EmmPack 1.01: C/C++ code for use with Ox for estimation of univariate stochastic volatility models with the efficient method of moments

Pieter J. van der Sluis*
Department of Actuarial Science and Econometrics
University of Amsterdam
and
Tinbergen Institute
February 12, 1998

Abstract

Econometric estimation using simulation techniques, such as the efficient method of moments, may be time consuming. The use of ordinary matrix programming languages such as Gauss, Matlab, Ox or S-plus will very often cause extra delay. For the Efficient Method of Moments implemented to estimate stochastic volatility models this will surely be the case. Therefore the author made a C/C++ library containing the bulk of the procedures needed in the implementation of the efficient method of moments technique for a broad range of univariate stochastic volatility models. As a side effect of the Efficient Method of Moments, EGARCH models with a variety of nonnormal distributions can be estimated with this package. Implementations have been made for the Intel Pentium platform under Windows and for the IBM RS/6000 platform under AIX. The library is dynamically linked to Ox under Windows and statically under AIX. The speed improvements are considerable compared with pure Ox code. The paper serves as a manual for this library. It describes the efficient method of moments for this specific case of stochastic volatility models. It describes the program. Some examples are given from other work of the author. Technicalities are given in the appendices.

Keywords: Computing; Efficient Method of Moments; EGARCH; Financial Time-series; SemiNonParametric Methods; Statistical Software; Stochastic Volatility models

JEL-classification: C13-15; C22; C87

* Address for correspondence: Pieter J. van der Sluis, University of Amsterdam, Department of Actuarial Science and Econometrics, Roetersstraat 11, NL-1018 WB Amsterdam, The Netherlands, phone +31 20 525 4257, fax +31 20 525 4349, email Sluis@fee.uva.nl, homepage http://www.fee.uva.nl/vak_groep/ake/vdsluis.html. The author thanks Peter Boswijk, Jurgen Doornik, Ruud Koning, Neil Shephard and an anonymous referee for comments. This paper was presented at The Third International Conference on Computing in Economics and Finance, Stanford University, Stanford (CA.), June 30 - July 2, 1997. This manuscript is prepared for Studies in Nonlinear Dynamics and Econometrics 2.3.
1 Introduction

Even with the current state of computing power the estimation of stochastic volatility models (see Ghysels et al. (1996) and section 2 below) using simulation techniques such as the efficient method of moments (EMM, see Gallant and Tauchen (1996) and section 3 below) may still be very time-consuming. This is amplified by the fact that many econometricians use for their applied work matrix oriented programming languages, such as GAUSS, MATLAB, S-PLUS or more recently Ox (Doornik (1996)). See e.g. Cribari-Neto (1996) for a comparison of GAUSS, Ox and S-PLUS. As long as the estimation involves mainly matrix manipulations without any substantial for-next or do-while loops, which is the case for linear models such as regression, AR and VAR models, there is no loss of computing power. There is also no loss in computing power in case the developers of the matrix language have provided the researcher with a hard coded built-in procedure for doing a certain time consuming job. However, there is a big loss of computing time as soon as the solution to a certain problem involves loops, such as the Kalman filter, where a system of Riccati equations is evaluated recursively, or the EMM estimation technique that we are dealing with in this paper, where the score of a specific complex auxiliary model is evaluated under the structural model, in order to calibrate the parameters of the structural model. With EMM with a well specified auxiliary model, one can obtain maximum likelihood efficiency\footnote{It should be noted that very often maximum likelihood delivers not only first-order asymptotic efficiency but also second-order asymptotic efficiency. In this paper we will limit ourselves to first-order asymptotic efficiency and the regular case: an estimator that has maximum likelihood efficiency means that this estimator has the same variance-covariance matrix of the asymptotic normal distribution of the maximum likelihood estimator. For EMM there are no results yet regarding higher-order efficiency.} of the parameters for models where direct maximum likelihood is not feasible.

One faces a substantial loss of computational speed for two reasons: (i) A matrix oriented language is not good at doing loops. (ii) Kalman filter techniques or EMM are not yet standard procedures of these matrix oriented programming languages. One solution may be to hard code the whole program in C, Fortran, Modula 2 or Pascal. This has the drawback that the programmer has the continuous feeling that he or she is reinventing the wheel. The econometrician has to do many things that do not belong to his or her core competence, therefore from an economic perspective the marginal benefits of less computing costs may not be on equal footing with the marginal losses in human capital\footnote{An example where C/C++ code is provided in this context is Danielsson (1996a) where C/C++ source code for the estimation of a basic stochastic volatility model is given.}. One possible solution to this is to link hard coded procedures that contain the loops, to the matrix programming language, combining the facilities of the matrix programming language with the speed of a (relatively) low level programming language. Under Ox this link can be implemented dynamically using dynamic link libraries (DLL’s) on Windows based platforms (Windows 3.xx, Windows 95 and Windows NT) or statically on mainframe computers under AIX, UNIX, SUN and many others\footnote{For an extensive list of different platforms for which Ox is available, see section 4. Since the list is still growing, for an up to date list see http://www.nuff.ox.ac.uk/Users/Doornik}. These libraries basically extend the matrix language with some procedures. For Ox this has been done for the Kalman filter by Koopman et al. (1997, SfPack) and for several Bayesian procedures to estimate stochastic volatility models by Shephard (1996a, SvPack), among others. Here time consuming procedures were hard coded in C/C++ and linked to the matrix programming language Ox. Exactly this is done here for the EMM estimation technique for a wide class of stochastic volatility models using dynamic link libraries for Windows and statically on the
The program is called EmmPack. Unlike its name it does not only provide code to estimate stochastic volatility models via EMM. As a consequence of the EMM methodology one can also use the package to estimate by maximum likelihood the auxiliary SemiNonParametric models, for which, in the case of stochastic volatility models, we have specified an EGARCH leading term. This means that this program can also be used to quickly estimate EGARCH models with disturbance terms that follow a variety of non-normal distributions.

The plan of the paper will be as follows. In section 2 a cursory introduction to stochastic volatility models is provided. In section 3 a cursory introduction to EMM is provided. These two sections are merely provided to introduce some notation and nomenclature. The reader who is unfamiliar with any of these subjects, is advised to consult the above mentioned references and the references mentioned in these sections. Section 4 presents some of the key features of Ox. Here we also explain how to get the program installed and working. Section 5 provides some empirical examples taken from van der Sluis (1997a and 1997b). Section 6 concludes. In the appendices details about the actual implementation are provided.

2 Stochastic Volatility Model

Stochastic volatility models have become quite popular in the econometrics and finance literature. Key references on estimation of stochastic volatility models include: Harvey et al. (1994), Harvey and Shephard (1996), Fridman and Harris (1997) and Sandmann and Koopman (1997) for Kalman filter techniques\(^5\). Jacquier et al. (1994), Schotman and Mahieu (1994), Kim et al. (1996) on Bayesian methods\(^6\), Danielsson (1994) and Danielsson and Richard (1993) on Simulated Maximum Likelihood methods\(^7\). Finally, Gallant and Tauchen (1996) and Gallant et al. (1994) are the main references for EMM methods\(^8\). These have been the most successful techniques. We also mention Andersen and Sørensen (1996) for GMM techniques and Monfardini (1996) for indirect inference technique à la Gourieroux et al. (1993). For foundations of stochastic volatility models see Clark (1973), Tauchen and Pitts (1983), Taylor (1986) and Hull and White (1987). Review articles have been provided by Ghysels et al. (1996) and Shephard (1996b).\(^9\).

A stochastic volatility model in its basic discrete time format reads

\[
\begin{align*}
y_t &= \sigma_t \epsilon_t \\
\ln \sigma_t^2 &= \omega + \gamma \ln \sigma_{t-1}^2 + \sigma_\eta \eta_t \\
\epsilon_t, \eta_t &\sim IN(0,1), \ t = 1, \ldots, n
\end{align*}
\]

This model has served as the benchmark and starting point of the bulk of the econometric literature on stochastic volatility models. Note that this model is in discrete form, EmmPack is designed to deal with discrete models. However one may modify some of the ox-code in emm.ox and make it also applicable to continuous-time models. The reason why model (1) cannot be estimated by standard maximum likelihood lies in the fact that

\(^1\)This code is available from the author on request. For other platforms contact the author.

\(^5\)On Kalman filter techniques in this context we also mention Ruiz (1994).

\(^6\)On Bayesian methods in this context we also mention Shephard (1996a)'s SvPack.

\(^7\)See also Danielsson (1996a,b), Richard and Zhang (1995a,b) for more on SML methods in this context. Danielsson (1996a) actually contains the source code.

\(^8\)Other references on EMM in this context are Andersen and Lund (1996), Andersen and Lund (1997), Gallant and Long (1997) and Van der Sluis (1997a,b,c) and Andersen et al. (1997)

the σ_t are latent or unobserved variables which have to be integrated out of the likelihood. This is typically intractable both numerically and analytically since for every observation there is such a σ_t. Standard Kalman filter techniques cannot be applied since the latent process is non-Gaussian and the resulting state-space form does not have a conjugate filter.

Many variations on (1) are possible. In van der Sluis (1997a and b) a rather broad class of models has been proposed namely

$$ y_t = \sigma_t \epsilon_t $$

$$ \ln \sigma_t^2 = \omega + \sum_{i=1}^{p} \gamma_i L^i \ln \sigma_t^2 + \sigma_{\eta_t} (1 + \sum_{j=1}^{q} \zeta_j L^j) \eta_t $$

$$ \begin{bmatrix} \epsilon_t \\ \eta_{t+1} \end{bmatrix} \sim \text{NID}(0, \begin{bmatrix} 1 & \lambda \\ \lambda & 1 \end{bmatrix}), -1 \leq \lambda \leq 1, t = 1, \ldots, n $$

In the program this model is referred to as the **ASARMAV**(p, q) model10. The asymmetric component arising from the correlation parameter λ has also been considered in Harvey and Shephard (1996). The inclusion of MA parameters is a novelty11. Exactly model (2) is the model the author claims that can be estimated by the package. Also estimation of several other models with **EmmPack** is discussed in van der Sluis (1997c). In these models the ϵ_t follow a wide variety of non-Gaussian models

The following model have been supported by the package: **SARMAV**($1, 0$), **SARMAV**($2, 0$), **SARMAV**($3, 0$), **SARMAV**($1, 1$), **SARMAV**($1, 2$), **ASARMAV**($1, 0$), **ASARMAV**($2, 0$), **ASARMAV**($3, 0$), **ASARMAV**($1, 1$) and **ASARMAV**($1, 2$). The user can build his own procedures following the structure given in section 4.

In a next version of this program conditional mean terms like $y_t = \mu_t + \sigma_t \epsilon_t$ can be dealt with. This may be interesting for modeling the term structure of interest rates, see Andersen and Lund (1996, 1997). For now the user should prewhiten his data so in order to take care of a time dependent mean. Multi-variate extensions of this model (2) are currently investigated in van der Sluis (1997d) and in Jiang and van der Sluis (1997), where the paper van der Sluis (1997d) will be accompanied by the program **MemmPack**, which is a multivariate extension of **EmmPack**.

3 Efficient Method of Moments

Gallant and Tauchen (1996)12 solve the efficiency problems moment-based techniques generally have by proposing the **efficient method of moments** (EMM) technique. The structural model is estimated by using an auxiliary model. The connection between the auxiliary model and the structural model is achieved by means of the scores of the auxiliary model (score calibration), where strict guidelines are given for the choice of the auxiliary model such that maximum likelihood efficiency is attained. For the program we are only concerned with case 2 in Gallant and Tauchen (1996). In short the EMM method goes as follows: the sequence of densities for the structural model will be denoted

$$ \{ p_1(x_1 \mid \theta), \{ p_j(y_t \mid x_t, \theta) \}_{t=1}^{\infty} \} $$

10Asymmetric Stochastic AutoRegressive Moving Average Volatility

11It is a novelty in the sense that this model can actually be estimated. In Harvey et al. (1994) the ARMA specification was already suggested.

12See also Tauchen (1997)
ergodic. The reader is referred to the original papers for details. Define

\[\{ f_t(w_t \mid \beta), \{ f_t(y_t \mid w_t, \beta)\}_{t=1}^{\infty} \]

where \(x_t \) and \(w_t \) are observable endogenous variables. In particular the \(x_t \) will be a vector of lagged \(y_t \) and the \(w_t \) will also be a vector of lagged \(y_t \). The lag-length may differ therefore a different symbol is chosen. We impose assumptions 1 and 2 in Gallant and Long (1997) on the structural model, these are technical assumptions that imply standard properties of quasi maximum likelihood estimators and properties of estimators based on Hermite expansions which will be explained below. Important is that the structural model is stationary and ergodic. The reader is referred to the original papers for details. Define

\[m(\theta, \beta) := \int \int \frac{\partial}{\partial \beta} \ln f(y \mid w, \beta)p(y \mid x, \theta)dy p(x \mid \theta)dx \]

the expected score of the auxiliary model under the dynamic model. The expectation is written in integral form to anticipate on the fact this integral is approximated by standard Monte Carlo techniques:

\[m_N(\theta, \beta) := \frac{1}{N} \sum_{t=1}^{N} \frac{\partial}{\partial \beta} \ln f(y_t(\theta) \mid w_t(\theta), \beta) \]

where \(y_t(\theta) \) are drawings from the structural model. Let \(n \) denote the sample size, the EMM estimator is defined as

\[\hat{\theta}_n(I_n) := \arg \min_{\theta \in \Theta} m'_N(\theta, \hat{\beta}_n)(I_n)^{-1} m_N(\theta, \hat{\beta}_n) \]

where \(I_n \) is a weighting matrix and \(\hat{\beta}_n \) denotes an estimator for the parameter of the auxiliary model. The optimal weighting matrix here is obviously

\[I_0 = \lim_{n \to \infty} V_0\left[\frac{1}{\sqrt{n}} \sum_{t=1}^{n} \left\{ \frac{\partial}{\partial \beta} \ln f_t(y_t \mid w_t, \beta^*) \right\} \right] \]

where \(\beta^* \) is a (pseudo) true value. The small sample pendant is

\[I_n = V_0\left[\frac{1}{\sqrt{n}} \sum_{t=1}^{n} \left\{ \frac{\partial}{\partial \beta} \ln f_t(y_t \mid \hat{w}_t, \hat{\beta}_n) \right\} \right] \]

In the program \(I_n \) is estimated using the outer product gradient.

The main result is consistency and asymptotic normality of the EMM estimator of the structural parameters \(\hat{\theta}_n \) follows:

\[\sqrt{n}(\hat{\theta}_n(I_0) - \theta_0) \xrightarrow{d} N(0, [M_0(I_0)^{-1}M_0]^{-1}) \]

where \(M_0 := \frac{\partial}{\partial \beta} m(\theta_0, \beta^*) \).

In order to obtain maximum likelihood efficiency it is required that the auxiliary model in some sense embeds the structural model. The semi-nonparametric (SNP) density of Gallant and Nycka (1987)\(^{13}\) may be a good choice, see Gallant and Tauchen (1996) and Gallant and Long (1997). The auxiliary model is built as follows. The process \(y_t(\theta_0) \) is the process under investigation, \(\mu_t(\beta^*) := \mathbb{E}_{t-1}[y_t(\theta_0)] \), is the conditional mean of the auxiliary model, \(\sigma^2_t(\beta^*) := \text{Var}_{t-1}[y_t(\theta_0) - \mu_t(\beta^*)] \) is the conditional variance and \(z_t(\beta^*) := [y_t(\theta_0) - \mu_t(\beta^*)] \) is the standardized process. The SNP density now takes the following form

\[f(y_t \mid \beta) = \frac{1}{\sqrt{\sigma^2_t}} \left[\frac{P_K(z_t, x_t)}{P_K(u, x_t)} \right]^2 \phi(z_t) \]

\[\text{(3)} \]

\(^{13}\)Building on earlier work of Phillips (1983). See also Fenton & Gallant (1996a, b) for recent results on SNP densities.
where ϕ denotes the standard normal density, $x := (y_{t-1}, \ldots, y_{t-L})$ and the polynomials

$$
P_K(z, x_t) := \sum_{i=0}^{K_z} a_i(x_t) z^i := \sum_{i=0}^{K_z} \left[\sum_{j=0}^{K_x} a_{ij} x_t^j \right] z^i
$$

A specific form for the polynomials is taken, namely orthogonal Hermite polynomials (see Gallant et al. (1991) and Andersen and Lund (1997)). Relevant formulae for the derivatives can be found in Abramowitz and Stegun (1972) and Fenton and Gallant (1996a) and in appendix A below. The model $\sigma_t^2(\beta)$ and $\mu_t(\beta)$ is chosen as a leading term in the Hermite expansion to relieve the expansion of some of its task, improving its small sample properties. This version of EmmPack contains no models for $\mu_t(\beta)$ however one may modify the Ox source code in order to include processes for the mean. The easiest way is to filter out a time dependent mean and to give this prewhitened data as input to the program. For $\sigma_t^2(\beta)$ an EGARCH(p, q) model was used see appendix A for the relevant formulas.

In this paper we will take $p := \text{dim}(\theta)$, $q := \text{dim}(\beta)$. The number of moment conditions q may be determined using several criteria. For EMM, it is necessary that q increases with n. Note in this respect the conceptual difference with GMM. It will automatically happen that q increases with n using any of the model specification criteria such as the Akaike Information Criterion (AIC, Akaike (1973)), the Schwarz Criterion (BIC, Schwarz (1978)) or the Hannan-Quinn Criterion (HQC, Hannan and Quinn (1979) and Quinn (1980)). The theory of model selection in the context of SNP models is not very well developed yet. Results in Eastwood (1991) may lead to believe AIC is optimal in this case. However, as for multivariate ARMA models, the AIC may overfit the model to noise in the data so we may be better off by following the BIC or HQC. The same findings were reported in Andersen and Lund (1997). In their paper Gallant and Tauchen (1996) rely on the BIC in their applications. Recent Monte Carlo results in Andersen et al. (1997) and van der Sluis (1997c) show that for pure (E)GARCH (so $K_x = K_z = 0$) models “E”MM provides rather efficient estimates for the Gaussian SARMAV$(1,0)$ and ASARMAV$(1,0)$ models. The small sample properties of EMM with this class of non-Gaussian auxiliary models is unknown. For SV models with a nonnormal error structure it is likely that an high order Hermite polynomial is needed. As argued in van der Sluis (1997c) Monte Carlo experiments with high order Hermite polynomials are thought to be computationally infeasible at the current state of computer technology. In figure 3 the progressive nature of the computing times with higher order Hermite polynomials is displayed. For more on the choice of an auxiliary model the interested reader is referred to Andersen et al. (1997) and van der Sluis (1997a,b and c). The procedure diagnosis returns a summary of the auxiliary estimations. Among the parameters itself, standard errors and $t-$values, the following model selection criteria for maximization are provided AIC (Akaike (1973)), BIC (Schwarz (1978)) and HQC (Hannan-Quinn (1979) and Quinn (1980)). These criteria may be used to determine the order of the auxiliary model14.

In short, the following algorithm was used

(i) Determine the order of the EGARCH process. For this particular EGARCH process calculate $\hat{\beta}$. Set the corresponding weighting matrix \tilde{W}_n equal to the outer product of the scores, i.e.

$$
\tilde{W}_n = \sum_{i=1}^{n} \left[\frac{\partial}{\partial \theta} \ln f_t(y_t | \hat{\beta}, \hat{\theta}_n) \right] \left[\frac{\partial}{\partial \theta} \ln f_t(y_t | \hat{\theta}_n, \hat{\beta}_n) \right]'
$$

(ii) Determine a value for $\theta : \hat{\theta}$

(iii) Simulate $y_1^n(\hat{\theta})$ and $y_2^n(\hat{\theta})$ using antithetic variables (see appendix C)

14For some properties in the context of multivariate time-series see Lütkepohl (1990).
(iv) Calculate $m_N(\hat{\theta}, \hat{\beta}_n) = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{\partial}{\partial \theta} \ln f_i(y_i^n(\hat{\theta}) | w_i, \hat{\beta}_n) + \frac{\partial}{\partial \beta} \ln f_i(y_i^n(\hat{\theta}) | w_i, \hat{\beta}_n) \right]$

(v) Repeat (ii) till (iv) until the quantity $m'_N(\hat{\theta}, \hat{\beta}_n)(\hat{T}_n)^{-1} m_N(\hat{\theta}, \hat{\beta}_n)$ is minimised.

We set $N = 50,000$\footnote{Two antithetic series are used, each of size 50,000. Experimentation has shown that for the score-generator used here virtually no Monte Carlo variance is presented for simulated series of this size. With virtually no Monte Carlo variance the author means that the estimates are the save for four digits when different simulated series are used. Smaller sizes, say 5,000 could be used for getting fast estimates.} and as explained in van der Sluis (1997b) for the stochastic volatility models considered here no starting values have to be used\footnote{The model is started up in}.

We end this section by stating the J-test for overidentifying restrictions for EMM (see Gallant, Hsieh and Tauchen (1994)). Under the null that the structural model is true one may deduce:

$$n \cdot m'_N(\hat{\theta}_n, \hat{\beta}_n)(\hat{T}_n)^{-1} m_N(\hat{\theta}_n, \hat{\beta}_n) \overset{d}{\rightarrow} \chi^2_{|\beta|-|\theta|}$$

and the direction of the misspecification may be indicated by the quasi-t ratios

$$\hat{T}_n := \tilde{s}_n^{-1} \sqrt{n} m_N(\hat{\theta}_n, \hat{\beta}_n)$$

$$\tilde{s}_n := \text{diag}(\hat{T}_n - \sqrt{\hat{\Sigma}_n(\hat{\Sigma}_n^{-1})} \hat{\Sigma}_n^{-1})^{1/2}$$

Here \hat{T}_n is distributed as $t_{|\beta|-|\theta|}$. These statistics are provided by EmmPack.

\section{Description of EmmPack and Ox}

The Ox matrix programming language is new to the market of econometric software. It is by far the fastest matrix oriented programming language see Cribari-Neto (1997). Several other advantages are: it is a very open language, its syntax is very similar to C/C++ and there are currently versions for DOS, Windows 3.xx, Windows 95, Windows NT, AIX, SunOs, Solaris, HP-UX, Irix, Linux and Unix. Most of these versions are free. There are no differences between these versions, except that only in the Windows version one can use Ox’s sister program Givewin which provides several graphic capabilities. Another small difference is that for some versions one cannot dynamically link C/C++ code to Ox, for these platforms one has to resort to static linking which is not more difficult but less elegant. One may also try to link the library to the more common programs as GAUSS or Matlab. One should probably have to write a DLL that translates exported C/C++ functions from the Ox DLL to C/C++ functions that can be imported from GAUSS or Matlab. How the C/C++ functions are exported from an Ox DLL can be found in Doornik (1996) pp 286-328. It should be mentioned that the DLL in EmmPack uses mathematical C/C++ function from Ox, so one should own a copy Ox. Therefore one may better save the trouble and directly use Ox.

The DLL is optimized for the Intel Pentium. For the RS/6000 the author has used the IBM compiler which should generate very efficient code on the RS/6000. In spite of this it is worth mentioning that the gain in speed...
on both the Intel and the RS/6000 was immense, with the highest relative gain on the Intel. On a P5-166 with 32 MB under Win95 it took in pure OX 1.20a code 117.7 seconds to evaluate an EGARCH(1, 1)-H(5, 0) for 2 x 5,000 antithetic variables. With the C/C++ code in a DLL it took only 9.5 seconds under the same configuration: a twelve-fold improvement. Whereas this gain in speed is considerable this does not mean that one should always program in C/C++ or any other low level programming language. Only for the types of problems that we are dealing with in this particular problem, namely a loop with allocations, hard-coding gives an enormous speed improvements.

EmmPack can be downloaded from

http://www.fee.uva.nl/vak_groep/AKE/vdsluis.htm

The files are zipped as emmpack.zip. One can unzip them with a utility such as pkunzip. This file contains the following: s&p500.mat, xr.mat, emm.dll, sv_model.oxo, sv_model.h, max1sid.oxo, max1sid.h, emm.h, and the central program, emm.ox, containing modifiable OX source code.

Unless you are an expert, it is wise to create a directory \ox\packages\emm\ and move the emm.ox file to this directory. Next, place the files sv_models.oxo, sv_models.h, max1sid.oxo and max1sid.h to the directory \ox\include\ and move the files emm.dll to the directory \ox\bin\. Additional description of the program can be found in the source code emm.ox.

A few things to note here: emm.dll contains a dynamic link library for the Windows 3.xx, Windows 95 and Windows NT operating systems. These require OX version 1.20a. The AIX version is available on request from the author. The sv_models.oxo and max1sid.oxo contain compiled OX code. The max1sid.oxo is a modification of the maximize.oxo code that is included in the official release of OX, except that instead of two-sided derivatives only one-sided derivatives are taken in the BFGS algorithm. Although less accurate it is twice as fast, which is very important in this application. The loss of accuracy is not relevant for the problem at hand (see also section 5). The file sv_models.oxo contains the OX compiled code of several procedures to generate antithetic series from stochastic volatility models. There is no need to hard code these procedures, because the author extensively used hard-coded built in procedures from OX. So there will be virtually no gain, maybe even a loss, in hard coding these procedures. These are not all the stochastic volatility models that can be estimated with this program. The user can use his own. In the module sv_models.oxo the following procedures have been currently provided:

- sarmav10(const total,const theta)
- sarmav20(const total,const theta)
- sarmav30(const total,const theta)
- sarmav11(const total,const theta)
- sarmav12(const total,const theta)
- asarmav10(const total,const theta)
- asarmav20(const total,const theta)
- asarmav30(const total,const theta)
\begin{itemize}
 \item \texttt{asarmav11(const total, const theta)}
 \item \texttt{asarmav12(const total, const theta)}
\end{itemize}

\textit{in:} an integer \texttt{total} denoting the number of variables you want to simulate, \texttt{theta} a vector of parameters. The first element of \texttt{theta} denotes the ω variable, the next variables denote the ARMA variables. Then comes the σ_η variable. If applicable the last element is the asymmetry variable λ.

\textit{out:} returns a $\text{total} \times 2$ series of \texttt{antithetic variables}17 from the specified process.

Before estimating the structural stochastic volatility model, one has to specify an auxiliary \texttt{EGARCH-H} model. As mentioned before, one can also use this program for estimating \texttt{EGARCH-H} models. As described above the auxiliary models are taken from the \texttt{SNP} densities with an \texttt{EGARCH}(p, q) leading term. In the program the integers k_x, k_z, p and q refer to the variables k_x, k_z, p and q respectively, as defined in appendix A. The order of input and output of the variables is follows: $\{a_0, \alpha_1, \ldots, \alpha_q, \gamma_1, \ldots, \gamma_p, \kappa_0, \kappa_1, \Theta\}$ where Θ is a matrix defined as

$$
\Theta = \begin{bmatrix}
1 & a_{10} & \cdots & a_{k_x,0} \\
a_{01} & \ddots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots \\
a_{0k_x} & a_{1k_x} & \cdots & a_{k_x,k_x}
\end{bmatrix}
$$

In the program this matrix is vectorized as $(1, a_{01}, \ldots, a_{0k_x}, a_{10}, \ldots, a_{1k_x}, \ldots, a_{k_x,k_x})$ by the procedure \texttt{decomp}. Other procedures that are included in the source-code of \texttt{emm.ox} include:

\begin{itemize}
 \item \texttt{likeli(const vP, const adFunc, const avScore, const amHessian)}
 \item \texttt{gradproc(const vP)}
 \item \texttt{createin(const vP)}
 \item \texttt{diagnos(const l, const paras, const diags, const file.hdiagnos)}
\end{itemize}

This function is the likelihood of the auxiliary \texttt{EGARCH-H} model, with in and output in the generic format as on page 114 of Doornik (1996)

This function returns the score of the auxiliary model, the auxiliary parameter vector \texttt{vP} denotes the parameters of the auxiliary model in which the score has to be evaluated.

This function returns the outer product of the scores in the auxiliary parameter vector \texttt{vP}.

The function writes several diagnostic statistics for the auxiliary model to an \texttt{open} \texttt{file} \texttt{hdiagnos}. Here \texttt{l} denotes the loglikelihood in the optimum, \texttt{paras} denotes the parameters in the optimum and \texttt{diags} is the outer product of the scores in the optimum. Details are also given in the next section.

17 For an explanation and motivation of antithetic variables appendix C below.
This function returns the value of the minimum chi-squared criterium of the EMM estimation of the structural model. Its format is the same as on page 114 of Doornik (1996).

The function \(J \) test returns a vector of which the first element denotes the value of the \(J \) test and the other elements the individual \(t \) -values as described in section 3. The inputs are \(I \), \(\text{inv} _I \), \(\text{tot} \), \(\text{m} _\text{hat} \) and \(\text{M} _\text{hat} \) which are mnemonics for \(b _I _n /; b _I /; 1 /; n /; m / N /; #28 b / #12 /; b / #0C /; n / #29 \) and \(M / n / #28 b / #12 /; b / #0C /; n / #29 \) respectively.

This function returns the score of auxiliary model at the parameters of the structural model \(\text{sv} _\text{theta} \), i.e. \(m(\theta, \hat{\beta}_n) \). It is of the same format as on page 125 and 126 in Doornik (1996) and therefore by using this function with the Ox procedure \text{NumJacobian} \ we may calculate the numerical derivative of \(m(\theta, \hat{\beta}_n) \) with respect to \(\theta \), i.e. \(\mathcal{M}_n(\theta, \hat{\beta}_n) \).

After the auxiliary model is fitted the global variable \(z \) contains the \(z_\beta(\beta) \) from the auxiliary model. These may be used for specification tests. More information on the procedures and the variables can be found in the source file \text{emm.ox}. The file \text{s\&p500.mat} contains the S&P500 series that are analysed in van der Sluis (1997b) and the file \text{xr.mat} contains the exchange rate series that have been analysed in van der Sluis (1997a).

As for all nonlinear optimization problems: be aware of local optima. The author encountered some in this context. One can check this by trying at different parameter values, possibly with a lower value of \(N \). A sensible choice may be to set \(N = 20,000 \).

5 Application

In this section two examples of the performance of \text{EmmPack} 1.01 are given. In van der Sluis (1997a) the British Pound / Canadian Dollar exchange rates were investigated. In van der Sluis (1997b and c) the S&P500 was investigated. Both series are in 100* log differences. Figure 1 shows the exchange rates. Figure 2 shows the S&P500. Salient features of these data sets are provided in table 1.

Calculations were performed on Pentiums\footnote{To be precise, at the time of writing, the author had a Pentium 90 with 16 Mb of RAM and a Pentium 133 with 24 Mb of EDO RAM at his disposal. The P90 ran under Windows 3.1 and the P133 ran under Windows 95.} and on several nodes of the SP2 at SARA\footnote{Stichting Academisch Rekencentrum Amsterdam. The SP2 consists of 76 parallel IBM RS/6000 processors, running under AIX 4.1.4. The SP2 at SARA has 76 nodes, which makes it the largest one in Europe. The SP2’s theoretical maximum rate is 20 Gigaflops/s. Four of the nodes are wide nodes with 512 Mbyte of memory each. Two wide nodes function as fileservers with 180 Gbyte of disk space. Among the 72 thin nodes, 58 are equipped with 128 Mbyte internal memory, the remaining 14 with 256 Mbyte. Each thin node is equipped with 4.4 Gbyte local disk space, primarily intended for scratch files. For long term data storage a Magstar tape robot is available with a total capacity of 5.5 Terabyte (5.5 million Megabyte).}. It was found that using anti-thetic variates there is no reason to take more than \(N = 2 \times 50,000 \). In the program the variable \(N \) is called \(\tau _a \). The outcomes are stable in four or five digits in case the initial seed is set differently. The author has the opinion that a simulation method should provide estimates that are virtually independent of initial seed and therefore the Monte Carlo variance should be virtually zero. The specification search of the auxiliary model is...
described in the above papers. The upshot is that for the exchange rates an \(\text{EGARCH}(1, 3) - \text{H}(4, 0) \) was found to be BIC-optimal for the S&P500 an \(\text{EGARCH}(1, 2) - \text{H}(5, 0) \) was found to be BIC-optimal.

To the exchange rates a \(\text{SARMAV}(1, 0) \), a \(\text{SARMAV}(2, 0) \) and a \(\text{SARMAV}(3, 0) \) were fitted. To the S&P500 data set a \(\text{SARMAV}(1, 0) \) and a \(\text{SARMAV}(1, 1) \) was fitted. The following results\(^{20}\) for the exchange rate models were obtained for the \(\text{SARMAV}(1, 0) \) model

\[
\eta_t = \sigma_t \epsilon_t \\
\ln \sigma_t^2 = -.103 + .894 \ln \sigma_{t-1}^2 + .270 \eta_t
\]

for the \(\text{SARMAV}(2, 0) \) model

\[
\eta_t = \sigma_t \epsilon_t \\
\ln \sigma_t^2 = -.160 + .268 \ln \sigma_{t-1}^2 + .570 \ln \sigma_{t-2}^2 + 4.15 \eta_t
\]

and for the \(\text{SARMAV}(3, 0) \) model

\[
\eta_t = \sigma_t \epsilon_t \\
\ln \sigma_t^2 = -.094 + 1.20 \ln \sigma_{t-1}^2 - 1.14 \ln \sigma_{t-2}^2 + 8.51 \ln \sigma_{t-3}^2 + 2.67 \eta_t
\]

The estimates for the S&P500 series for the \(\text{SARMAV}(1, 0) \) model

\[
\eta_t = \sigma_t \epsilon_t \\
\ln \sigma_t^2 = -.006 + 9.75 \ln \sigma_{t-1}^2 + .101 \eta_t
\]

and for the \(\text{SARMAV}(1, 1) \) model

\[
\eta_t = \sigma_t \epsilon_t \\
\ln \sigma_t^2 = -.007 + 9.73 \ln \sigma_{t-1}^2 + (1 + .839 L) .058 \eta_t
\]

As far specification of the (A)SARMAV model is concerned we only report the Hansen \(J \)-test here in tables 2 and 3. For other specification tests in this context see van der Sluis (1997a and b). Although a \(P \)-value is a monotonic function of the actual evidence against \(H_0 \), it is very dangerous to choose the best model of these specifications on basis of the \(P \)-values (see Berger and Delampady (1987)). Different criteria will certainly be found in future research. For a more in-depth discussion of the above models the reader should consult van der Sluis (1997a) for the exchange rates and van der Sluis (1997b and c) for the S&P500 series.

6 Conclusion

This paper documents the software package \texttt{EmmPack 1.01}. A wide variety of stochastic volatility models can be estimated, although there are several limitations to the program. No auxiliary process for the mean is implemented in the C library yet and only univariate models can be considered. Currently the author is expanding his code in these two directions. A multivariate generalization is investigated in van der Sluis (1997d). Some generalizations of the stochastic volatility model (2) can also be estimated with \texttt{EmmPack 1.01} see van der Sluis (1997c). However, the user should keep in mind that the auxiliary model should embed the stochastic volatility model that one wants to estimate. The mailbox is open for any comments.

\(^{20}\) \(t \)-values are between brackets
Disclaimer

THIS SOFTWARE AND SOURCE CODE ARE DISTRIBUTED "AS IS" AND WITHOUT WARRANTIES AS TO PERFORMANCE OF MERCHANTABILITY OR ANY OTHER WARRANTIES WHETHER EXPRESSED OR IMPLIED. BECAUSE OF THE VARIOUS HARDWARE AND SOFTWARE ENVIRONMENTS INTO WHICH THESE ITEMS MAY BE PUT, NO WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE IS OFFERED. WHILE EVERY EFFORT HAS BEEN MADE TO TEST THE PRODUCT IN A WIDE VARIETY OF OPERATING ENVIRONMENTS, GOOD PROCEDURE Dictates THAT ANY PROGRAM BE THOROUGHLY TESTED WITH NON-CRITICAL DATA BEFORE RELYING ON IT. THE USER MUST ASSUME THE ENTIRE RISK OF USING THE PROGRAM. ANY LIABILITY OF THE AUTHOR WILL BE LIMITED EXCLUSIVELY TO PRODUCT REPLACEMENT.
References

[38] Lütkepohl, H. (1990): *Introduction to multiple time series analysis*. Berlin: Springer Verlag

A Description of the auxiliary model

In this appendix the class of auxiliary models that is used in EmmPack will be described. As in section 3 consider the stochastic process $y_t(\theta_0)$. The model for the conditional mean is $\mu_t(\beta) := \mu_t(\theta) - \mu_t(\beta)$. The zero mean process is then defined as $\varepsilon_t(\beta) := y_t(\theta) - \mu_t(\beta)$. The model for the conditional variance as $\sigma_t^2(\beta) := \text{Var}_t[e_t(\beta)] = \text{E}_t[e_t^2(\beta)]$. This leads to the standardized process: $z_t(\beta) := \varepsilon_t(\beta)[\sigma_t^2(\beta)]^{-1/2}$. Let $f(z_t; \eta)$ be the density for $z_t(\beta)$, and let η denote the nuisance parameters $\eta \in H \subseteq \mathbb{R}^k$.

Let $\psi := (\beta', \eta')'$. The loglikelihood of y_t equals

$$ l_t(y_t; \psi) := \ln[f\{z_t(\beta); \eta\}] - 0.5 \ln[\sigma_t^2(\beta)], t = 1, 2, \ldots $$

By the prediction error decomposition we get the following expression for the likelihood of full sample $L_T(y_1, ..., y_T; \psi) := \sum_{t=1}^T l_t(y_t; \psi)$ Let the score function be $S_T(y_1, ..., y_T; \psi) := \sum_{t=1}^T \nabla_\psi l_t(y_t; \psi)$

For conditional mean and variance parameters we get

$$ \nabla_\psi l_t(y_t; \beta) = f[z_t(\beta); \eta]^{-1} f'[z_t(\beta); \eta] \nabla_\beta z_t(\beta) - 0.5 \sigma_t^{-2}(\beta) \nabla_\beta \sigma_t^2(\beta) $$

here $f'[z_t(\beta); \eta] := \frac{\partial f[z_t(\beta); \eta]}{\partial z_t(\beta)}$ and $\nabla_\beta z_t(\beta) = -\nabla_\beta \mu_t(\beta) \sigma_t^{-1}(\beta) - 0.5 \varepsilon_t(\beta) \sigma_t^{-3}(\beta) \nabla_\beta \sigma_t^2(\beta)$

In EmmPack we specify the standard normal density for z_t. Now there are no nuisance parameters so $\psi = \beta$. The gradient becomes

$$ \nabla_\beta l_t(y_t; \beta) = \nabla_\beta \mu_t(\beta) \varepsilon_t(\beta) \sigma_t^{-2}(\beta) + 0.5 \nabla_\beta \sigma_t^2(\beta) \sigma_t^{-2}(\beta) [\varepsilon_t(\beta)^2 \sigma_t^{-2}(\beta) - 1] $$

It is known that in many models the normal distribution cannot capture all the excess kurtosis that is often observed in financial markets. An alternative may be to use Student’s t distribution or the Generalized Error Distribution (GED) of Nelson (1991). However since we will use a SNP density for the z_t we follow the easiest way and use the Gaussian density.

In this version of EmmPack, the leading term of the SNP model, specified by $\mu_t(\beta)$ and $\sigma_t^2(\beta)$ will be, $\mu_t(\beta) = 0$ and $\sigma_t^2(\beta)$ following the EGARCH model of Nelson (1991). A formal representation of the EGARCH(p, q) model is given by

$$ y_t = \sigma_t z_t $$

$$ \sigma_t^2 = \exp\{\omega + \sum_{i=1}^p \gamma_i \ln \sigma_{t-i}^2 + (1 + \alpha_1 L + \ldots + \alpha_q L^q)[\kappa_1 z_{t-1} + \kappa_2 b(z_{t-1}) - \sqrt{2/\pi}]\} $$

here $b(z)$ denotes a two times differentiable approximation to the absolute value function, $|z|$.\(^{21}\) This is important for numerical reasons. Interpretation the coefficient of the EGARCH parameters is as follows: The γ parameters give us a idea of the persistence in the data, in particular $\sum_{i=1}^p \gamma_i$ will serve as a measure of persistence. The ω parameter is a measure of the unconditional variance. The term $1 + \sum_{i=1}^q \alpha_i$ reflects the short-run sensitivity to innovations. The term κ_1 reflects the asymmetric volatility effect that is often present in financial time series. Finally, the κ_2 parameter measures the changes in z_t in reaction with the conditional heteroskedasticity.

\(^{21}\) A good choice is e.g. $b(z) = |z|$ for $|z| \geq \pi/2K$ and $b(z) = (\pi/2 - \cos(K \cdot z))/K$ for $|z| < \pi/2K$ and set e.g. $K = 100$. The derivatives are $b'(z) = -1$ for $z < -\pi/2K$, $b'(z) = 1$ for $z > \pi/2K$, $b'(z) = \sin(K \cdot z)$ for $|z| < \pi/2K$.
The SNP density based on the Gaussian distribution is given by formula (3). For identification we need \(a_{00} = 1\). Let \(K = \max(K_z, K_x)\). In what follows \(M = 1\) or \(M = 0\). In case \(K_x = 0\), letting \(K_z > 0\) induces a time-homogeneous non-Gaussian error structure. The case \(K_x > 0\) induces heterogeneous innovation densities beyond the EGARCH model. Since we believe the EGARCH model captures all this heterogeneity, \(K_x \neq 0\) will not be necessary. This was also very much supported by our empirical findings. To the author’s knowledge there are no guidelines provided yet for assessment of the individual coefficients of the polynomial. For computational ease we employ polynomials that are of Hermite form:

\[
He_i(z) = \sum_{j=0}^{[i/2]} (-1)^j \frac{j!}{j!(i-2j)!} z^{i-2j}
\]

\[
\int He_i He_j \exp\left\{-\frac{1}{2} z^2 \right\} dz = \left\{ \begin{array}{ll} 0 & i \neq j \\ \sqrt{2\pi i!} & i = j \end{array} \right.
\]

Let

\[
\overline{He}_i(z) := (i!)^{-1/2} He_i(z)
\]

A nice result of this normalization is that

\[
\int \overline{He}_i(u) \overline{He}_j(u) \phi(u) dz = \left\{ \begin{array}{ll} 0 & i \neq j \\ 1 & i = j \end{array} \right.
\]

The polynomial is now taken as

\[
P_K(z, x) = \sum_{i=0}^{K_z} \gamma_i(x) \overline{He}_i(z)
\]

where \(\gamma_i(x)\) is a monomial in \(x\), e.g. \(\gamma_1(x) = \gamma_0 + \gamma_1 x\)

\[
\int P_K(z, x)^2 \phi(z) dz = \sum_{i=0}^{K_z} \gamma_i(x)^2
\]

Later on we will need

\[
\frac{\partial z_k}{\partial \psi_k} = \frac{\partial}{\partial \psi_k} \left(\frac{y_t - \mu_t}{\sqrt{\sigma_t^2}} \right) = -\left(\frac{1}{\sqrt{\sigma_t^2}} \frac{\partial \mu_t}{\partial \psi_k} + \frac{z_t}{2\sigma_t^2} \frac{\partial \sigma_t^2}{\partial \psi_k} \right)
\]

and the recurrence relation

\[
He_{i+1}(z) = z He_i(z) - i He_{i-1}(z)
\]

\[
He_0(z) = 1
\]

\[
He_1(z) = z
\]

A differential relation that is useful is given by

\[
\frac{\partial He_i(z)}{\partial z} = i He_{i-1}(z)
\]

An individual component of prediction error decomposition of the likelihood function now reads

\[
\ln f_K(y_t | x_t; \psi) = \ln[P_K(z_t, x_t)^2] + \ln \phi(z_t) - 0.5 \ln(\sigma_t^2) - \ln \left[\sum_{i=0}^{K_z} \gamma_i(x_t)^2 \right]
\]
Only I and III require special treatment as regards the analytic expression of the derivative. The remaining part of the score is simple and well-known. For completeness, expressions of the derivative of part II is given in appendix B. What is left are some derivatives which are needed in the score generator or that can be used as analytical derivatives. Differentiation of part III

\[
\frac{\partial [\ln P_K(u,x)^2 \phi(u)du]}{\partial \psi_k} = \frac{\partial [\ln \sum_{i=0}^{K_x} \gamma_i(x)^2]}{\partial \psi_k} = \frac{2}{\sum_{i=0}^{K_x} \gamma_i(x)^2} \sum_{i=0}^{K_x} \gamma_i(x) \frac{\partial \gamma_i(x)}{\partial \psi_k}
\]

note

\[
\frac{\partial \gamma_i(x)}{\partial \psi_k} = 0 \text{ if } \psi_k \text{ is a leading term parameter}
\]

Differentiation of part I

\[
\frac{\partial \ln P_K(z,x)^2}{\partial \psi_k} = \frac{2 \cdot \frac{\partial P_K(z,x)}{\partial \psi_k}}{P_K(z,x)}
\]

\[
\frac{\partial P_K(z,x)}{\partial \psi_k} = \frac{\partial}{\partial \psi_k} \left(\sum_{i=0}^{K_x} \gamma_i(z) \overline{He}_i(z) \right) = \sum_{i=0}^{K_x} \gamma_i(z) \frac{\partial \overline{He}_i(z)}{\partial \psi_k} + \sum_{i=0}^{K_x} \gamma_i(z) \overline{He}_i(z) \frac{\partial \overline{He}_i(z)}{\partial \psi_k}
\]

where

\[
\frac{\partial \overline{He}_i(z)}{\partial \psi_k} = (i!)^{-1/2} \frac{\partial \overline{He}_i(z)}{\partial z} \frac{\partial z}{\partial \psi_k}
\]

About the Jacobian \(\frac{\partial \gamma_i(x)}{\partial \psi_k} \) in case \(\psi_k \) is not a leading term parameter. For example in the case \(K_x = 1 \) and all non-leading term parameters are vectorized as \(\gamma = (\gamma_0, \gamma_{10}, \gamma_{11}, \ldots, \gamma_{K_x}, \gamma_{K_x}) \) we have

\[
\frac{\partial \gamma_i(x)}{\partial \gamma} = \begin{pmatrix}
0 \\
\vdots \\
0 \\
1 \\
x \\
0 \\
\vdots \\
0
\end{pmatrix}, \text{ where the 1 occurs at position } 2i - 1 \text{ and the } x \text{ at } 2i
\]

B Derivatives of EGARCH process

If \(\sigma_t^2 \) follows an EGARCH(\(p, q \)) process then

- \(\nabla_{\omega} \sigma_t^2(\theta) = \sigma_t^2(\theta) [1 + \sum_{i=1}^{p} \frac{\beta_i}{\sigma_t^2(\theta)} \nabla_{\omega} \sigma_{t-i}^2(\theta) + (1 + \sum_{i=1}^{q} \alpha_i L^i)(\kappa_1 \nabla_{\omega} \omega_{t-i} + \kappa_2 b'(\omega_{t-i}) \nabla_{\omega} \omega_{t-i})] \)

- \(\nabla_{\alpha_j} \sigma_t^2(\theta) = \sigma_t^2(\theta) [\sum_{j=1}^{p} \frac{\beta_j}{\sigma_t^2(\theta)} \nabla_{\alpha_j} \sigma_{t-j}^2(\theta) + \kappa_1 \nabla_{\alpha_j} \omega_{t-j} + \kappa_2 b'(\omega_{t-j}) \nabla_{\alpha_j} \omega_{t-j}] \)

- \(\nabla_{\beta_j} \sigma_t^2(\theta) = \sigma_t^2(\theta) [\ln \sigma_t^2 + \sum_{j=1}^{p} \frac{\beta_j}{\sigma_t^2(\theta)} \nabla_{\beta_j} \sigma_{t-j}^2(\theta) + (1 + \sum_{i=1}^{q} \alpha_i L^i)(\kappa_1 \nabla_{\beta_j} \omega_{t-j} + \kappa_2 b'(\omega_{t-j}) \nabla_{\beta_j} \omega_{t-j})] \)

- \(\nabla_{\kappa_j} \sigma_t^2(\theta) = \sigma_t^2(\theta) [\sum_{j=1}^{p} \frac{\beta_j}{\sigma_t^2(\theta)} \nabla_{\kappa_j} \sigma_{t-j}^2(\theta) + (1 + \sum_{i=1}^{q} \alpha_i L^i)(\omega_{t-j} + \kappa_1 \nabla_{\kappa_j} \omega_{t-j} + \kappa_2 b'(\omega_{t-j}) \nabla_{\kappa_j} \omega_{t-j})] \)
\[\nabla_{\theta} \sigma_t^2(\theta) = \sigma_t^2(\theta) \sum_{i=1}^{p} \frac{\partial}{\partial \theta} \nabla_{\theta} \sigma_t^2(\theta) + (1 + \sum_{j=1}^{q} \alpha_j L^j) \{ \kappa_1 \nabla_{\theta} \varphi_t + \varphi_t - \sqrt{2} + \kappa_2 \beta (\varphi_t - \nabla_{\theta} \varphi_t) \} \]

The recursive formulas must be started up. In the program we set \(\sigma_{t-1}^2 = \varphi_t^2 \), where \(\varphi_t \) is based on the current parameter estimates.

C Antithetic Variables

In this context using antithetic variables as a variance reduction technique is very important. See e.g. Ross (1990, chapter 8), among others, for a review of variance reduction techniques. In short the antithetic variates technique is based on the fact that if we wish to estimate by simulation \(\theta = E[X] \) on basis of two generated variables \(X_1 \) and \(X_2 \), we are better off in case \(X_1 \) and \(X_2 \) are negatively correlated than independent, because

\[
\text{Var} \left(\frac{X_1 + X_2}{2} \right) = \frac{1}{4} \left[\text{Var}(X_1) + \text{Var}(X_2) + 2 \text{Cov}(X_1, X_2) \right]
\]

Likewise here in the generation of the stochastic volatility model (2), for one series the variables \(\epsilon_t \) and \(\eta_t \) are generated and for the other the variables \(-\epsilon_t \) and \(-\eta_t \) are used. The scores are now correlated leading to a considerable variance reduction.

![Figure 1: British Pound / Canadian Dollar exchange rates](image)
Table 1: Some preliminary statistics of the series.
<table>
<thead>
<tr>
<th></th>
<th>SARMV(1, 0)</th>
<th>SARMV(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>33.8</td>
<td>33.6</td>
</tr>
<tr>
<td>df</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>P-value</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>α_0</td>
<td>1.33</td>
<td>.212</td>
</tr>
<tr>
<td>α_1</td>
<td>-1.52</td>
<td>-1.52</td>
</tr>
<tr>
<td>α_2</td>
<td>-2.06</td>
<td>-2.05</td>
</tr>
<tr>
<td>γ_1</td>
<td>-2.30</td>
<td>-2.33</td>
</tr>
<tr>
<td>κ_1</td>
<td>1.85</td>
<td>1.87</td>
</tr>
<tr>
<td>κ_2</td>
<td>-.883</td>
<td>-.875</td>
</tr>
<tr>
<td>a_{10}</td>
<td>-3.57</td>
<td>-3.59</td>
</tr>
<tr>
<td>a_{20}</td>
<td>-2.46</td>
<td>-3.53</td>
</tr>
<tr>
<td>a_{30}</td>
<td>-3.67</td>
<td>-4.08</td>
</tr>
<tr>
<td>a_{40}</td>
<td>-2.40</td>
<td>-2.50</td>
</tr>
<tr>
<td>a_{50}</td>
<td>2.74</td>
<td>3.06</td>
</tr>
</tbody>
</table>

Table 2: Hansen J-test and individual t-values for the models for the S&P 500
Table 3: Hansen J-test and individual t-values for the models for the Exchange Rate series

<table>
<thead>
<tr>
<th></th>
<th>SARMAV(1, 0)</th>
<th>SARMAV(2, 0)</th>
<th>SARMAV(3, 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>13.4</td>
<td>11.6</td>
<td>6.87</td>
</tr>
<tr>
<td>df</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>P-value</td>
<td>.100</td>
<td>.113</td>
<td>.333</td>
</tr>
<tr>
<td>α_0</td>
<td>-.846</td>
<td>-.847</td>
<td>-.259</td>
</tr>
<tr>
<td>α_1</td>
<td>.397</td>
<td>.435</td>
<td>-1.43</td>
</tr>
<tr>
<td>α_2</td>
<td>-.754</td>
<td>-.950</td>
<td>-1.17</td>
</tr>
<tr>
<td>α_3</td>
<td>-2.28</td>
<td>-2.22</td>
<td>-1.31</td>
</tr>
<tr>
<td>γ_1</td>
<td>.271</td>
<td>.258</td>
<td>-1.33</td>
</tr>
<tr>
<td>κ_1</td>
<td>-1.79</td>
<td>-1.78</td>
<td>-1.95</td>
</tr>
<tr>
<td>κ_2</td>
<td>.030</td>
<td>-.755</td>
<td>-2.20</td>
</tr>
<tr>
<td>θ_{10}</td>
<td>.951</td>
<td>.942</td>
<td>.914</td>
</tr>
<tr>
<td>θ_{20}</td>
<td>-1.71</td>
<td>-1.38</td>
<td>-1.649</td>
</tr>
<tr>
<td>θ_{30}</td>
<td>-1.17</td>
<td>-1.14</td>
<td>-1.25</td>
</tr>
<tr>
<td>θ_{40}</td>
<td>-1.84</td>
<td>-1.37</td>
<td>-1.43</td>
</tr>
</tbody>
</table>
Figure 3: Times in seconds for calculation of score generator, run on a
P5-166 with 32Mb under Win95.
Times are for $N = 2 \times 5,000$, using EconPack 1.01.