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Preface

These are notes of the course 'Elements of the theory of extrema' given

by Prof. V. Tikhomirov (Moscow State University) during his stay at the

Tinbergen Institute Rotterdam in September 1996. Its central thesis is that

almost all concrete extremal problems of interest can be solved in a standard

way by means of a few general principles. In the near future this program

will be carried out more fully in further publications.

I am grateful to Prof. Tikhomirov for having given this beautiful course

and for having made his notes available. I appreciate very much that the

Tinbergen Institute made Prof. Tikhomirov's visit possible. Finally I would

like to thank Mrs. Olga Gilissen and Arjan Berkelaar for typing the �nal

version of this text.

Jan Brinkhuis.
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Abstract

The following four questions could be asked about each extremal problem:

1. What are the conditions for an extremum of the problem (necessary,

su�cient, necessary and su�cient)?

2. How to describe the evolution of sulutions if the problem is perturbed?

3. Does a solution to the problem exist or not?

4. How to �nd the solution numerically?

The goal of these lecture notes is to discuss some important general ap-

proaches to these questions, to give sketches of proofs and to apply the

general theory to some concrete problems.
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Chapter 1

FOUNDATIONS

1.1 Introduction

1.1.1 Brief historical review

The earliest maximum and minimum problems were posed in the distant

past. For example, the classical isoperimetrical problem (among all closed

plane curves of a given length �nd the one that encloses the largest area) was

investigated in the 5th century B.C. Some extremal problems were solved

by the greatest ancient mathematicians Euclid, Archimedes and Apollonius.

In the Renaissance period many extremal problems were posed and solved

(Tartaglia, Viviani, Torricelli, Kepler and others).

For a long time each extremal problem was solved individually. In the 17th

century the need to create some general methods became clear, in other

words the need for a theory of extremal problems.

The theory of extremal problems has a de�nite beginning. In 1636 Fermat

sent a letter to Roberval and Mersenne. In this letter Fermat described his

method of �nding an extremum of a polynomial function. Now this method

is well-known as Fermat's theorem. In its general form the algorithm of

Fermat was formulated by Newton and Leibniz. Newton laid the foundation

of the di�erential and integral calculus in his memoir `On the method of series

and 
uxions with application to the geometry of curves', which was written

5



6 CHAPTER 1. FOUNDATIONS

in 1671 but was published only in 1736. In this memoir Newton generalized

Fermat's method (without mentioning Fermat's name) to arbitrary smooth

functions.

In 1684 Leibniz published an article in which he also laid the foundation of

mathematical calculus. It is interesting, that the title of this �rst publicaton

begins with the words \A method for maxima and minima...", showing the

importance of the role of the problems of �nding extrema in the formation

of modern mathematics.

The research of Fermat, Newton and Leibniz promoted the elements of the

method of �nding extrema of functions of one variable. It seems, that it

would have been natural to study next the extrema of functions of an ar-

bitrary �nite number of variables. But this is not what happened. The

history of analysis made a kind of jump from one to in�nity. This happened

when J.Bernoulli posed (in 1696) his famous problem of the brachistochrone

(�nd the curve, joining two given points, on which a particle, sliding on this

path, reaches the end point in the shortest time). The solution of this prob-

lem (given by J.Bernoulli himself, by his brother Ja. Bernoulli, by Leibniz,

de l'Hospital and Newton) founded the base of in�nite dimensional analysis.

For example, the method of Leibniz contained the idea of the so-called direct

methods in in�nite dimensional analysis.

At the end of the 17th and at the beginning of the 18th century some prob-

lems similar to the brachistochrone were solved. It lead to the foundation of

the Calculus of Variations. The �rst work in which all problems analogous

to the brachistochrone were considered, was the memoir of Euler (1728).

The investigations of Euler were continued in the 17th century by Lagrange

and Legendre and in the 19th century by Gauss, Poisson, Jacobi, Hamilton,

Riemann, Kneser, Darboux, Du Bois-Reymond, Mayer, Poincar�e, Hilbert

and many others.

The theory of the calculus of variations was accomplished in its most princi-

pal parts in the �rst third of our century by Bolza, Bliss, McShane, Graves

and others mathematicians.

At the the same period the elements of in�nite dimensional calculus were

founded by Volterra, Hilbert, Hadamard, Fr�echet, Banach, Lyusternik,

Graves and many other representatives of the main schools of mathematics



1.1. INTRODUCTION 7

(Italian, German, French, Polish, Russian and American).

At the end of the thirties and the forties Kantorovich, Koopmans, Dantzig,

Kuhn, Tucker and others founded the base of the theory of Convex Pro-

gramming (the theory of convex extremal problems). The �rst work of Kan-

torovich was published in 1939.

In 1949 Fenchel published a series of articles in which he founded the base

of the Convex Analysis of functions. This trend was developed by Moreau,

Rockafellar, Castaing, Dubovitsky, Milyutin and many others.

At the beginning of the �fties Bellman in the USA and Pontryagin in Russia

promoted the further development of the calculus of variations and founded a

new branch of this theory called Optimal Control. It is interesting to remark,

that the �rst problem of optimal control was posed by Newton in 1687, before

the brachistochrone. This is the so-called aerodynamical problem of Newton:

�nd the solid of revolution of given length and width that is subject to least

resistance while moving in a 'rare' medium.

At last it is necessary to mention that in 1975 Clarke gave the initial im-

pulse to the development of a new chapter of calculus which is now called

Nonsmooth Analysis. Among mathematicians who took part in investigating

problems of nonsmooth analysis are Io�e, Mordukhovich and many others.

1.1.2 Formalization of extremal problems

Extremal problems arising in mathematics, in natural science, or in practical

enterprises are usually stated initially without formulae, using the terminol-

ogy of the �eld in which they arise (see, for example, our formulations of the

classical isoperimetrical problem, the brachistochrone and Newton's aerody-

namical problem).

In order to be able to utilize analytical tools it is necessary to apply a

translation of the statement of the problem from each speci�c language to

the language of mathematics. Such a translation is called a formalization.

To formalize an extremal problem means to describe precisely a functional

f0 (f0 : X ! �IR; �IR = IR [ f�1g) to be minimized or maximized (together

with its domain X) and a constraint set C � X such that f0(C) � IR. The
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constraint set is given usually by equalities and inequalities.

We will use the abbreviated notation for a formalized problem:

f0(x)! min(max); x 2 C: (P )

Points x 2 C are called admissible points. An admissible point bx is called an

absolute mininum (maximum) of the problem (P ) if f0(x) � f0(bx) (f0(x) �
f0(bx)) for every x 2 C: We can change a problem of maximization into a

problem of minimization by changing the sign of the functional.

An absolute minimum of an extremal problem is called a solution of the

problem. Our goal is to �nd solutions of problems, but at the beginning

(as a rule) we �nd local extrema of these problems. Let X be a topological

space. An admissible point bx is called a local minimum of (P ) if there

exists a neighbourhood U of bx such that bx is a solution of the problem

f(x)! min; x 2 C \ U .

1.1.3 Main chapters of the theory

In subsection 1.1 the main parts of the theory have been mentioned. Now it

is possible to describe them more accurately.

The mathematical programming problem with equality constraints studies

problems (P ) with X = IRn and C = fx j F (x) = 0g with F : IRn ! IRm:

In �nite dimensional convex programming X = IRn; C = fx j fi(x) �
0; 1 � i � m; x 2 Ag, where all functions fi; 1 � i � m are convex and A is

a convex set in IRn:

In the calculus of variations the domains of functionals are function spaces

(Cr;W r
p ; H

r and so on) and constraints are de�ned by di�erential equations.

Here is a typical example of a problem of the calculus of variations (the

so-called Lagrange problem):

f0(x(�)) =

Z
�
L(t; x(t); _x(t))dt! min(max); M(t; x; _x) = 0; xj@� = �;

where � is in the one-dimensional case a segment [t0; t1] and in the multidi-

mensional case a domain in IRn:
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In optimal control the unknown variables are divided into two parts: the

state (or phase) coordinates (x) and the control coordinates (u). A typical

problem of optimal control is the following:

f0(x(�); u(�)) =
Z t1

t0

f(t; x(t); u(t))dt+ l(x(t0); x(t1))! min;

_x(t) = '(t; x(t); u(t)); u(t) 2 U 8t: (P )

The crucial distinction between this problem and the problems of the cal-

culus of variations consists of the constraint u(t) 2 U 8t; this allows for

example inequality constraints in the control coordinates.

The following four questions could be asked about each extremal problem:

1. What are the conditions for an extremum of the problem (necessary,

su�cient, necessary and su�cient)?

2. How to describe the evolution of solutions if the problem is perturbed?

3. Does a solution to the problem exist or not?

4. How to �nd the solution numerically?

The goal of my lectures is to discuss some important general approaches to

these questions.

1.2 Base

1.2.1 Main principles of linear analysis

The theory of extremal problems is based on functional analysis. We will

touch on two parts of functional analysis. Here we discuss some important

results of linear analysis and then we will speak about calculus.

Duality and the Hahn-Banach theorem

One of the most fundamental ideas not only in mathematics but also in

physics and philosophy is the idea of duality. There are many dual objects
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in functional analysis: topological vector spaces and their duals, subspaces

and their annihilators, convex sets and their polars, support functions and

their subdi�erentials, etc.

It is possible to formulate the following general principle: every convex sub-

ject or phenomenon has two descriptions, a primal one in the original space

and a dual one in the conjugate space.

The majority of such facts follow from the following fundamental result.

Theorem 1.2.1 (Hahn-Banach)

Let X be a linear (vector) space, p : X ! IR a sublinear (, convex positive

homogeneous of the �rst degree and p(0) = 0) function, X1 a subspace of X.

Then every linear functional on X1 majorized by p on X1 can be extended

to the whole space X with the same property

, 8�0 2 X 0 : h�0; x1i � p(x1) 8x1 2 X1 9x0 2 X 0 : hx0; xi � p(x)

8x 2 X; x0jX1
= �0:

It is interesting to mark the dual sense of the theorem. On the one hand

the epigraph of an arbitrary sublinear function p is the union of epigraphs of

elementary sublinear functions (which are equal to p on one ray and in�nity

in all other points; p�(x) = p(x) if x lies on the ray t�; t � 0 and 1 in

all other cases.) On the other hand the epigraph of this function p is the

intersection of epigraphs of linear functionals supported to the epigraph of

the given sublinear function.

Inverse function theorem and calculus

One of the most important results in nonlinear analysis is the inverse function

theorem. It can be described as follows: if the derivative of a nonlinear

mapping at a certain point has an inverse, then this nonlinear mapping

itself has an inverse, locally at that point. Such results are based on the

following linear prototype:

Theorem 1.2.2 (right inverse theorem) Let X; Y be Banach spaces and �

a continuous surjective linear operator from X onto Y . Then, there exists
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an operator R : Y ! X (not necessarily linear or continuous) and a positive

constant C such that

�Ry = y; jjRyjj � Cjjyjj 8y:

This result was originally formulated either as the inverse operator theorem

(the inverse of a bijective linear continuous operator is continuous) or as the

open mapping theorem: Let X; Y be Banach spaces and let � : X ! Y be

a surjective continuous operator. Then � is an open operator (, the image

of every open set is an open set).

The closed graph theorem plays an important role in applications of the

theory to the calculus of variations and optimal control:

Theorem 1.2.3 (Banach-Steinhaus) A linear continuous operator from one

Banach space to another has a closed graph.

A di�erent form of the same result is the following: Let �n be a sequence

of continuous linear operators. This sequence tends to the linear continuous

operator � i� on some dense subset of X �nx ! �x and the norms of all

operators �n are uniformly bounded.

Existence of solutions and the Banach-Alaoglu-Bourbaki principle

Many natural and important variational problems have no solutions (for

example, the problem of the rotation surface of the least area). Analyzing

such situations Hilbert introduced his famous principle according to which

all `regular' problems must have a solution in some extended sense. One of

the most beautiful realizations is the idea of `embedding' the initial space

into the double dual space in which there exists compactness! This is based

on the following result:

Theorem 1.2.4 (Banach-Alaoglu-Bourbaki) A convex closed bounded sub-

set in the conjugate space of a Banach space is compact in weak� topology.
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1.2.2 Formulation of existence principles

Among the most important results of the general theory of extremal prob-

lems are the existence theorems of Lagrange multipliers, of �elds of ex-

tremals, of solutions and so on. Besides that the investigation of the problems

of the calculus of variations and optimal control demands to use existence

theorems from the theory of di�erential equations (existence of a solution

of the Cauchy problem, existence of the global solution for linear systems,

dependence of solutions on the parameters, and so on). Many of such clas-

sical existence theorems can be deduced from a few general principles of

existence, which are based on considerations of compactness, contractivity,

monotonicity and on other topological ideas.

Most of the concrete theorems of the central part of these lectures are corol-

laries of the theorems we speak about in this section.

I. Principles based on the idea of compactness

A) The Weierstrass{Lebesgue compactness principle

Let X be a compact topological space and let f be a continuous (or even a

lower-semicontinuous) function on X. Then there exists a point x̂ in X at

which f attains its global minimum.

B) Let X be a re
exive Banach space and let f be a proper closed convex

coercive function on X (, epi f := f(x; �) 2 X�IR j � � f(x)g is a convex,

closed proper subset of X � IR; f(x) ! 1; when x ! 1 and f(x) > �1):

Then there exists x̂ 2 X at which f attains its absolute minimum.

II. Baire's principle

Let (X; d) be a complete metric space and let fAkgk2IN be a family of nowhere

dense sets in X. Then there exists a point x̂ 2 X n [k2INAk:

III. Iterative principles based on the idea of contraction

A) Generalized iterative principle

Let (X; dX) be a complete metric space, (Y; dY ) a metric space, F a contin-

uous (or a closed multivalued) mapping from X to Y; y 2 Y; x0 2 X; r > 0

and let there exist M : BX(x0; r)! X and �; 0 < � < 1; such that

a) dY (y; F (x0)) � (1� �)r; b) dX(x;M(x)) � dY (y; F (x)) 8x 2 BX(x0; r);
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and either

c) dY (y; F (M(x)))� �dX(x;M(x)) 8x 2 BX(x0; r);

or

c0) dY (y; F (M(x))) � �dY (y; F (x)) 8x 2 BX(x0; r)

(if A is a set in the metric space Z, then dZ(x;A) := infz2A d(x; z):)

Then the iterative sequence xk =M(xk�1); k 2 IN tends to a solution of the

equation y = F (x) (or inclusion y 2 F (x)).

Remark 1. This formulation combines Newton's method of solving equa-

tions and Milyutin's ideas of generalization of Lyusternik's theorem. It is

obvious that it is su�cient to suppose that in each step there exists an

element Mk(xk) which satis�es the conditions b) and c) (or c0)).

B) Let (X; d) be a complete metric space, r > 0; � 2< 0; 1 > and let F be

a mapping from B(x0; r) to X such that

(a) d(x0; F (x0)) � (1� �)r;

(b) d(F (x); F (F (x)))� �d(x; F (x));

then the sequence xk = F (xk�1); k 2 ZZ+ tends to a �xed point of F .

Remark 2. It is possible to generalize this result by considering a cartesian

product of a topological space T and a complete metric space (X; d). Such

a generalization is useful in connection with considerations of dependence of

solutions on parameters.

Corollary (Cacciopolli-Banach)

Let (X; d) be a Banach space and F a mapping from X into X which is

contractive, that is

9� 2< 0; 1 >: d(F (x); F (y))� �d(x; y) 8x; y 2 X:

Then the sequence xk = F (xk�1); k 2 ZZ+, x0 an arbitrary point, tends to

the (unique) �xed point of F .

Remark 3. It is easy to see that if some power of F is a contractive mapping,

then F has a unique �xed point.



14 CHAPTER 1. FOUNDATIONS

IV. Brouwer's and Borsuk's topological principles

A) (Brouwer) Let F 2 C(Bn; IRn); Bn = fx 2 IRn j jxj � 1g such that

9� 2< 0; 1 > 8x 2 Bn jx� F (x)j < 1� �: Then, for all y 2 IRn with jyj < �

there exists x̂ such that y = F (x̂) .

B) (Borsuk) Let F 2 C(Sn; IRn);Sn = fx 2 IRn+1 j jxj = 1g such that

F (�x) = �F (x) 8x. Then, there exists a solution of the equation F (x) = 0.

V. Monotonicity principles.

The term `monotonicity' has several meanings which are the same in the

one-dimensional case. One meaning is connected with order, another with

the derivatives of a convex function. We present below three corresponding

monotonicity principles.

A) (Zorn's lemma) Let (�;O) be a partially ordered set such that each

linearly ordered (that is, totally ordered) subset has an upper bound. Then

(�;O) has a maximal element.

The following principle is a corollary of Zorn's lemma:

B) (Variational principle of Ekeland) Let (X; d) be a complete metric

space, f a lower-semicontinuous function bounded from below, and x0 2 X

a point such that f(x0) � inf f +" for some " > 0. Then, for all � > 0 there

exists an element x̂ = x̂(�) such that:

(a)f(x̂) � f(x0); (b)d(x0; x̂) � �; (c)f(x) + ("=�)d(x; x̂) > f(x̂) 8x 6= x̂

(i.e. the perturbed function f(�) + ("=�)d(�; �; x̂) attains a strict absolute

minimum at the point x̂).

C) (Monotonicity principle of Minty { Brouwer)A strictly monotone,

continuous and coercive mapping F : IRn ! IRn has a unique solution of the

equation F (x) = y for each y 2 IRn (and it can be reached by means of some

special iterative procedure).

(The mapping F : IRn ! IRn is called monotone (strictly monotone) if

hF (x2)� F (x1); x2� x1i � 0(� �jx2� x1j
2 for a suitable � > 0) 8x1; x2 2

IRn and coercive, if limx!1 jF (x)j =1:)
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1.3 Proofs

I. The compactness principles.

A) 1. Notation Lc := fx j f(x) � cg: By de�nition of lower-semicontinuity

it follows that Un := X n Ln; n 2 ZZ is an open subset of X . It is clear that

� � � � Un � Un�1 � � � � and that fUngn2ZZ is an open covering of X .

Hence (by the de�nition of compactness) there exists m 2 ZZ such that

X = Um; i.e f is bounded from below.

2. Notation: � := inf f; Vn := X n L�+(1=n) n 2 IN: By the de�nition

of lower-semicontinuity it follows that fVngn2IN is (if f does not attain its

minimum) an open covering of X . Hence (by de�nition of compactness)

there exists s 2 IN such that X = Vs, i.e. f > �+ 1=s: But this contradicts

the de�nition of �: 2

B) This result follows immediately from the Weierstrass{Lebesgue compact-

ness principle and the Banach{Alaoglu{Bourbaki compactness theorem, ac-

cording to which every closed bounded convex set in the conjugate space

is compact in the weak� topology and from the fact that a closed convex

function is lower-semicontinuous in the same topology. 2

II. Baire's principle.

B(�; r) := fx j d(x; �) � rg { the ball with center at � and with radius r.

From the de�nition of nowhere density 9B1 := B(x1; r1) : B1 \A1 = ;

Analogously 9B2 := B(x2; r2), B2 included in B1; B2 \ A2 = ;; and so on;

we obtain a sequence of balls each included in its predecessor. Using the

lemma on including balls we obtain the result. 2

III. Iterative principles.
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A) / We have:

dX(x1; x0)
def
= dX(x0;M(x0))

(b)

� dY (y; F (x0))
(a)

� (1� �)r < r;

hence

x1 2 BX(x0; r) (i):

Let the elements fxkg
n
k=1 belong to BX(x0; r). Then in case (c) we have:

dX(xk+1; xk)
def
= dX(xk;M(xk))

(b)

� dY (y; F (xk))
(c)

� �dX(xk; xk�1) �

anal
� � �� �kdX(x1; x0):

Hence

dX(xk+1; x0) � (�k + � � �� + 1)dX(x1; x0) < r:

The case (c0) is similar. By induction, the sequence (xk)k2ZZ+ is de�ned for

all k 2 ZZ+ and from the triangle inequality (TI) we obtain:

dX(xk+m; xk)
TI
� dX(xk+m; xk+m�1) + � � �+ dX(xk+1; xk)

(c)

�

(�k+m�1 + � � �+ �k)dX(x1; x0) �
�k

1� �
dX(x1; x0):

The case (c0) is analogous. Hence, (xk)k2ZZ+ is a Cauchy sequence which (by

the condition that X is a complete space) tends to some element x̂. As F is

closed it follows that y 2 F (x̂): 2

The method of proof of theorem B) is analogous to the method used in the

proof of theorem A).

IV. Topological principles

A) / Brouwer's topological principle of existence is based on the following

famous result.

Brouwer's �xed point theorem. Let F be a continuous mapping from

Bn to itself. Then there exists a �xed point (, 9x̂ : F (x̂) = x̂).

Proof of the �xed point theorem.
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Without loss of generality we may assume that F is a continuously di�eren-

tiable function (this follows from the Weierstrass approximation theorem).

Let us suppose that F (x) 6= x 8x 2 Bn.

For each x 2 Bn let G(x) be the intersection of Sn�1 and the ray with the

initial point at F (x) which passes through x. In the one-dimensional case

G(x) = �1 if F (x) > x and +1 if F (x) < x: From the de�nition of G it

follows that if x 2 Sn�1 then G(x) = x (i). It is clear that the map G is

also continuously di�erentiable. Then in the one-dimensional case (N�L,
Newton-Leibniz theorem, V ol1(A) is the length of A):

0 = V ol1(G(B
1))

def
=

Z
B1

G0(x)dx
Id
=

Z
B1

dG
N�L
= G(1)�G(�1) = 2:

Contradiction.

In the n-dimensional case we use the theorem of Stokes-Poincar�e (S � P )

instead of that of Newton-Leibniz (V oln(A) is the n-dimensional volume of

A):

0 = V oln(G(B
n)

def
=

Z
Bn

G0(x)dx
Id
=

Z
Bn

d(G1 ^ dG2 ^ � � � ^ dGn)

(i)
=

Z
Bn

d(x1 ^ dx2 ^ � � � ^ dxn)
S�P
= V oln(B

n) 6= 0:

Contradiction. The �xed point theorem is proved. 2

Brouwer's existence principle follows immediately from the �xed point the-

orem. We will prove it for y = 0. The general case is analogous. Let

F (x) 6= 0 8x 2 Bn, then the mapping G1(x) := � F (x)
jF (x)j is a continuous

mapping from Bn to Bn without a �xed point (because if G1(x) = x, then

jx� F (x)j = jG1(x)� F (x)j = j F (x)
jF (x)j + F (x)j > 1). Contradiction. 2

Remark. We have given an analytical proof of Brouwer's theorem. Now

we will try to explain the topological essence of the proof of this theorem

and the theorem of Borsuk. Every (smooth enough) mapping F : Sn ! Sn

has a special number (the so-called degree of this mapping). The degree

of a smooth enough mapping F : Sn ! Sn is de�ned to be the number of
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inverse images of a point in \general position" where we take orientation

into account in the counting of the number of inverse points. It is easy to

see that if F is a continuous mapping from Bn to itself, then the restriction

of the mapping x! (F (x)�x)=jF (x)�xj to the unit sphere has degree one
(we suppose that F has no �xed point). Then we will consider the restriction

of this mapping to spheres of radius r; 0 < r < 1. Then, the degree (it is a

continuous but discrete function of r) is not changed. But if r is su�ciently

small, then the degree is (evidently) equal to zero. This contradiction leads

to a proof of Brouwer's �xed point theorem.

To prove Borsuk's theorem we note that the degree of an odd continuous

mapping of Sn onto itself is an odd number. Also it is necessary to recall

that every continuous mapping can be approximated by smooth ones.

V. Monotonicity principles.

We will not prove Zorn's lemma; the proof of this result is not connected

with mathematical analysis (but we will see that it has many applications

to analysis).

B) We said that Ekeland's principle is a corollary of Zorn's lemma. But we

will give \a constructive" proof of the principle (and from our proof it will

be clear how to deduce the result from Zorn's lemma).

/ Without loss of generality we may assume that � = 1 and f(x) � 0: The

method of the proof is an iterative variant of the bisection procedure.

Let z = (�; �) 2 X � IR+: We denote the set f(x; �) 2 X � IR+ j 0 � � �
�; d(x; �)� � � �g by S(z): Take z0 = (x0; f(x0)): If S(z0)\ epi f = z0, the

problem is solved: x̂ = x0: If not, then we consider the ball B(x0; f(x0)) and

S0 := epi f \ �0; �0 := f(x; �) 2 S(z0) j 0 � � � f(x0)=2g:

If S0 6= ; we take z1 = (x1; f(x1)) 2 S0, the ball B(x1; f(x1)) and repeat our

procedure. If S0 = ; we take (x1; f(x1)) 2 S(z0) n�0, the ball B(x1; f(x1)�
f(x0)=2) and repeat our procedure. We obtain a sequence of nested balls,

whose centers tend to x̂. It is clear that x̂ is the point we are looking for. 2

C) / First of all we will illustrate the proof of the theorem in the one dimen-

sional case. Then F is a map from IR to IR which is strictly monotonically
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increasing and surjective. In this case we can restrict ourselves to a segment

�0 = [�; �] such that F (�) < y, F (�) > y.

Then we use the well-known method of bisection.

Let x1 be the midpoint of the segment �0. If F (x1) > y then we consider

the segment �1 = [�; x1]. If F (x1) < y, then we consider the segment

�1 = [x1; �]. Let x2 be the midpoint of the segment �1. Then repeat this

step: calculate F (x2), compare it with y, cut o� again the half of the segment

which does not contain the solution and so on.

In the general case the problem can be reduced to the case y = 0. To solve

the equation F (x) = 0 we restrict our consideration to an n-dimensional ball

�0 such that jF (x)j 6= 0 8x 2 IR n�0 (this is possible by coerciviness) and

then instead of the midpoint of the segment we take the center x0 of the

ball. If F (x0) = 0, the problem is solved. If F (x0) 6= 0 we cut o� the set

fx j hF (x0); x � x0i > 0g (it is easy to show by de�nition that in this set

there is no solution of the equation F (x) = 0 ). We denote the remainder

of the ball by �1, then denote the center of gravity of �1 by x1 and cut o�

the set fx 2 �1 j hF (x); x� x1i > 0g; etc.

From the sequence (xk)k2ZZ+ it is possible to choose a subsequence which

tends to a solution of the equation F (x) = 0: 2

1.4 Applications

1.4.1 Fundamental theorem of algebra

Theorem 1.4.1 (d'Alembert, Euler, Gauss)

A polynomial of degree n � 1 with complex coe�cients has a complex root.

Proof: Consider the extremal problem:

f0(z) = jp(z)j2 ! min; z 2 C; (P )

where p(�) is a polynomial degree n. The function f0 is a coercive, hence

by the compactness principle of Weierstrass{Lebesgue a solution ẑ of the
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problem (P ) exists. Without loss of generality we can assume that ẑ = 0

and p(z) = a0+ akz
k + � � �+ anz

n; a0ak 6= 0: Then (that was the main point

of d'Alembert's proof) -writing � = arg(�a0ak)- one has

jP (tei�)j2
Id
= ja0j

2 + 2ja0jjakjt
k cos(k� + �) + O(tk+1) (i):

From this expression it follows that 0 is not an absolute minimum in (P )

(because it is possible to choose �̂ such that jP (tei�̂)j2 < ja0j
2 for small t {

see (i)) Contradiction. 2

1.4.2 Inverse mapping

Theorem 1.4.2 (Dini)

Let U be a neighbourhood of a point x̂ 2 IRn; F : U ! IRn (F = (f1; � � � ; fn))
a mapping which is strictly di�erentiable in x̂, F (x̂) = ŷ and the Jacobian

det
�
@fi(x̂)
@xj

�n
i;j=1

6= 0: Then there exists " > 0; � > 0 and K > 0 such that for

all y in the ball B(ŷ; �) there exists a unique x in the ball B(x̂; ") such that

F (x) = y and jx� x̂j � Kjy � ŷj:

/ Application of principle III A) leads to the result apart from the unique-

ness statement which requires an additional argument. Now we outline the

veri�cation of the assumptions of principle III A) in the present case. With-

out loss of generality we may assume that x̂ = ŷ = 0 and that jjF 0�1jj � 1

(we can use shifts and homotheties). Take y 2 Y . Consider the iterative

procedure xk =M(xk�1); k 2 IN; x0 = 0; where

M(x) = x+ (F 0(0))�1(y � F (x)): (�)

Then jjx �M(x)jj � jjy � F (x)jj and if jjyjj is small enough then for each

� 2< 0; 1 > and for su�ciently small r > 0 one has for all x 2 B(0; r)

jjF (M(x))� yjj
(�)
= jjF (M(x))� y + y � F (x)� F 0(0)(M(x)� x)jj

� �jjM(x)� xjj:

2
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1.4.3 Global solution of a linear system of di�erential equa-

tions

Theorem 1.4.3 Let � = [t0; t1] be a �nite interval of IR. Let A : � !
L(IRn; IRn) and b : � ! IRn be an integrable matrix function and an inte-

grable vector function. Then the Cauchy problem

_x = A(t)x+ b(t); x(t0) = x0 (P )

has a unique solution on �:

Proof: / A solution of (P ) is equivalent to the integral equation

x(t) = x0 +

Z t

t0

A(s)x(s)ds+

Z t

t0

b(s)ds:

Consider the operator F from C(�; IRn) to C(�; IRn) de�ned by (Fx)(t) =

x0 +
R t
t0
A(s)x(s)ds+

R t
t0
b(s)ds. The following estimates are evident:

jjFx1(�)� Fx2(�)jjC(�;IRn) � jt1 � t0j
Z t1

t0

jjA(s)jjdsjjx1(�)� x2(�)jjC(�;IRn);

jjF 2x1(�)� F 2x2(�)jjC(�;IRn) �
jt1 � t0j

2

2!

Z t1

t0

jjA(s)jjdsjjx1(�)� x2(�)jjC(�;IRn);

� � � � � � � � �

jjF kx1(�)� F kx2(�)jjC(�;IRn) �
jt1 � t0j

k

k!

Z t1

t0

jjA(s)jjdsjjx1(�)� x2(�)jjC(�;IRn):

Applying the principle of Cacciopolli-Banach (see the remark after the the-

orem of C.-B.), we obtain the result. 2

1.4.4 Local solution of di�erential equations

Theorem 1.4.4 (Cauchy, Picard)

Let the function f : G! IRn be de�ned on an open set G of IR� IRn and let

it satisfy the following conditions:
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(a) for any x the function t ! f(t; x) de�ned on the section Gx = ft j
(t; x) 2 Gg is measurable and locally integrable (that is, integrable on

any �nite interval contained in Gx);

(b) for any t the function x ! f(t; x) de�ned on the section Gt = fx j
(t; x) 2 Gg is di�erentiable;

(c) for any compact set K � G there exists a locally integrable function k(�)
such that jjfx(t; x)jj � k(t) 8(t; x) 2 K:

Let K � G be a compact set. Then there exist " > 0 and � > 0 such that

for any point (t̂; x̂) 2 K and for (t0; x0) satisfying the inequalities jt0 � t̂j <
�; jx0 � x̂j < " Cauchy's problem _x = f(t; x); x(t0) = x0 has a unique

solution t! X(t; t0; x0) on the closed interval [t̂� �; t̂+ �] and this solution

is jointly continuous with respect to its arguments.

Proof: We will prove only the existence part of the theorem (without the

continuity part; for the complete result see [ATF], p. 119). Consider the

mapping F de�ned by

(Fx)(t) = x̂+

Z t

t̂
f(�; x(�))d�:

It is easy to show that for a small � > 0 it is possible to �nd � > 0 such that

jjFx(�)jjC([t̂��;t̂+�]) � �(1� �);

jjFx1(�)� Fx2(�)jjC(t̂��;t̂+�])
def
=

max
t2[t̂��;t̂;+�]

j

Z t

t̂
(f(s; x1(s))� f(s; x2(s)))dsj

�
Z t̂+�

t̂��
k(s)dsjjx1(�)� x2(�)jj � �jjx1(�)� x2(�)jj;

for � 2 (0; 1): Applying III B) we obtain the result. 2
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1.4.5 The Lagrange multiplier rule

Theorem 1.4.5 (Lagrange)

Consider the problem

f0(x)! extr; fi(x) = 0; 1 � i � m : (P )

Here the fi : U ! IR; 0 � i � m are continuously di�erentiable functions

de�ned in a neighbourhood U � IRn of a point x̂ which is a local extremum

of (P ) and where m � n. Then there exist Lagrange multipliers (�0; �); � =

(�1; � � � ; �m) (not all zero) such that

Lx(x̂; �0; �) = 0,
mX
i=0

�if
0
i(x̂) = 0 (�)

where L(x; �0; �) := �0f0(x) +
Pm

i=1 �ifi(x):

Proof: The following alternative takes place: either the vectors f 0i(x̂) 0 �
i � m are linearly dependent (I) or not (II). In the �rst case (�) is satis�ed
by de�nition. We will show that the second case contradicts the assumptions

of the theorem.

According to a well-known theorem of linear algebra in the case (II) it is

possible to choose m+1 variables (without loss of generality let these be the

�rst m+ 1 variables) such that the mapping

F (x1; � � � ; xm+1) := (f0(x1; � � � ; xm+1; x̂m+2 � � � ;

x̂n); � � � ; fm(x1; � � � ; xm+1; x̂m+2; � � � ; x̂n))

satis�es the assumptions of the inverse theorem (see theorem 1.4.2). But

then there exist " > 0; � > 0 and K > 0 such that for all � 2< 0; �] there

exists (x1; � � � ; xm+1 2 IRm+1 such that F (x1; � � � ; xm+1) = (��; 0; � � � ; 0)
and jj(x1; � � � ; xm+1)� (x̂1; � � � ; x̂m+1)jj � K:�: But this means that x̂ is not

a local minimum in (P ). Contradiction. 2
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1.4.6 An orthogonal basis of a symmetric matrix

Let A = (aij)
n
i;j=1 be a symmetric matrix (aij = aji) and let

Q(x) = hAx; xi =
nX

i;j=1

aijxixj

be the quadratic form corresponding to the matrix A.

Theorem 1.4.6 (Jacobi)

There exists in IRn an orthonormal basis ffig
n
i=1 of eigenvectors of A in

which the form Q is represented as

Q(x) =
nX

j=1

�jhx; fji
2:

Proof: Consider the extremal problem

hAx; xi ! max; jxj2 = 1 (P1)

A solution f1 of (P1) exists (by the compactness principle IA). From the

Lagrange multiplier rule it follows immediately that Af1 = �1f1: Consider

the problem

hAx; xi ! max; jxj2 = 1; hx; f1i = 0: (P2)

The solution f2 exists (by IA) and from the Lagrange multiplier rule we

readily �nd that Af2 = �2f2, and so on. As a result we obtain an orthonor-

mal basis ffig
n
i=1 and (�) follows from the de�nitions. 2

1.4.7 Separation theorem

Theorem 1.4.7 (Minkowski)

Let C be a closed convex set in IRn and x0 a point in IRn which does not

belong to C. Then there exists a hyperplane which separates x0 and C:
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Proof: The function f(x) := jjx � x0jj is coercive and continuous, hence

(by I A) the problem f(x)! min; x 2 C has a solution x̂. The hyperplane

perpendicular to the vector x0� x̂ passing through the point x̂ is a desirable

one (because if there exists a point �x 2 C lying on the same side of the hy-

perplane as x0 then on the segment [x̂; �x] there exists a point whose distance

to x0 is less than dX(x0; x̂): 2

1.5 Tools

At the beginning of this section let us make a little trip to the �rst 
oors of

an imaginary Museum of Mathematics.

We will begin our excursion from the base, from the foundation of the whole

building. According to the point of view of mathematicians of previous

generations \the foundation of the whole of mathematics is set theory" (I

quote words of A. N. Kolmogorov).

Georg Cantor was the architect and the �rst builder of the whole struc-

ture. The conception of mathematics as a superstrucure on set theory was

developed by Hilbert, Weyl and many other mathematicians.

N.Bourbaki made an attempt to realize this program and to build Mathe-

matics from its foundations to the highest peaks starting from the ideas of

Cantor-Hilbert-Weyl. This plan was not realized (and the majority of mod-

ern mathematicians have serious doubts to the possibility of the realization

of such a program). But the attempt of Bourbaki played a great role in the

history of mathematics.

To put it shortly the conception of Hilbert-Bourbaki can be expressed in the

following words: \Mathematics is the theory of structures".

The simplest structures in mathematics are sets either with a few relations

or with a system of sets, which de�ne these structures. So the �rst 
oor of

our imaginary Museum consists of the lodgements in which the simplest fun-

damental structures are represented. These are algebraic structures (groups,

rings, linear spaces and so on), topological spaces, measure spaces etc.
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Among the founders of algebraic structures were Galois, Jordan, Kronecker,

Cayley. One of the �rst mathematicians who de�ned the notion of linear

space was Grassman. The primary topological notions (such as closure, den-

sity, nowhere density and many others) were introduced by Cantor himself.

The modern de�nition of a topological space as a set with a system of open

sets was given by Alexandro� and Urysohn. The de�nition of measurable

space is due to Borel and Lebesgue.

The theory of extremal problems is located on the second 
oor of our Mu-

seum, where the mixed structures are located. In the set of such mixed

structures there is the class of linear topological spaces. A linear topological

space is the structure in which the algebraic and topological properties are

considered cojointly. One of the most important subclasses of the class of

linear topological spaces, is the collection of linear normed spaces. This is

the real area of the modern theory of extremal problems.

The main tools of the theory are di�erential, convex and nonsmooth calculus.

Now our goal is to familiarize the reader with these tools.

1.5.1 Di�erential calculus

The fundamental notion of di�erential calculus is the notion of a di�erential.

It is based in turn on the de�nition of a derivative.

For one dimensional functions derivatives were de�ned by Newton and Leib-

niz. Newton's de�nition is close to the modern one (given by Cauchy).

Newton possessed the idea of a limit and in fact he de�ned the derivative of

a function as a limit of the ratio of increment of the function over increment

of the argument. The de�nition of Leibniz was more vague. He operated

with the term \in�nitesimal value", appealing to the intuition. (It is very

interesting that now the so-called \Nonstandard analysis" gives the exact

and many-sided sense to the idea of in�nitesimal value).

Lagrange introduced the notion of derivative in the in�nite dimensional case.

It is the so-called �rst variation of a functional. This gave Euler the idea to

call the whole corresponding direction in the theory of extrema the calculus

of variations. Lagrange did not give the exact de�nition of variation in the

modern sense of the word. Such de�nitions were given by students of Jack
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Hadamard, Gateau (the weak derivative) and Fr�echet (the strong derivative).

Giving his de�nition (in 1912), Fr�echet was sure that it was new even for

the �nite dimensional case. Specializing his general de�nition to the �nite

dimensional case and obtaining the de�nition which is known now by all

mathematicians, Fr�echet wrote, that it was the \di�erential �a mon sense".

But this was not quite right, because the correct de�nitions of derivative and

di�erential of a function of many variables were given by Weierstrass in his

lectures at the eighties of the 19th century. These lectures were published

in the thirties of our century. The correct de�nitions of the derivative in

the multidimensional case appear also at the beginning of the century in

some German and English text-books (Scholz, Young) under the in
uence

of Weierstrass.

In the �fties in the school of Bourbaki the notion of strict derivative ap-

peared, which is very convenient in the theory of extremal problems.

De�nition 1. Let X; Y be normed spaces, let U be an open neighbourhood

of a point x̂ (we will denote it U 2 O(x̂; X)). The mapping U ! Y is called

a) di�erentiable (in the sense of Fr�echet) at the point x̂, if there exists a

linear continuous operator � : X ! Y (, � 2 L(X; Y )) such that

F (x̂+ x) = F (x̂) + �x+ r(x); jjr(x)jjY =jjxjjX ! 0; if jjxjjX ! 0:

b) strictly di�erentiable at x̂ if it is di�erentiable in x̂ and if for any " > 0

there exists � > 0 such that

jjF (x2)� F (x1)� �(x2 � x1)jjY � "jjx2 � x1jjX 8 (x1; x2)

such that

jjx1 � x̂jjX < �; jjx2 � x̂jjX < �:

The operator � in these de�nitions is unique. It is called the derivative (in

the sense of Fr�echet) of F at x̂ and is denoted F 0(x̂) . If F is di�erentiable

at x̂ we write F 2 D1(x̂; Y ), or simply F 2 D(x̂), and if F is strictly

di�erentiable at the point x̂ we write F 2 SD1(x̂; Y ): From the de�nitions it

follows that if F 2 D1(x̂; Y ) then F is continuous at x̂, and if F 2 SD1(x̂; Y )

then F is continuous in a neighbourhood of x̂:

The following two theorems of di�erential calculus are the most important

for us.
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Theorem 1.5.1 (On Superposition)

Let X; Y; Z be normed spaces, U 2 O(x̂; X); F : U ! Y; V 2 O(F (x̂); Y );
G : V ! Z; H = G � F . If F 2 D1(x̂; Y ); G 2 D1(F (x̂); Z) (resp.

F 2 SD1(x̂; Y ); G 2 SD1(F (x̂); Z)), then H 2 D1(x̂; Z) (resp. SD1(x̂; Z))

and

H 0(x̂) = G0(F (x̂)) � F 0(x̂):

This theorem (due to Leibniz) follows in an elementary way from the de�-

nitions.

Theorem 1.5.2 (On inverse functions)

Let X and Y be Banach spaces, U 2 O(x̂; X); F : U ! Y; F (x̂) = 0; F 2
SD1(x̂; Y ) and F 0(x̂)X = Y: Then there exist V 2 O(x̂; X);W 2 O(0; Y )
and a mapping ' : V �W ! X and K > 0 such that F ('(x; y)) = y and

jj'(x; y)jjX � Kjjy � F (x)jjY for all(x; y) 2 V �W:

This result follows from the generalized iterative principle and the the right

inverse theorem. The idea of the proof is the same as in the �nite dimensional

case (Dini's theorem).

Let M be a subset of a normed space X . A vector x is said to be a tangent

vector to the set M at the point x̂ 2 M if there exists a mapping r :

[�1; 1]! X such that x̂+ �x+ r(�) 2 M 8� 2 [�1; 1] and jjr(�)jj=j�j ! 0

if �! 0.

Corollary 1.5.3 (Tangent space theorem)

Under the assumptions of the preceding theorem, the set of all tangent vectors

of fxjF (x) = 0g at the point x̂ equals KerF 0(x̂).

1.5.2 Convex analysis

Convex analysis is a section of mathematics in which convex sets, convex

functions and convex extremal problems are studied. Convex analysis is

located between geometry and analysis. A geometrical foundation of convex

analysis was created in antiquity, but the analytical part of it was developed

only in the middle of our century.
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Convexity plays an important role in the theory of extremal problems. The

following phenomena and facts connected with convexity will be the most

essential for us in future: duality, convex calculus, extremal points and de-

composition.

Let X be linear space. A set A � X is called convex if for any x1; x2 2 A

the whole segment [x1; x2] := fx j �x1 + (1 � �)x2; 0 � � � 1g belongs to

A.

To a function f : X ! IR [ f1g the following two sets are associated:

domf := fx 2 X j f(x) < +1g;

epif := f(�; x) j � � f(x); x 2 domfg:

The �rst one is called the e�ective domain of f , the second is called the

epigraph of f . The function f is called convex (resp. closed), if its epigraph

is a convex (resp. closed) set. A function p : X ! IR [ f+1g is called

sublinear if p(0) = 0; p(�x) = �p(x) 8� > 0 and p(x1 + x2) � p(x1) + p(x2),

in other words if its epigraph is a convex cone with the origin as top.

There are two important examples of convex functions: an indicator function

and a support function. The indicator function �A of a set A is equal to zero

in all x 2 A and is equal to +1 in all x 62 A. (�A is convex i� A is a convex

set.) Let X be a normed space and X� its conjugate, A a non-empty subset

of X . The function sA(x�) := supfhx�; xi j x 2 Ag is said to be the support

function of A. A support function is a sublinear function.

Let us give some operations with convex functions.

| sum: (f1 + f2)(x) := f1(x) + f2(x);

| convolution:(f1� f2)(x) := infff1(x1) + f2(x2) j x1 + x2 = xg;

| maximum: (f1 _ f2)(x) := maxff1(x); f2(x)g;

| convex hull of minimum:

(f1(co^)f2)(x) :=

minf�f1(x1) + (1� �)f2(x2) j 0 � � � 1; �x1 + (1� �)x2 = xg
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There are two main notions in convex analysis: conjugate functions and

subdi�erentials.

If two vectorspaces X;� and a bilinear pairing <;>: X � � ! IR are given

then the formula

f�(�) = sup
x2X

(< �; x > �f(x)):

associates to each function f : X ! IR a function f� : X ! IR which is called

the conjugate function of f (or Legendre transformation or Young-Fenchel

transformation of f). Analogously the conjugate function g� : X ! IR

for a function g : � ! �IR is de�ned. We can apply this to the natural

pairing X � X� ! IR : (x; x�) !< x�; x > which one has for each normed

vectorspace X . In the remainder of this section X is a normed space.

The set @p in X� de�ned by

@p := fx� 2 X� j hx�; xi � p(x) 8x 2 Xg

is said to be the subdi�erential of a sublinear function p

The following formulae hold true: (�A)� = sA; N(x) := kxk ) N� =

�BX�. We see that the function conjugate to k � k is the indicator function

of the unit ball in the conjugate space.

The set

@f(bx) := fx� 2 X� j hx�; x� bxi � f(x)� f(bx) 8x 2 Xg:

is called the subdi�erential of f : X ! IR[f+1g at bx. The following formula
holds: @N(0) = BX� and x 6= 0) @N(x) = fx� j kx�k = 1; hx�; xi = kxkg:

Now we formulate the most important theorems in convex analysis.

Theorem 1.5.4 (Fenchel-Moreau)

A function f : X ! IR [ f+1g is equal to its second conjugate f�� i� it is

convex and closed.

Theorem 1.5.5 (Moreau-Rockafellar)

Let fi : X ! IR [ f+1g; i = 1; 2 be convex functions and let there exist

a point, where one of them is �nite and the other is continuous. Then

@(f1 + f2)(x) = @f1(x) + @f2(x) for all x 2 X:
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Theorem 1.5.6 (Formula of Dubovitsky-Milyutin)

Let functions fi : X ! IR [ f+1g; i = 1; 2 be continuous in a point. If

f1(x) = f2(x) then

@(f1 _ f2)(x) = (@f1(co^)@f2)(x):

Theorem 1.5.7 (Decomposition theorem)

Let T be a compact topological space, let F : T � IRn ! IR be a map-

ping such that F (�; x) : T ! IR is an upper semicontinuous function for

every x and F (t; �) : IRn ! IR is convex for every t 2 T and let m :=

infxmaxt2T F (t; x) > �1: Then, there exists a constant r 2 IN; r � n + 1

and r points f�ig
r
i=1; �i 2 T such that m = infxmax1�i�r F (�i; x):

We now present the proof of the theorem of Fenchel-Moreau.

Proof: Necessity. Let f�� = f . Then by de�nition

f(x)
def
= sup

x�
(hx�; xi � f�(x�));

that is, epi f is the intersection of the epigraphs of the a�ne functions

a(�; x�) : X ! IR which are de�ned by a(x; x�) =< x�; x > �f�(x�) for all
x 2 X; x� 2 X� with f�(x�) 2 IR. Hence f is a convex closed function.

Su�ciency. Let f be a closed convex function. Then, by a separation theo-

rem, the epigraph of f is the intersection of all closed halfspaces in X � IR

which contain it. As at least one of them has to be the epigraph of an a�ne

function on X (that is, not vertical) it can be deduced that this intersection

does not increase if we omit all halfspaces which are not epigraphs of a�ne

functions (the vertical ones). That is, essentially by de�nition of f��, one

gets f = f��. 2

Remark. The Fenchel{Moreau theorem expresses the idea of duality we

discussed at the beginning of the section. On the one hand a closed convex

function f is a union of elementary functions:

epi f = [fepi e(�; x; f(x)) j x 2 dom fg

(e(�; �; �) = � if x = � and 1 if x 6= �) and on the other hand it is the

supremum of a family of a�ne functions.



32 CHAPTER 1. FOUNDATIONS

1.5.3 Nonsmooth analysis

The theory of smooth extremal problems is based on di�erential calculus,

the theory of convex problems is based on convex analysis. The development

of the theory of extremal problems in our century led to a new branch of

calculus which is called nonsmooth analysis.

The �rst de�nition of the notion of an analogue of the di�erential for non-

smooth and nonconvex functions was given by F. Clarke in 1975.

Let f : IRn ! IR be a Lipschitzian function on IRn: Then, (by the well-known

theorem of Rademacher) it has a di�erential almost everywhere. The convex

hull of all limits of gradients of the function f when points tend to the given

point bx is called Clarke's subdi�erential of f at bx and denoted @Cf(bx):
The de�nition of Clarke played a great role in the development of nonsmooth

calculus. We see that this de�nition is in fact based on the idea of an ap-

proximation of f which is due to Fermat. In the thirties of our century many

mathematicians studied approximative cones of nonlinear objects. The cor-

responding cones were called contingency cones. Such cones were subject of

investigations of Bouligan, Hadamard, Kolmogorov and others. The de�ni-

tion of Clarke is closely connected with these considerations.

In the majority of situations Clarke's subdi�erential is adequate, but some-

times it is too wide. For example, this subdi�erential does not distinguish

(at the zero point) the following two functions: x ! jxj and x ! �jxj: In
both cases Clarke's subdi�erential is equal to the segment [�1; 1].

A fruitful approach to the calculus of nonsmooth mappings was proposed by

Mordukhovich and Io�e.

The approach of Mordukhovich is based on the notion of normal to a subset

of a �nite-dimensional space. He considers limits of normals to the graph of

a mapping (from IRn ! IRm). Such limits form the so-called normal cone

to the epigraph of a mapping F : IRn ! IRm at a point (bx; F (bx)). The

corresponding cones are di�erent for functions jxj and �jxj. In the �rst case

it coincides with Clarke's subdi�erential, in the second it consists only of

two points �1:

The de�nition of a subgradient of a function is the following: it is the set of
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x� 2 IRn�

such that (x�;�1) is proportional to the limits of gradients of the

function equal to the distance from a point to the epigraph of the function

under consideration.

Io�e gave another de�nition of the same notion (which can be realized in the

in�nite dimensional case). This de�nition is based on the idea of approxi-

mation (the notation of Io�e's subdi�erential is @af(bx)) :
@af(bx) = lim sup

x!bx@
�
a f(x); @�a f(x) := fx� j f 0�(bx; x) � hx�; bxig;

where f 0�(bx; x) := lim inf t!+0 t
�1(f(bx+tx)�f(bx)) is the so-called directional

derivative in sense of Hadamard.

The calculus of nonsmooth mappings and nonconvex mappings is based on

these de�nitions and corresponding notions of coderivatives.
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Chapter 2

THEORY

2.1 Lagrange principle

\On peut les r�eduire �a ce principe g�en�eral. Lors qu'une fonction de plusieurs

variables doit être un maximum ou minimum , et qu'il y a entre ces vari-

ables une ou plusieurs �equations , il su�ra d'ajouter �a la fonction propos�ee

les fonctions, qui doivent être nulles , multiplier chacune par une quantit�e

ind�etermin�ee, et la chercher ensuite le maximum ou minimum comme si les

variables �etaient ind�ependantes; les �equations qu'on a trouv�e, serviront �a

d�eterminer toutes les inconnues."

J.L.Lagrange

The honor of the creation of the general strategy for investigating extremal

problems with constraints is due to Lagrange. For all problems he met,

Lagrange used a uni�ed approach which was expressed in the words we

quoted at the epigraph to this paragraph.

Lagrange's pivotal idea can be applied to an extremely broad class of ex-

tremal problems of a diverse nature. We will try to expain this phenomenon.

The �rst sketch of this explanation is the following.

In the majority of problems where the idea of Lagrange can be realized

variables are divided into two parts. Functionals and mappings are smooth

35
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over variables of the �rst group and are convex over the second one. Such

problems we call smooth-convex problems. For such problems we prove a

necessary condition which ful�ls the generalized idea of Lagrange. Exis-

tence principles give the possibility to prove existence of Lagrange multipliers

which ful�l the generalized idea of Lagrange.

2.1.1 Lagrange principle for smooth-convex problems

Let X , Y be Banach spaces, U a topological space. Consider the problem:

f0(x)! min; F (x; u) = 0; u 2 U; (P )

where f0 : W ! IR; F : W � U ! Y; W is an open subset of X: We say

that a point (x̂; û) 2 W � U with F (x̂; û) = 0 is a strong local minimum of

the problem (P ) if there exists � > 0 and V 2 O(û;U) such that for any pair

(x; u) for which F (x; u) = 0; u 2 V and kx� bxk < � the following inequality

holds true: f(x) � f(bx):
The function

L((x; u); �; �0) := �0f0(x)+ < �; F (x; u) >

is called the Lagrange function of the problem (P). The number �0 and the

element � 2 Y � are called Lagrange multipliers.

We call the mapping F in (P ) smooth-convex at (x̂; û) if F (�; u) 2 SD(x̂; Y )

8u 2 U and F (x; U) is a convex set in Y 8x 2 W .

The mapping F is called regular at the point (x̂; û) if the space Fx(x̂; û)X

is closed in X and has �nite codimension in Y and totally regular if codim

Fx(x̂; û)X = 0 or in other words if Fx(x̂; û)X = Y .

Theorem 2.1.1 (Lagrange principle for smooth-convex problems) Let in the

problem (P ) f0 2 D(x̂) and let the mapping F be smooth-convex and regular

at (x̂; û). Then if (x̂; û) is a strong local minimum of (P ) the Lagrange

principle at (x̂; û) holds true; if F is a moreover totally regular at (x̂; û) then

�0 6= 0.

The Lagrange principle for the problem (P ) means that there exist Lagrange

multipliers � 2 Y �; �0 2 IR; �0 � 0 (not equal to zero simultaneously) such
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that in the smooth problem (where L((x; u); �; �0) = �0f0(x)+ h�; F (x; u)i)

L((x; û); �; �0)! min

\comme si les variables [x] �etaient ind�ependantes" Fermat's theorem holds

true: Lx((bx; bu); �; �0) = 0 (stationarity condition) (, �0f
0
0(bx) + (Fx(bx; bu))�

� = 0). And in the convex problem

L((x̂; u); �; �0)! min; u 2 U

the minimum principle is satis�ed

min
u2U

L((x̂; u); �; �0) = L((x̂; û); �; �0)(, h�; F (x̂; u)i � 0 8u 2 U):

Remark 2.1.2 The conditions of this version are too strong for some prob-

lem types of interest such as optimal control problems; however the result

can be suitable strengthened.

Proof: a) Denote � := Fx(x̂; û); L0 := Im� = Fx(x̂; û)X; A = F (x̂; U);

C := L0 +A. Let � : Y ! Y=L0 be a canonical projection.

There are two possibilities: (I) 0 =2 int �C (degenerate case) and (II) 0 2 int

�C (nondegenerate case). At �rst we consider (I).

The factor-space Z := Y=L0 is by the condition of regularity a �nite dimen-

sional space. From the �nite dimensional separation theorem it follows that

there exists a vector z� 2 Z� such that hz�; zi � 0 8z 2 �C (i). Denote ��

the conjugate operator �� : Z� ! Y � and � := ��(z�). It is evident that

� 6= 0 (because � is a surjective operator) and then

h�;�x+ F (x̂; u)i
def
= h��(z�);�x+ F (x̂; u)i

Id
=

hz�; �(�x+ F (x̂; u))i
(i)

� 0 8x 2 W;u 2 U:

From this inequality we obtain that ��� = 0 and < �; F (x̂; u) >� 0, i.e.

the stationarity condition with �0 = 0 and the minimum principle hold true.

The Lagrange principle in the degenerate case is proved.

Consider the nondegenerate case. If 0 2 int�C then there exist m 2 IN,

fzigmi=1, ��i > 0, 1 � i � m such that
Pm

i=1 ��izi = 0; zi = �F (x̂; vi) and cone
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fzig
m
i=1 = Z. Then by de�nition

Pm
i=1 ��iF (x̂; vi) 2 L0, hence there exists an

element �� 2 X such that ��� +
Pm

i=1 ��iF (x̂; vi) = 0 (i0). For each v0 2 U we

de�ne the map �v0 : X � IRm+1 ! Y ,

�v0(x; �) = (1�
mX
i=0

�i)F (x̂+ x; û) +
mX
i=0

�iF (x̂+ x; vi)

for all x 2 X and all � = (�0; : : : ; �m) 2 IRm+1.

From the superposition theorem it follows that �v0 2 SD((0; 0); Y ) and

�0v0(0; 0)[x;�] = �x +
Pm

i=0 �iF (x̂; vi) (ii). Assume ��x + F (x̂; �v) = 0 for

some (�x; �v) 2 W � U (iii) and " > 0. Then from (ii) we have �0�v(0; 0)[�x+

"��; 1; "��1; : : : ; "��m] = �(�x+ "��) + F (x̂; �v) + "
Pm

i=1 ��iF (x̂; vi) = 0.

From the tangent space theorem it follows (because � is a totally regular

operator!) that there exist r(�) : [�1; 1] ! X; �i(�) : [�1; 1] ! IR; 0 � i �
m; r(t) = o(t); �i(t) = o(t) such that

��v
�
t(�x+ "��)r(t); t+ �0(t); "t ��1 + �1(t); : : : ; "t ��m + �m(t)

�
= 0 8t 2 [�1; 1]:

From the condition of convexity (and using that for small t > 0, t+�0(t) > 0,

"t ��i+�i(t) > 0!) we obtain that there exists � > 0 and a family fu(t)gt2[��;�]
such that F (x̂ + t�x + "t�� + r(t); u(t)) = 0 for all t 2 [0; �]. This means that

the pair (x̂+ t�x+ "t�� + r(t); u(t)); t 2 [0; �] is admissible and (because (x̂; û)

is a local minimum) there exists �1 > 0 such that f0(x̂ + t�x + "t�� + r(t)) �
f0(x̂); 8t 2 [0; �1] ) hf 00(x̂); �xi � 0 (iv) (because " > 0 is an arbitrary

number).

We assume (iii) with �v = û(, �x 2 ker �), then from (iv) we obtain that

f 00(x̂) 2 (ker�)?. From the annihilator lemma it follows that there exists

�1 2 L�0 such that f 00(x̂)+���1 = 0 (v). Let now F (x̂; u) 2 L0. Then we can

�nd x(u) 2 X such that �x(u) + F (x̂; u) = 0 (vi) ) 0
(iv)

� hf 00(x̂); x(u)i
(v)
=

�h���1; x(u)i
Id
= �h�1;�x(u)i

(vi)
= h�1; F (x̂; u)i.

And at last from the separation theorem (we take �C = co(C [ �B), where
�B is a ball with center � 2 L0, h�1; �i > 0, which does not intersect with

fy j h�1; yi = 0g, then int �C 6= 0 and it is possible to use the separation

theorem) there exists � 2 Y � such that � jL0= �1 and h�; F (x; u)i � 0 8u (,

minimum principle). From the �rst equality we obtain h�;�xi = h�1;�xi
Id
=

h���1; xi
(v)
= �hf 00(x̂); xi 8x. This is the stationarity condition. Thus the
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Lagrange principle is proven. 2

2.2 Perturbations

In many cases it is convenient to include the primary extremal problem into

some family of problems and consider (instead of a problem f(x)! min) a

family of problems F (x; y)! min (over x) or instead of a problem f0(x)!
min; F (x) = 0 a family of problems f0(x)! min; F (x) = y and so on.

Let us consider the last situation (which is going back to Lagrange) in the

�nite dimensional case (we suppose that f0; F are continuously di�erentiable

in a neighbourhood W of 0):

f0(x)! min; F (x) = 0 (, fi(x) = 0; 1 � i � m; x 2 IRn): (P0)

This is called the primal problem and

f0(x)! min; F (x) = y (Py)

is its perturbation. According to the Lagrange principle if F 0(0)IRn = IRm

and 0 2 locmin(P0) there exists a � 2 IRm� such that

0 = Lx(0; �; 1), f 00(0) + h�; F 0(0)i = 0, f 00(0) + (F 0(0))�� = 0:

If f0 and F belong to C2(W ) then the following condition is necessary for a

local minimum of (P0) at the point 0: the operator Lxx(0; �; 1) restricted to

the linear space kerF 0(0) must be nonnegative. If f0 and F belong to C2(W )

and F (0) = 0, then the following condition is su�cient for a local minimum

of (P0) at the point 0: Lx(0; �; 1) = 0 and Lxx(0; �; 1)jkerF 0(0) > 0. If f0
and F satisfy these assumptions (su�cient for minimality) it is possible to

construct a family of extremals depending on y. More precisely there exists a

smooth mapping y ! (x(y); �(y)) such that F (x(y)) = y;Lx(x(y); �(y); 1) =
0;Lxx(x(y); �(y); 1)jkerF 0(x(y)) > 0 (in some neighbourhood of 0IRm).

This fact follows from the implicit function theorem applied to the mapping:

(x; �)! (Lx(x; �; 1); F (x)).

This result has an in�nite dimensional generalization.
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Theorem 2.2.1 In the problem (P0) we suppose that X; Y are Banach

spaces, W 2 O (x̂; X), f0 : W ! IR, F : W ! Y , f0 2 C2(W ), F 2
C2(W;Y ); F (x̂) = 0, ImF 0(x̂) = Y and for certain Lagrange multipliers

b� 2 Y � one has Lx(bx; b�; 1) = 0; Lxx(bx; b�; 1)[h; h]� �khk2 8h 2 kerF 0(bx):
Then there exists a neighbourhood V 2 O(0; Y ) and a mapping y ! (x(y),

�(y)) of the class C1 on V such that Lx(x(y); �(y); 1) = 0; F (x(y)) = y and

for S(y)
def
= f(x(y)) the following formula holds: S 0(0) = ��(0).

Proof: This result can be extended to a wide class of smooth convex prob-

lems. For example, for the generalization of this result to problems of math-

ematical programming see the article of Burzev (Mat. Doklady T. 185, N5,

1994, 79-102).

Being applied to the simplest problem of the calculus of variations:

B(x(�); �; �) =
Z �

t0

L(t; x(t); _x(t))dt! min; x(t0) = x0; x(�) = �; (P��)

where L is a C2-function and x(�) runs over the C1-functions, we obtain the

well-known result of Weierstrass about �elds of extremals:

fx(�; �)g�2[��;�]:

We consider the S-function of this perturbation, that is, S(�; �) is the value

of the problem (P��) 8�;�. From the formula S0(y) = ��(y) we obtain that

@S(�; �)

@�
= ��(�; �) = p(�; �) = L _x(�; �; _x(� ; �; �));

where x(�; �; �) is the extremal with x(t0; �; �) = x0, which passes through

(�; �). And
@S(�;�)
@�

= d
d�

(
R �
0 Ldt + �(x(�)� �)) = L (�; �; _x(�; �; �)) - p(�; �) _x

(�; �; �)
def
= �H (�; �; p(�; �)) where H(�; �; �) is the Legendre transformation

of the function _x! L(�; �; _x) (we suppose that L is a quasi-regular integrand,

see (3.3). And as a result we obtain the Jacobi-Hamilton equation

@S(t; x)

@t
+H(t; x;

@S(t; x)

@x
) = 0:

2
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2.3 Existence, extension, relaxation

Ich bin �uberzeugt, da� es m�oglich sein wird, diese Existenzbeweise durch

einen allgemeinen Grundgedanken zu f�uhren, auf den das Dirichletsche Prin-

zip hinweist, und der uns dann vielleicht in den Stand setzen wird, der Frage

n�aherzutreten, ob nicht jedes regul�are Variations problem eine L�osung be-

sitzt, sobald hinsichtlich der gegebenen Grenzbedingungen gewisse Annahmen

- [: : :]- erf�ullt sind und n�otigenfalls der Begri� der L�osung eine sinngem�a�e

Erweiterung erf�ahrt.

D.Hilbert.

The subject we consider in this section is connected with the 20th problem

of Hilbert. Let us ask the question: does an arbitrary extremal problem have

a solution? Of course it is easy to construct counterexamples. But let us try

to understand the main idea of Hilbert which he expressed in the words of

our epigraph.

Usually (and this corresponds literally to the text of Hilbert) the 20th prob-

lem is treated in connection with the problem of boundary conditions for

elliptic equations. But I want to extend the meaning of Hilbert's word \reg-

ular": maybe (in mind) Hilbert treated this word as \natural", given by

some vital scienti�c problem. And he wanted to express the con�dence that

all such problems have solutions (maybe in some extended sense).

To begin with we discuss the question: what are the main reasons of absence

of solutions.

2.3.1 Examples of nonexistence

Let us consider some examples of the simplest problem in the calculus of

variations:

J (x(�)) =
Z
I
L(t; x(t); _x(t))dt! min; (1)

I = [0; 1]; x(0) = x0; x(1) = x1:

We have given here the functional and constraints but it is also necessary
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to de�ne the domain of the functional. In the textbooks at the beginning of

the century usually the space C1(I) of continuously di�erentiable functions

(with two topologies C1 and C which lead to the notions weak and strong

extremum) was considered. But later it was understood that it is more

fruitful to search for extrema in wider spaces.

That is the reason to consider our problem in the \widest" space W 1
1 of

absolute continuous functions x(�) such that x(�) and its derivative belong

to L1 :

W 1
1 (I) = fx(�) 2 AC(I)jx(�) 2 L1(I) and _x(�) 2 L1(I)g

with norm de�ned by kx(�)kW 1
1
(I) = kx(�)kL1(I) + k _x(�)kL1(I):

What are the reasons which prevent the existence of a solution in W 1
1 (I)?

Example 1 (Bolza: nonconvexity of the function _x ! L(t; x; _x) (i.e. non-

quasi-regularity of the integrand):

J1(x(�)) =
Z
I
(( _x2 � 1)2 + x2)dt! inf ; x(0) = x(1) = 0:

It is clear that

J1(x(�)) > 0 8x(�) 2 W 1
1 (I); x(t) 6� 0:

On the other hand

�x(t) � 0) J1(�x(�)) = 1:

But if we take the sequence

xn(t) =

Z t

0
un(�)d�; un(t) = sgn sin 2�nt; n 2 IN

it is evident that

xn(�) !
n!1

0

uniformly and at the same time

j _xn(t)j = 1 a:e:
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and consequently

J1(xn(�)) !
n!1

0:

That means that the value of the problem is equal to zero but solutions

are absent. The reason of this phenomenon is nonconvexity of the function

_x! ( _x2 � 1)2.

Example 2 (Weierstrass: not enough increasing of the integrand):

J2(x(�)) =

Z
I
t2 _x2dt! inf ; x(0) = 0; x(1) = 1:

This is a famous example of Weierstrass. By means of this example Weier-

strass explained the insu�ciency of Riemann's arguments connected with

the Dirichlet principle.

We see that

J2(x(�)) > 0 8x(�) 2 W 1
1 (I); x(0) = 0; x(1) = 1:

But if we take

xn(t) =

�
nt; 0 � t � 1=n;

1; t � 1=n;
n 2 IN

we obtain

J2(xn(�)) !
n!1

0:

And again the value of the problem is zero but solutions are absent. The

reason is absence of increasing of the integrand in the point t = 0.

Example 3 (harmonic oscillator: unboundness functional from below):

J3(x(�)) =
Z T

0
( _x2 � x2)dt! inf ; T > �; x(0) = x(T ) = 0:

Here if we consider the sequence

xn(t) = n sin(�t=T ); n 2 N;

it is easy to show that

J3(xn(�)) !
n!1

�1;
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hence solutions are absent.

Let us return to the quotation of Hilbert.

\The general principle" of the proof of the existence theorems in the calculus

of variations is without any doubt the principle of compactness. It consists

of two components semicontinuity of functionals and compactness of con-

straints. Absence of semicontinuity can sometimes be eliminated by means

of relaxation. This is based on Lebesgue's observation that the functional

J(x(�)) =
Z t1

t0

L(t; x(t); _x(t))dt

is lower semicontinuous if the function z ! L(t; x; z) is convex for all

(t; x) (L : IR2n+1 ! IR). Later it was understood that lower-semicontinuity

of such functionals is actually the same as convexity of the functions z !
L(t; x; z): This will be discussed in the next section.

Consider the problem

J(x(�)) =
Z
T
(L(t; x(t); _x(t))dt)! inf ; xj@T = � (P )

on the class of functions x(�) 2 W 1
1 (T; IR

m) where T is a bounded domain in

IRn with smooth boundary and L : IRn � IRm � IRnm ! IR:

The �rst result in this subject was obtained by Tonelli (in 1920). He proved

that in the case n = m = 1 if L 2 C2(IR3); lower-semicontinuity of the

functional J takes place i� all functions L(t; x; �) are convex. Now we give

one of the modern generalizations of this result.

Let for all p 2 [1;1] the normed space W 1
p (I) be de�ned by W 1

p (I) =

fx(�) 2 AC(I)jx(�) 2 L0(I) and _x(�) 2 Lp(I)g with norm

kx(�)kW 1
p (I)

= kx(�)kL0(I) + k _x(�)kLp(I):

Theorem 2.3.1 (Marchelini-Sbordone: about semicontinuity.) Let in the

problem (P ) T be a bounded domain in IRn with smooth boundary, let the

integrand L : IR � IRn � IRn ! IR
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satisfy the Carath�eodory condition (i. e. it is measurable as a function of t

for all (x; z) , continuous as a function of (x; z) for almost all t and satis�es

the inequalities:

0 � L(t; x; z) � '(t; jxj; jzj);

where ' is locally L1 as a function of t for all (jxj; jzj) and nondecreasing

as a function of jxj; jzj:)

Then the functional J is weakly lower-semicontinuous relatively weak conver-

gence of xn(�) to x(�) in W
1
p (I); 1 � p � 1 i� L(t; x; �) is a convex function

for almost all (t; x).

Functionals J with integrands convex as functions of z are called quasi-

regular integrands.

2.3.2 Relaxations and extensions

In 1930 N. Bogolyubov proved the following result: let in the problem (P )

n = m = 1 and let the integrand L be a smooth function, satisfying Tonelli's

condition

L(t; x; �) � C1j�j
1+� (� > 0):

Then for any function x(�) there exists a sequence (xm(�))m of continuously

di�erentiable functions (it is possible also to suppose that x(ti) = xm(ti); i =

0; 1; m 2 IN) converging to x(�) uniformly on T = [t0; t1] such that

lim
m!1

inf I(xm(�)) � ~I(x(�));

where ~I(x(�)) =
R t1
t0

~L(t; x(t); _x(t))dt and ~L is the -\convexi�cation" of L as

a function of the last argument ( i.e. ~L = L��z is the second conjugate of

z ! L(t; x; z):)

In other words the functional ~I is the lower-semicontinuous extension of the

functional I .

Similar extensions can be proved for the arbitrary problem of optimal con-

trol. For example, consider the problem (P ) in Section 1.1.3. For this

problem the extended problem has the form:Z t1

t0

L(t; x(t); _x(t))dt+ `(x(t0); x(t1))! min; _x 2 Q(t; x); ( ~P )
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where L is a quasi-regular integrand and fQ(t; s)g(t;s) is a family of convex

subsets of IRn. If Q is a continuous and compact-valued mapping we have

existence of solutions for the problem, so all such problems have a solution

in some extended sense. For the problem ( ~P ) it is possible to generalize the

concept of perturbation and to obtain an analog of the Jacobi{Hamilton{

Bellman equation.



Chapter 3

APPLICATIONS

3.1 Necessary conditions

In this section we formulate the Lagrange principle for many concrete classes

of extremal problems. Let us begin by generalizing the initial fact of the

theory of extrema.

Theorem (Fermat)

Let X be a normed space,W 2 O(x̂; X), f : W ! IR: If x̂ is a local minimun

of f and f 2 D(x̂), then

f 0(x̂) = 0:

Proof: This theorem is an immediate corollary of the de�nition of Fr�echet's

derivative and the one dimensional case of Fermat's theorem. 2

Remark 1 The �rst idea of such a result was expressed by Fermat in 1636.

Theorem 3.1.1 (Lagrange multiplier rule for mathematical programming)

Let X and Y be Banach spaces, W 2 O(x̂; X), fi : W ! IR; 0 � i � m,

F :W ! Y . If x̂ is a local minimum of the problem

f0(x)! min; fi(x) � 0; 1 � i � m; F (x) = 0 (P1)

47
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where f0 2 D(x̂), fi 2 SD(x̂) 8i 2 f1; � � � ; mg, F 2 SD(x̂) and F 0(x̂)X is a

closed subspace of Y , then the Lagrange principle for (P1) holds true. This

means that there exist Lagrange multipliers (�i)
m
i=0; � 2 Y

� not equal to zero

simultaneously, such that the following relations hold true

Lx = 0,
mX
i=0

�if
0
i(x̂) + (F 0(x̂))�� = 0 (stationarity condition);

�i � 0: 8i 2 f0; 1; � � � ; mg (nonnegativity conditions);

�ifi(x̂) = 0 8i 2 f1; � � � ; mg (condition of complementary slackness):

Proof: This theorem is an immediate corollary of Theorem 2.1.1 a) if

F 0(x̂)X = Y (it is necessary to de�ne F(x; u) = (f1(x) + u1; : : : ; fm(x) +

um; F (x)), F : X � IRm
+ ! IRm� Y and to use of the lemma on closedness).

If F 0(x̂)X is a proper subspace in Y , then there exists a nontrivial � 2 Y �,
� 2 (ImF 0(x̂))?; this leads to the Lagrange principle with �0 = � � �= �m = 0.

2

Remark 2 This result (for the �nite dimensional case and for equality con-

straints) was formulated by Lagrange (1797, see the epigraph to the previous

chapter). The in�nite dimensional version of Lagrange's multiplier rule is

due to Lyusternik (1934), Graves and others. Problems with inequalities in

�nite dimensional cases were considered by Karush (1939), John (1948), and

others.

Let us now consider problems of the calculus of variations.

3.1.1 Necessary conditions in the calculus of variations

Theorem 3.1.2 (Necessary conditions in unconstrained Bolza problems)

Consider the Bolza problem

B(x(�)) =

Z t1

t0

L(t; x(t); _x(t))dt+ `(x(t0); x(t1))! min; (P2)

where x̂(�) 2 C1([t0; t1]; IR
n), W 2 O(f(t; x̂(t); _̂x(t))jt 2 [t0; t1]g; IR

2n+1), L 2
C1(W ), V 2 O((x̂(t0); x̂(t1)); IR

2n), ` 2 C1(V ). If x̂(�) is a local minimum
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of (P2) in C
1([t0; t1]; IR

n), then the Euler equation

�
d

dt
bL _x(t) + bLx(t) = 0; 8t 2 [t0; t1]

and the transversality conditions

bL _x(ti) = (�1)i b̀i; i = 0; 1 (b̀i := `x(ti)(x̂(t0); x̂(t1)))

hold true. (bL _x(t) = bL _x(t; x̂(t); _̂x(t)) and so on).

Proof: Let us prove the theorem in the case n = 1 (the general case is

analogous). From Fermat's theorem we obtain that

B0(x̂(�)) = 0)
Z t1

t0

(a(t)x(t) + b(t) _x(t))dt+ b̀
0x(t0) + b̀

1x(t1) = 0 8x(�);

where a(t) = bLx(t); b(t) = bL _x(t). From this equality we obtain by means of

standard methods the result of the theorem (for details see ATF). 2

Theorem 3.1.3 (Necessary conditions in Lagrange problems)

Consider problem (P3):

B0(x(�); u(�)) =
Z t1

t0

f0(t; x(t); u(t))dt+  0(x(t0); x(t1))! min;

_x(t) = '(t; x(t); u(t))

Bi(x(�); u(�)) =

=

Z t1

t0

fi (t; x(t); u(t))dt+  i (x(t0); x(t1))

(
� 0; 1 � i � m0

= 0; m0+ 1 � i � m;

where fi : W ! IR; ' : W ! IRn;  i : V ! IR, W is a neighbourhood of

the graph f(t; x̂(t); û(t))gjt 2 [t0; t1]g in IR� IRn� IRr and V is a neighbour-

hood of the point (x̂(t0); x̂(t1)) in IR2n, where x̂(�) 2 C1([t0; t1]; IR
n); û(�) 2

C([t0; t1]; IR
r). If (x̂(�); û(�)) is a local minimum of (P3) in C

1([t0; t1]; IR
n)�

C([t0; t1]; IR
r), then the Lagrange principle holds true. This means that there
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exists Lagrange multipliers (�i)
m
i=0 in IR, p(�) 2 C1([t0; t1]; IR

n), not all zero,

such that �i � 0, 0 � i � m0, �iBi(x̂(�); û(�)) = 0; 1 � i � m0,

�
d

dt
bL _x(t) + bLx(t) = 0; 8t 2 [to; t1];

bLu(t) = 0 8t 2 [t0; t1];bL _x(ti) = (�1)i b̀i; i = 0; 1;

where

L(t; x; u; _x) = hp(t); _x� '(t; x; u)i+
mX
i=0

�ifi(t; x; u);

and

`(x(t0); x(t1)) =
mX
i=1

�i i(x(t0); x(t1)):

Proof: This result is a corollary of Theorem 3.1.2. It is necessary to use

the existence theorem for linear di�erential equations (from this theorem

it follows that the mapping (x(�); u(�))! _x(t) � '(t; x(t); u(t)) is a totally

regular mapping) and the lemma on closedness (from which it follows that

the mapping F (x(�); u(�); v) = (B1+ v1; : : : ;Bm0 + vm0 ;Bm0+1; : : : ;Bm; _x�')
is regular) and at last it is necessary to apply Theorem 3.1.2. 2

Remark 3 The problem (P3) is called a Lagrange problem in Pontryagin's

form. The Lagrange principle for such problems was deduced by Lagrange in

his works devoted to classical mechanics. It was proved by Mayer, Hilbert,

and many other mathematicians. From theorem 3.1.3 most classical results

quoted in the majority of books on calculus of variations follow. For example,

Euler equations for the simplest problem of calculus of variations (1744),

isoperimetrical problems (1744), problems with higher derivatives (Euler-

Poisson equation), and so on.

Theorem 3.1.4 (Lagrange principle for Lyapunov's problems)

Consider problem (P4)

J0(u(�)) + '0(�)! min;

Ji(u(�)) + 'i(�) � 0; 1 � i � m0
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Ji(u(�)) + 'i(�) = 0; m0 + 1 � i � m; � 2 A; u(t) 2 U 8t 2 �;

where Ji(u(�)) =
R
� fi(t; u(t))dt, � = [t0; t1] � IR, fi : IR � IRr ! IRn

are continuous functions, 'i : � ! IR convex functions for 1 � i � m0 and

a�ne functions for m0 + 1 � i � m, de�ned on the linear space �, A is a

convex set and U is an arbitrary set in IRr, u(�) is a measurable function on

� such that t! fi(t; u(t)) 2 L1(�), u(t) 2 Ua.e.. If (û(�); �̂) is an absolute

minimum in (P4), then there exist Lagrange multipliers f�ig
m
i=0, not all zero,

such that

�i � 0; 0 � i � m0;

�i(Fi(û(�)) + 'i(b�)) = 0; 1 � i � m0;

min
u2U

mX
i=0

�ifi(t; u) =
mX
i=0

�ifi(t; û(t)) a.e.;

min
�2A

mX
i=0

�i'i(�) =
mX
i=0

�i'i(b�):
Proof: This result follows directly from Theorem 2.1.1 if we use Lyapunov's

theorem (for details see [ATF]). 2

Remark 4 In the case Ji = 0 for all i we obtain the Kuhn-Tucker theorem

(1951) for convex programming. Moreover the Lagrange principle for optimal

control problems which are linear in the phase coordinate:

B0(x(�); u(�)) =! min;

Bi(x(�); u(�))� 0; 1 � i � m0;

Bi(x(�); u(�)) = 0; m0 + 1 � i � m;

_x = A(t)x+ F (t; u(t)); u(t) 2 U 8t 2 �;

where

Bi(x(�); u(�)) =
Z t1

t0

(hai(t); x(t)i+ fi(t; u(t)))dt+ h
i0; x(t0)i+ h
i1; x(t)i;

can be reduced to theorem 3.1.4 (see [ATF]).
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Theorem 3.1.5 (Lagrange principle for the problem of optimal control with

distributed parameters)

Consider the problem

B0(x(�); u(�))! min;

Bi(x(�); u(�))� 0 (1 � i � m0) = 0 (m0 + 1 � i � m);

x(t) =

Z
T
K(t; �)'(�; x(�); u(�))d�; u(t) 2 U; (P5)

T is an open set in IRn with smooth boundary,

Bi(x(�); u(�)) =

Z
T
fi(t; x(t); u(t))dt; 0 � i � m;

fi : W ! IR; functions 2 C1(W ) in x and continuous in all arguments,

where W is a neighbourhood of the graph ft; x̂(t); û(t))jt 2 Tg. The opera-

tor F(x(�); u(�)) = x(t) �
R
T K(t; �)'(�; x(�); û(�))d� is a regular operator.

Then, if (x̂(�); û(�)) is a local minimum in the space C1(T; IRn) � C(T; IRr)

the Lagrange principle holds true.

Proof: We will not prove this result in its general form, but only in the

simplest case of the problem of optimal control:Z t1

t0

g(t; x(t); u(t))dt! min;

_x(t) = '(t; x(t); u(t)); x(t0) = x0;

u(t) 2 U (P 05)

In this case if (x̂(�); û(�)) is a local minimum of (P 05) there exists an absolutely

continuous vector function p(�) : [t0; t1] ! IRn such that p(t1) = 0, � _p(t) =

('X(t; x̂(t); û(t)))
�p(t) � gX(t; x̂(t); û(t)) and maxu2Uhp(t); '(t; x̂(t); u)i =

hp(t); '(t; x̂(t); û(t)i a.e. (Pontrijagin's maximum principle).

Theorem 3.1.5 follows from a strengthened version of Theorem 2.1.1. To

do this one has to verify weak approximative convexity - a weak convexity

condition. This is done by means of the following construction of mixing

of control functions (we explain it with a one-dimensional example, where

T = [0; 1]). Given 0 < � < 1, n 2 IN, ui(�) i = 1; 2 measurable functions.

We put

un(t; �) =

�
u1(t); t 2 [

n�1
i=0 �1i;

u2(t); t 2 [
n�1
i=0 �2i;

where �1i = [ i
n
; i+�

n
], �2i = [ i+�

n
; i+1

n
]. 2
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3.2 Solutions of special problems

We begin from some problems which we discussed in the introduction.

3.2.1 Classical isoperimetrical problem

Among all closed plane curves of a given length �nd one that encloses the

largest area.

A solution of this problem being formulated as a problem of optimal control

see in ATF. Here we solve it on the base of convex analysis. It is easy to

show that the solution must be considered only among convex �gures.

Let A be a plane convex �gure, l(A) the perimeter of A, S(A) the area of

A, (BM) Brunn-Minkowski's inequality, (S) Steiner's formula, (B) the unit

ball in IR2. Then

�t2 + tl(A) + S(A)
(S)
= S(A+ tB)

(BM)

� (S1=2(A) + S1=2(A))2
Id
=

S(A) + 2S1=2(A)�1=2+ �t2 ) l2(A)=4� � S(A);

and if A = B then l2(B) = 4�S(A): 2

3.2.2 Generalized problem of Euclid

In the \Elements" of Euclid a solution of an extremal problem about an

inscribed triangle is given. It can be formalized as follows:

f(x) = x(a� x)! max; 0 � x � a:

Fermat illustrated his method (in a letter to Roberval) solving a problem

with the same formalization (�nd the right triangle of maximum area with a

given sum of its sides). The problem of minimization of a quadratic function

played a great role in the history of mathematics. Consider the following

general situation:
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Let H be a Hilbert space, A : H ! H a symmetric operator for which there

exists � > 0 with hAx; xi � �hx; xi for all x 2 H. Consider the convex

problem without constraints:

hAx; xi

2
� hb; xi ! min :

From Fermat's theorem it follows that each solution of the problem is sta-

tionary; one readily sees that there is a unique stationary point x̂ = A�1b.

One can �nish the analysis of the problem in two di�erent ways. Either, one

remarks that by the compactness principle a solution exists. Or one remarks

that this is a convex problem and so each stationary point is a solution.

3.2.3 The problem of Appolonius

Find the distance between a given point and a given ellipsoid in IRn:

Formalization:

f0(x) =
nX
i=1

(xi � �i)
2 ! min; f1(x) =

nX
i=1

(xi=ai)
2 � 1:

From the compactness principle it follows that a solution of the problem

exists. This problem is a smooth (and also a convex) problem of mathemat-

ical programming. The Lagrange principle leads to the equations xi � �i +

�xi=a
2
i = 0 ) xi = �ia

2
i =(a

2
i + �) (i). Hence it is necessary to solve the

equation

1 =
nX
i=1

(xi=ai)
2 =

nX
i=1

�2i a
2
i =(a

2
i + �)2:

This gives, using (i), the - unique - solution of the problem.

3.2.4 The brachistochrone problem

Introduce an (x; y)-coordinate system in a vertical plane such that the x-

axis is horizontal and the y-axis is directed downward. According to Galileo's

law the velocity ds=dt of a particle is equal to
p
2gy. We can now determine
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the time of reaching the endpoint if the particle slides along the graph of a

function y(�) from beginpoint (x0; y0) to endpoint (x1; y1):

T (y(�)) =
1

p
2g

Z x1

x0

p
1 + y02(x)
p
y(x)

dx:

We obtain the following formalization of the problem:

T (y(�))! min; y(xi) = yi; i = 1; 2:

It is the simplest problem of the calculus of variations. The Lagrange prin-

ciple in this case consists of the Euler equation. The integrand does not

contain the independent variable x, hence the Euler equation has the inte-

gral y(1 + y02) = C: Solving this di�erential equation we obtain the family

of cycloids: x = C
2 (� � sin �) + C1; y = C

2 (1 � cos �); 0 � � � 2�: It

is easy to show that if y1 < y2 then there exists a unique cycloid with the

given boundary conditions and that a family of cycloids covers the strip

x1 � x � x2; y � 0: It follows from this fact and from Weierstrass formula

(see IT, p.313), that the cycloid with given boundary conditions is the solu-

tion of the problem. 2

3.2.5 Newton's aerodynamical problem.

About the formalization of this problem and the history of its solution see

ATF. One of the formalizations is the following:

Z T

0

tdt

1 + u2
! min; x(0) = 0; x(T ) = �; u � 0

(T and � are �xed).

This problem is a standard problem of optimal control. Applying the La-

grange principle we obtain:

L =

Z T

o
Ldt+ �0x(0) + �1(x(T )� �); L =

�0t

1 + u2
+ p( _x� u):

The Euler equation gives p = const = p0, the minimum principle consists of

the inequality �0t
1+u2 � p0u �

�0t

1+bu2(t) � p0bu(t) (i) (bu(�) is an optimal control

function). It is easy to show that �0 6= 0: If �0 = 1 then from (i) it follows
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that p0 < 0 and bu(t) is identically zero on the segment [0;�2p0]. On the

segment [�2p0; T ] we �nd bu(t) from the equation �p0 =
2ut

(1+u2)2
: Hence we

obtain the following family of curves which satisfy the necessary conditions:

x̂(t; p0) = 0; t 2 [0;�2p0]; x̂(t; p0) = (�p0=2)(lnu+ u2 + 3=4u4) + 7=8p0;

t = (�p0=2)(1=u+ 2u+ u3); t � �2p0:

It is easy to show that there exists only one curve from the family which

satis�es the given boundary conditions. This curve is the solution of the

problem because in Lyapunov-type problems the necessary conditions are

su�cient ones. 2
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