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ABSTRACT

In this paper we discuss a locational model with a pro�t-maximizing objective. The model

can be illustrated by the following situation. There is a set of potential customers in a given

region. A �rm enters the market and wants to sell a certain product to this set of customers.

The location and demand of each potential customer are assumed to be known. In order to

maximize its total pro�t, the �rm has to decide: 1) where to locate its distribution warehouse

to serve the customers; 2) the price for its product. Due to existence of competition, each

customer holds a reservation price for the product. This reservation price is a decreasing

function in the distance to the warehouse. If the actual price is higher than the reservation

price, then the customer will turn to some other supplier and hence is lost from the �rm's

market. The problem of the �rm is to �nd the best location for its warehouse and the best

price for its product at the same time in order to maximize the total pro�t. We show that

this problem can be solved in polynomial time.
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1 Introduction

Traditionally the literature on locational models under the microeconomic marketing envi-

ronment is quite limited. See [1] and [2] for a survey. One reason for this could be that

most locational models have an accent of minimizing costs of some type. One of the most

celebrated models in location science is certainly the Weber model introduced by A. Weber

in 1909 [5]. This model can be briey described as follows. There is a set of customers to

be served. Each customer is known by its location and the quantity of the demand. The

problem is to �nd a location for the distribution warehouse to serve these customers, where

the objective is to minimize the total transportation costs. This model has been extensively

studied in the literature, because it captures an essence common in many locational prob-

lems. At the same time, it receives criticisms as well. One of the criticisms was raised by

L�osch in [4]: \Weber's solution for the problem of location proves to be incorrect as soon as

not only cost but also sales possibilities are considered. His fundamental error consists in

seeking the place of lowest cost. This is as absurd as to consider the point of largest sales as

the proper location. Every such one-sided orientation is wrong. Only search for the place of

greatest pro�t is right".

In Chapter 15 of [1] Peeters and Thisse discussed several operational models which combine

location problems with pro�t-maximization objectives. Moreover, it is assumed that there is

no competition in the market and that the demand is a decreasing a�ne linear function in

the price, as in many other microeconomic pricing models. We refer the reader to Chapter

4 of [3] for a survey of various pricing models.

The emphasis of the model to be discussed in this paper is di�erent. We shall take com-

petition into account. Consider the following situation. There is a �rm which produces a

certain product. This product will be brought to a warehouse for distribution. There are n

potential cutomers who are interested in this product. The locations of these n customers

are known to be ai with i = 1; � � � ; n. Moreover, it is known that the demand quantity

of customer i is Qi for i = 1; � � � ; n. For each customer, it is attractive if the warehouse

is located in his/her close neighborhood since the customer bares the transportation costs.

Due to the existence of competition in the market, the reservation price (the maximum price

up to which a customer is willing to pay) of each customer is a strictly decreasing function

in the distance to the warehouse. As soon as the actual price goes beyond a customer's

reservation price, he/she will turn to some other supplier, and thus is lost completely from

the market of the �rm. The problem of the �rm is to choose the location for its warehouse
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and the price for the product in order to maximize the total pro�t.

The goal of this note is to show that in fact there is a simple polynomial time solution method

for solving the problem. Certainly, the model is not supposed to be immediately operational

due to its simplicity in nature. However, many extensions of the model are possible.

2 The model

Mathematically, the problem discussed at the beginning of the previous section can be for-

mulated as
maximize p

Pn
i=1Qi�fp�ri(kx�aik)g

subject to p 2 <1
+ and x 2 <2

where ri is the reservation price of the customer i given the location of the warehouse at x.

In this expression �s stands for the characteristic function of a statement s:

�s =

8<
:

1; if s is true

0; otherwise.

According to our model description, the function ri is a strictly decreasing function.

This model looks quite messy in the sense that it is neither convex or concave in its decision

variables p and x. Even for �xed p, the objective is in general not continuous in x. It is

interesting to see, however, that the problem can be solved when p is �xed as a parameter.

To illustrate this, let us introduce

Fp(x) = p
nX

i=1

Qi�fp�ri(kx�aik)g:

The original model can be rewritten as

max
p2<1

+

max
x2<2

Fp(x):

The �rst question we pose is: Can we e�ciently evaluate maxx2<2 Fp(x) when p is �xed as

a parameter?

To keep analysis simple, we consider the case where the norm is Euclidean. In that case, the

above problem is equivalent to the following combinatorial circle covering problem:
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(Circle Covering) We are given n circles fCi j 1 � n � ng on the plane. Circle Ci is

centered at ai with radius Ri, i = 1; � � � ; n. It is assumed that if a point is in Ci then this

point receives a weight wi. The total weight of a point x is denoted by w(x) and is simply

the summation of all weights from the circles that the point is contained in, i.e.

w(x) =
X

fijx2Cig

wi:

The problem is to �nd a point on the plane with the maximum total weight. Namely, we

wish to �nd x 2 <2 that maximizes w(x).

In the picture below we consider an example of the circle covering problem.

C1

C2

C3

C4

C5
)

6

x�

Figure 1. Circle covering.

In this instance, we let w1 = 7, w2 = 6, w3 = 10, w4 = 8 and w5 = 9. Therefore, an optimal

solution x� lies in the intersection of C3, C4 and C5.

This problem is combinatorial in nature. Although the circles may form a partition of the

plane in a very complex way, we will see in the rest of this paper that the problem in general

allows an easy solution method.

Observe that for each pair of circles Ci and Cj there can be maximally two intersection
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points. Let them form a set Ifi;jg. To be more precise, we de�ne

Ifi;jg =

8>><
>>:

The two intersection points; if Ci and Cj intersect,

The touching point; if Ci and Cj tangentially touch at a point,

The center of Cj ; if Ci contains Cj .

Let the set of all intersection points be

I = [1�i<j�nIfi;jg:

We observe that the set I must contain at least one optimal solution, as the following lemma

shows.

Lemma 2.1 For the circle covering problem, it holds that

max
x2<2

w(x) = max
x2I

w(x):

Proof.

No matter how complex the partition of the plane formed by the circles may look like,

the function w(x) remains constant within each region given by this partition. Hence it

is su�cient to check representatives from each region to �nd a maximum point for w(x).

Clearly, each region of the partition will have a representative in the set I. Therefore,

checking all the points in I yields an optimal solution.

Q.E.D.

Note that j I j� n(n � 1) and that checking the weight of a given point amounts to O(n)

operations. Hence, checking all the intersection points in I yields an optimal solution in

O(n3) operations.

This computational complexity can be further improved by a more careful sorting.

Let the circles be ordered by their natural indices:

C1; C2; � � � ; Cn:

First, take the circle C1. Sort all of its intersection points with other circles, i.e. sort the

points in the set I1 with

I1 := [j=2;:::;nIf1;jg
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in the clockwise direction with respect to C1. For simplicity, one may start sorting with an

intersection point between C1 and C2.

Take one intersection point in I1 in that order.

Let d be a n-dimensional vector de�ned as

di =

8<
:

1; if the current point is contained in Ci,

0; otherwise.

Adding wi's with di = 1 gives the total weight for the point under consideration.

Now, take the next point in I1 according to the ordering described previously. Note that the

d vector of the next point di�ers only in one position from the previous one. Hence, it takes

only constant time to update the total weight. Remark that it involves a sorting for the

points with respect to their positions in C1, and so this gives an computational complexity

of order O(n log n).

After we are done with the points in I1, delete I1 from I and continue the procedure with

C2. This will be repeated for all circles. In total the procedure will require O(n2 log n) basic

operations to �nd a point with maximum circle covering weight.

3 A procedure for solving the pricing/location model

In this section we discuss the original problem in which the price p plays as a part of the

decision variable. For ease of exposition, assume that the reservation price of a customer is

a�ne, i.e.

ri(kx� aik) = maxfui � vi kx� aik ; 0g

where ui > 0 and vi > 0. This formula can be explained as follows. Suppose that apart from

the current �rm, the best price customer i gets elsewhere is ui (including the transportation

cost). Moreover, if customer i sticks to the current �rm, then the transportation cost is

assumed to be vi kx� aik. Therefore, customer i will stay as long as p � ri(kx� aik).

Let the inverse function of ri be r
�
i . In particular,

r�i (t) = ui=vi � t=vi

for 0 � t � ui=vi.
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Now we reformulate the pricing/location model slightly:

max
p2<1

+

max
x2<2

Fp(x)

with

Fp(x) = p
nX

i=1

Qi�fkx�aik�r
�

i
(p)g:

For a given p value, construct an n� n matrix M = (mij)n�n as follows.

Let mii = 0 for all i.

On its (i; j) (i 6= j) position we make a link to two (n + 1)-dimensional vectors w
(i;j)

1 and

w
(i;j)
2 representing two possible intersection points between Ci and Cj.

For each vector w
(i;j)

l (l = 1; 2) and k = 1; 2; :::; n, let

(w
(i;j)

l )k =

8<
:

1; if this intersection point is contained in Ck,

0; otherwise.

Finally, let (w
(i;j)

l )(n+1) store the current weight of the intersection point.

Remark that in the case Ci and Cj do not intersect, then we let these two vectors be empty,

and when Ci and Cj tangentially touch at a point, or one circle contains the other, then

these two vectors reduces to only one vector.

For initialization, we let p be a su�ciently small number.

It takes O(n3) operations to install all the entries of M and the associated w vectors. As

p increase, all the circles will shrink simultaneously at di�erent rates. In particular, the

intersection points between Ci and Cj can be computed analytically as

Ifi;jg = faj + r�j (p)eg

with kek = 1 and

6 (e; ai � aj) = arccosf[(r�j (p))
2
� (r�i (p))

2 + kai � ajk
2]=[2r�j (p) kai � ajk]g:

At a certain stage, the state of the positions will change, i.e. one of the following situations

occurs:

� For certain i with 1 � i � n, r�i (p) becomes zero;
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� The intersection points of two circles converge to only one point;

� One intersection point of two circles lies on a third or more circles;

� One intersection point of two circles gets o� from a third or more circles.

Knowing the analytical formula of all intersection points and the formula for r�i , it is easy

to detect when (the value p) any of the above situations will occur. If the �rst situation

occurs, i.e. one of r�i (p) becomes zero for i = 1; 2; :::; n, then we simply need to delete Ci

from further consideration and continue the procedure for the rest of the circles. For all the

other cases, since r�i remains a�ne, it is easy to detect which circles will �rst change their

relative positions. Should this change takes place, we need to update the matrix M and its

associated records. However, this update requires only constant time as we know precisely

what has changed, i.e. which circles have changed their positions. Notice that as p increase,

the relative position of any two circles can only possibly evolve in the direction:

one contains the other! tangentially touch from inside! intersect

! tangentially touch from outside! non-intersect:

This ensures that one needs in total O(n3) basic operations to keep track with the whole

procedure. By simply keeping the highest weight among the intersection points at each

update, we select the best one and hence the problem is solved in O(n3) time. To summarize

we have shown the following result:

Theorem 3.1 The pricing/location model can be solved in at most O(n3) basic operations.

4 Discussions

The algorithm is based on a real-number computational model. In fact, one may apply the

same arguments if any other explicit form of norms are used, including the Lq-norms or

polyhedral gauges. The form of ri can be quite general as well. It is important, however,

that one is able to detect the timing when two circles change their relative positions.

In a more general form we may consider a model in which several �rms start competing in

a given region for the same set of potential customers. It can be interesting to investigate,

for instance, whether or not an equilibrium exists.
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Remark that the problem we discuss is a planar one. It remains a topic for further research

how to solve the problem in polynomial time as the dimension becomes more than two.
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