically unique inverse ~A , such that

kn=n � 1= ~A (n1=2) is a �1=(1 � 2�){varying function of n. Hence kn=ln converges to 0 at a
faster rate than the slowly varying function 1= log(ln + 1) � 1= log n.

This provides a comparison between the two plotting methods when the second order condition
(2.2) holds. However, this excludes a result for the important case of the Pareto distribution, for
which we expect traditional Hill plotting is superior. For the Pareto distributions, we have the
following result.
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Theorem 3. Suppose F is Pareto, and n > ln � kn !1. Then

log(ln + 1)

log kn

�
1�PERALT(k�1=2n �; n; un)

�

=
log n

log kn

Z un

0
1
fk

1=2
n jHdn�e;n � 
j > �g

d�
P
�! 1(2.12)

where again un := log(ln + 1)= log n. If, in addition, ln=kn ! c 2 [1;1]; then

ln
kn

�
1� PERHILL(k�1=2n �; n; ln)

�
=

ln
kn

� 1

ln

lnX
i=1

1
fk

1=2
n jHi;n � 
j > �g

�

d
�!

Z c

0
1fj
W (t)=tj > �gdt(2.13)

where the limit is �nite a.s.

Discussion:

(1) Convergence (2.12) and (2.13) discuss the percentage of time the altHill and Hill plots
spend outside a neighborhood of the true value 
.
(2) When c =1,

�
1� PERHILL(k�1=2n �; n; ln)

�
= Op(kn=ln);(2.14)

where kn=ln ! 0 and

�
1� PERALT(k�1=2n �; n; un)

�
= Op

� log kn
log ln

�
(2.15)

where (log kn)=(log ln)! 0 more slowly than kn=ln ! 0
(3) When 1 � c <1,

1� PERHILL(k
�1=2
n �; n; ln)

1� PERALT(k
�1=2
n �; n; un)

d
�!

1

c

Z c

0
1fj
W (t)=tj > �gdt

where the limiting random variable is almost surely less than 1.
If F is a Pareto distribution, then the assertions of Theorem 3 hold true for all intermediate

sequences (kn)n2N and all sequences (ln)n2N satisfying ln ! 1 for (2.12) and ln=kn ! 1 for
(2.13). In particular, one may choose ln = n� 1. In this case, the percentage of time the alt plot
is outside a neighborhood of 
 is

1� PERALT(k�1=2n �; n; 1) = Op(log kn= log n);

and the corresponding percentage of time for the Hill plot is

1� PERHILL(k�1=2n �; n; n� 1) = Op(kn=n);

con�rming the superiority of the Hill plot for the Pareto distribution.
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3. Proofs

Proof of Theorem 1. We take up the approach used by Kaufmann and Reiss (1998). Denote by

�n, n 2 N, iid standard exponential random variables and de�ne Si :=
Pi

n=1 �n. Recall that
U(Sn+1=Si), 1 � i � n, are versions of the order statistics X(i), 1 � i � n (Reiss, 1989, Corollary
1.6.9).
Next note that (2.2) implies

sup
x�1

x��
��� log(U(tx)=U(t))� �


 log x+ A(t)
x� � 1

�

���� = o(A(t))(3.1)

for all � > 0 This is a direct consequence of Lemma 2.1 of Drees (1998), where in case � = 0,
we use the fact that (2.2) is equivalent to the �{variation of log(t�
U(t)). Hence applying (3.1)
with t = Sn+1=Si+1 and x = Si+1=Sj yields

� Sj
Si+1

����� log U(Sn+1=Sj)

U(Sn+1=Si+1)
�
�

 log

Si+1
Sj

+ A
�Sn+1
Si+1

�(Si+1=Sj)� � 1

�

���� = o
�
A
�Sn+1
Si+1

��
a.s.

(3.2)

uniformly for 1 � j � i � ln. The strong law of large numbers and the uniform convergence
theorem for regularly varying functions yield

A(Sn+1=Si+1)

A(n=i)
�! 1 a.s.(3.3)

uniformly for jn � i � ln. The law of iterated logarithm gives max(jSi=i � 1j; jSi+1=i � 1j) =
O((log log(3i)=i)1=2), and thus���(Si+1=Sj)� � 1

�
�

(i=j)� � 1

�

��� = O
�
(i=j)�(log log(3j)=j)1=2

�
a.s.(3.4)

uniformly for 1 � j � i <1.
Combining (3.2){(3.4) and the strong law of large numbers, we arrive at�j

i

����� log U(Sn+1=Sj)

U(Sn+1=Si+1)
�
�

 log

Si+1
Sj

+A
�n
i

�(i=j)� � 1

�

���� = o
�
A
�n
i

��
a.s.

Consequently,

1

i

iX
j=1

log
U(Sn+1=Sj)

U(Sn+1=Si+1)
= 


1

i

iX
j=1

log
Si+1
Sj

+A
�n
i

�1
i

iX
j=1

(i=j)� � 1

�
+ o(A(n=i)) a.s.

uniformly for jn � i � ln. Since ��j := j log(Sj+1=Sj) de�nes a sequence of iid exponen-

tial random variables (Reiss, 1989, Corollary 1.6.11), the famous Koml�os{Major{Tusn�ady ap-
proximation of the partial sum process by a Brownian motion combined with the facts that
S�i :=

Pi
j=1 log(Si+1=Sj) =

Pi
j=1 �

�
j and

Pi
j=1((i=j)

� � 1)=(i�) ! 1=(1 � �) yields (2.3) (cf.

Kaufmann and Reiss, 1998, proof of Theorem 1).
Using A(Sn+1=Si+1)=A(n=i) = O(1) a.s. uniformly for 1 � i � ln instead of (3.3), one obtains

the second assertion.

Proof of Corollary 1. First note that (2.3) implies

sup
tn�t�Tn

�
t1=2^

A(n=kn)

A(n=dknte)

����Hdknte;n��
+

W (dknte)

dknte
+
A(n=dknte)

1� �

���� = o(k�1=2n +A(n=kn)) a:s:
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For all � > 0, the Potter bounds (Bingham et al, 1987, Theorem 1.5.6) yield

1

2
(t��� ^ t�+�) �

A(n=kn)

A(n=dknte)
� 2(t��� _ t�+�)(3.5)

for su�ciently large n and all tn � t � Tn, so that

t1=2 ^
A(n=kn)

A(n=dknte)
�

1

2
(t1=2 ^ t���):

Moreover, the uniform convergence theorem gives

sup
t�s

t���jA(n=dknte)� t��A(n=kn)j = o(A(n=kn))

for all s > 0, and hence, by a standard diagonal argument, there exists a sequence sn ! 0 such
that

sup
t�sn

t���jA(n=dknte)� t��A(n=kn)j = o(A(n=kn)):

On the other hand, in view of (3.5), we have

sup
t�sn

t1=2(jA(n=dknte)j+ jt��A(n=kn)j) = o(A(n=kn)):

To sum up, we have shown that

sup
tn�t�Tn

(t1=2^t���)
���Hdknte;n��
+k�1=2n 


Wn(dknte=kn)

dknte=kn
+A

� n
kn

� t��

1� �

���� = o(k�1=2n +A(n=kn)) a.s.

where

Wn(t) := k�1=2n W (knt)(3.6)

is a Brownian motion.
Since (Wn(t)=t)t�1 is uniformly continuous and

sup
tn�t�1

t1=2jWn(t)j
�� 1

dknte=kn
�

1

t

�� � sup
tn�t�1

jWn(t)jt
�1=2(knt)

�1 = oP (1)

by the law of iterated logarithm and kntn !1, to obtain (2.6), it remains to prove that

sup
tn�t�1

t�1=2jWn(dknte=kn)�Wn(t)j = oP (1):(3.7)

To this end, de�ne log1 kn := log kn, logj+1 kn := log(logj kn) and, for �xed � > 0, tn;0 := 1

and tn;j := 6 logj kn=(�
2kn). Because tn;j is decreasing in j and tn;j < 0 for su�ciently large j,

there exists jn such that tn;jn � tn < tn;jn�1. According to Lemma A.1.1 of Cs�org}o and Horv�ath
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(1993), for some constant C one has

P
�

sup
tn�t�1

t�1=2jWn(dknte=kn)�Wn(t)j > �
	

�

jnX
j=1

P
�

sup
tn;j�t�tn;j�1

jWn(dknte=kn)�Wn(t)j > �t
1=2
n;j

	

� C

jnX
j=1

kntn;j�1 exp(��
2kntn;j=3)

� Ckn exp(�2 log kn) + 6C��2
jnX
j=2

logj�1 kn exp(�2 logj kn)

= o(1) +O
� jnX
j=2

(logj�1 kn)
�1
�
= o(1);

where the last equality follows from logjn�1 kn � �2kntn=6 ! 1 and logj kn= logj�1 kn ! 0

uniformly for 2 � j � jn � 1, which imply
Pjn

j=2(logj�1 kn)
�1 � (logjn�1 kn)

�1
Pjn�2

l=0 2�l = o(1)

for su�ciently large n. Thus (3.7), and the proof of (2.5) is �nished.

To prove the second assertion, choose tn such that kntn ! 1 but sup0�t�tn h(t)k
1=2
n ! 0,

which is possible because of limt!0 t
�1=2h(t) = 0. Then, the de�nition of h and (2.4) ensure that

sup
0<t�tn

h(t)
��Hdknte;n � �


 + 
k�1=2n

Wn(t)

t
+A(n=kn)

t��

1� �

��� = o(k�1=2n + A(n=kn)) a.s.

Proof of Theorem 2. First we prove that the limit random variables are �nite a.s. For (2.8) and
(2.10) this is an immediate consequence of limt!1W (t)=t = 0 a.s., whereas for the limit random
variables in (2.9) and (2.11), in addition, one has to take into account that, for all a > 0,

E

Z a

0

1fj
W (t)=t + t��=(1� �)j � �g
dt

t
=

Z a

0

N(0;
2)

� t1=2��
1� �

� �t1=2;
t1=2��

1� �
+ �t1=2

� dt
t

�

Z a

0
(2�
2)�1=22�t�1=2 dt < 1:(3.8)

Next we will show that, due to the large bias, for i being large compared with kn one has

k
1=2
n jHi;n � 
j > � with large probability if � < 0, or � = 0 and � < 1. Pick some (small)
� > 0. For � < 0, choose M su�ciently large such that Pfsupt�M jW (t)j=t � 1g � �=2 and

M��=2=(2(1� �)) � �+ 
 + 1. Then, for Mkn � i � ln, (2.3), (3.6), (2.7) and the Potter bounds
(3.5) imply

k1=2n jHi;n � 
j =
���
Wn(i=kn)

i=kn
+
A(n=i)(1 + o(1))

jA(n=kn)j(1� �)
+ O

�
k1=2n

log i

i

���� � M��=2

2(1� �)
� 
 �

1

2
> �(3.9)
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with probability greater than 1 � � for su�ciently large n. Likewise, in case of � = 0 the
monotonicity of jAj yields

k1=2n jHi;n � 
j � 1� 

jWn(i=kn)j

i=kn
+ o(1) > �(3.10)

with probability greater than 1�� ifM is chosen such that Pfsupt�M jW (t)j=t � (1��)=(2
)g �
�=2.
Moreover, the �niteness of the limit random variables in (2.8) and (2.10) shows that

lim
M!1

Z 1
M

1fj
W (t)=t + t��=(1� �)j � �g dt = 0 a.s.

Hence, for the convergence of the normalized PERHILL statistic for � < 0, or � = 0 and � < 1,
it su�ces to prove that for all M <1

1

kn

dMkneX
i=1

1
fk

1=2
n jHi;n � 
j � �g

=

Z M

0
1
fk

1=2
n jHdknte;n � 
j � �g

dt+O(k�1n )

d
�!

Z M

0
1fj
W (t)=t + t��=(1� �)j � �g dt:

This, however, follows easily from (2.6), which implies that supm�t�M jk
1=2
n (Hdknte;n � 
) �

(
Wn(t)=t� t��=(1� �))j
P
! 0 for all 0 < m < M <1, by a continuous mapping argument. For

one has, for all � > 0, with probability tending to 1Z M

�=2
1fj
Wn(t)=t+ t��=(1� �)j � �� �g dt�

�

2
�

Z M

0
1
fk

1=2
n jHdknte;n � 
j � �g

dt

�

Z M

�=2
1fj
Wn(t)=t+ t��=(1� �)j � �+ �g dt+

�

2

where the left- and the right-hand side converge to I(�) :=
RM
0 1fj
Wn(t)=t+t��=(1��)j��g dt as � ! 0,

since the map � 7! I(�) is continuous.
Next, we turn to the limit behavior of the PERHILL statistic if � = 0 and � > 1. Choose M

such that Pfsupt�M jW (t)j=t > (� � 1)=(2
)g < �=2, and note that for all K > 1 the uniform
convergence theorem gives supMkn�i�MKkn jA(n=i)=A(n=kn) � 1j ! 0. Hence one has with
probability greater than 1� �

k1=2n jHi;n � 
j � 1 + o(1) + (�� 1)=2 < �(3.11)

for Mkn � i �MKkn and su�ciently large n, so that

ln
kn

PERHILL(k�1=2n �; n; ln) �
dMKkne � bMknc

kn
�!M(K � 1):

Since K > 1 and � > 0 are arbitrary, it follows that the left-hand side converges to 1 in
probability.
Now we examine the asymptotics of

log(ln + 1)PERALT(k�1=2n �; n; un) =

lnX
i=1

log
i+ 1

i
1
fk

1=2
n jHi;n � 
j � �g

:(3.12)
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In case of � = 0 and � > 1 we obtain from (3.11) that with probability greater than 1� �

log(ln + 1)PERALT(k�1=2n �; n; un) � log
dMKkne

bMknc
�! logK

for all K > 1 and hence (2.11).
If � < 0, or � = 0 and � < 1, then again (3.9) and (3.10), respectively, in combination with

limM!1

R1
M 1fj
W (t)=t+t��=(1��)j��gt

�1dt = 0 show that it su�ces to prove that

dMkneX
i=1

log
i+ 1

i
1
fk

1=2
n jHi;n � 
j � �g

d
�!

Z M

0
1fj
W (t)=t + t��=(1� �)j � �g

dt

t
(3.13)

for all M > 0.
In view of (2.4), for �xed i, Hi;n is asymptotically gamma distributed with shape and scale

parameter i. Since this distribution is continuous, it follows that Pfk
1=2
n jHi;n � 
j � �g =

PfHi;n 2 [
 � �k
�1=2
n ; 
 + �k

�1=2
n ]g ! 0, so that

Pi0
i=1 log((i + 1)=i)1

fk
1=2
n jHi;n�
j��g

P
! 0 for all

�xed i0. Thus, a standard diagonal argument proves that there exists an intermediate sequence
(jn)n2N such that

jnX
i=1

log
i+ 1

i
1
fk

1=2
n jHi;n � 
j � �g

P
�! 0:(3.14)

Next note that by (2.3), (2.7) and (3.5) for all � > 0 there exists C > 0 such that with
probability greater than 1� �



jW (i)j

i
� jHi;n � 
j+ k�1=2n

���A(n=i)(1 + o(1))

A(n=kn)(1� �)

���+ C
log i

i

� jHi;n � 
j+ 2k�1=2n (i=kn)
����+ C

log i

i

for all jn � i � mkn + 1 and su�ciently large n. Since

bmkncX
i=jn+1

log
i+ 1

i
P
n


jW (i)j

i
� �k�1=2n + 2k�1=2n (i=kn)

���� + C
log i

i

o

� 2(2�
2)�1=2
bmkncX
i=jn+1

i�1
�
�(i=kn)

1=2+ 2(i=kn)
1=2����+ Ci�1=2 log i

�

� const.(m1=2+m1=2����
�
+ o(1) �! 0

as m # 0, it follows that for all � > 0 one can �nd m > 0 such that with probability greater than
1� � one has

bmkncX
i=jn+1

log
i+ 1

i
1
fk

1=2
n jHi;n � 
j � �g

� �(3.15)

for su�ciently large n.
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In view of (3.13){(3.15) and (3.8), it remains to prove that for all 0 < m < M <1 one has

dMkneX
i=bmknc

log
i+ 1

i
1
fk

1=2
n jHi;n � 
j � �g

=

Z M

m

1
fk

1=2
n jHdknte;n � 
j � �g

dt

t
+ O(k�1n )

d
�!

Z M

m

1fj
Wn(t)=t+ t��=(1� �)j � �g
dt

t
;

yet this follows by the continuous mapping argument mentioned above.

Proof of Theorem 3. Following the lines of the proof of Theorem 1, one can show that for suitable
versions of Hi;n

Hi;n = 
 + 

W (i)

i
++O

� log(i+ 1)

i

�
a.s.(3.16)

uniformly for 1 � i � n� 1.
Since supt�M jW (t)=tj ! 0 a.s. as M ! 1, for each � > 0 one can pick a large M such that

one has eventually with probability greater than 1� �

k1=2n jHi;n � 
j � 

jWn(i=kn)j

i=kn
+ �=2 � �(3.17)

for all Mkn � i � ln with Wn de�ned in (3.6). Hence, by similar arguments as in the proof of
Theorem 2

log(ln + 1)

log kn

�
1� PERALT(k�1=2n �; n; un)

�

=
1

log kn

� dMkne^lnX
i=1

log
i+ 1

i
1
fk

1=2
n jHi;n � 
j > �g

+
lnX

i=(dMkne^ln)+1

log
i+ 1

i
1
fk

1=2
n jHi;n � 
j > �g

�

=
log(dMkne+ 1)

log kn
�

1

log kn

�Z M^(ln=kn)

0

1f
jW (t)j=t � �g
dt

t
+ o(1)

�
;

from which assertion (2.12) is obvious.
Because of (3.17), for the examination of PERHILL, one may restrict oneself to 1 � i �

Mkn ^ ln. Similarly as in the proof of Corollary 1, one may deduce from (3.16) that

sup
0<t�M^(ln=kn)

h(t)
���k1=2n (Hdknte;n � 
)� 


Wn(t)

t

��� = o(1):

Thus we obtain assertion (2.13) using the continuous mapping argument of the proof of Theorem
2 and the a.s. �niteness of

R c
0 1fj
W (t)=tj>�gdt, which is immediate from limt!1W (t)=t = 0 a.s.

4. Concluding Remark

It may be possible to tune the scaling of the Hill plot's horizontal axis to suit the distribution.
In practice, this would require a procedure to estimate, at least approximately, the second order
behavior of the distribution tail 1�F . It may also be possible to use the idea of occupation time
in a strip to improve the estimation of 
. Investigations are underway.
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