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Abstract

While the employment effects of minimum wages are usually reported to be small

(suggesting low substitutability between skill types), direct estimates suggest a much

larger degree of substitutability. This paper argues that this paradox is largely due to a

bias induced by the aggregation of skill types into broad categories. An assignment model

is applied where skilled workers have a comparative advantage in complex jobs. The

implied pattern of substitutability reveals the sources of the bias. Estimation results for

the United States show elasticities of complementarity to be underestimated by up to a

factor 2.5. The methods laid out can likewise be applied to other markets where different

quality types are close substitutes, like the housing market.
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1  Introduction

There is a large body of literature on the employment effects of minimum wages. No

matter whether one refers to the research on the seventies, reviewed extensively in

Brown, Gillroy and Kohen (1982), or to the more controversial evidence on the nineties

collected by Card and Krueger (1995), the general conclusion is that minimum wages

have at best a limited impact on employment. On the other hand, the plots presented in

DiNardo, Fortin and Lemieux (1996) and more recent evidence by Lee (1998) and

Teulings (1998) suggest that reduction of real minimum wages contributed substantially

to the rise in wage inequality in the eighties. For labor economists, these conclusions

should be puzzling. Most of our estimates suggest elasticities of complementarity to be

small, see Topel (1994) or see Hamermesh (1993) for an overview: changes in the supply

of a skill type have only a restricted impact on wages for other skill types. However, the

limited employment effect of minimum wages the large effects on relative wages can only

be reconciled within a standard equilibrium model of the labor market when elasticities

of complementarity are large (in absolute value). An increase in the minimum wage

would then produce a slight reduction in low-skilled employment and, as a result of it,

a large wage increase for the low-skilled workers who remain employed. Let us refer to

this inconsistency in our present understanding of labor demand as the minimum wage

paradox.

The main thesis of this paper is that this paradox is due to the aggregation of workers in

broader skill groups. If types of labor were properly disaggregated, our estimates of

elasticities of complementarity would be much larger, in some cases even up to a factor

2.5. My approach is not to classify workers in skill groups at all, but to use a continuous

classification with an infinite number of skill categories. The basic idea of this approach

has been set out previously in Teulings (1995a). There, I analyzed a model where both

workers and jobs differ along a single dimension: workers are attributed some level of

skill and jobs some level of complexity. Both the level of skill and of complexity vary

continuously on (some subset of) the real domain. The labor market allots worker types
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to job types. Each job type produces a commodity that is traded on commodity markets.

Hence, there are two types of substitution in this model, within-job-between-worker

substitution on the labor market and between-job substitution on the commodity market.

Types of workers are assumed to be perfect substitutes within a job type. However,

because highly skilled workers have a comparative advantage in complex jobs, workers

are not perfect substitutes across jobs. In this world, workers are allotted to job types

according to their skill level, the most highly skilled worker to the most complex job.

Substitution is driven by the spill-over effects of excess supplies and demands from

neighboring markets, for example, all workers moving to a somewhat less complex job

in order to create vacancies in the most complex jobs for a bunch of Harvard graduates

entering the market.

The notion that this type of model is a good instrument for analyzing the substitutability

of worker types is present already in Teulings (1995a). However, the issue is not

addressed explicitly there. One of the problems is the assumption of perfect substitution

of worker types within a job type. Elasticities of substitution and complementarity are

derived from the second derivative of the cost and production functions for the economy

as a whole. With perfect substitution, the cost function for a job type is not differentiable,

since iso-cost curves are kinked. This problem is resolved in this paper by introducing

slight imperfections in the degree of substitutability within a job type. Perfect substitution

is viewed as the limiting case.

This approach to deriving elasticities of substitution and complementarity produces a

number of intuitively appealing results. The elasticities of substitution exhibit the

distance-dependent elasticity of substitution (DIDES) structure: the larger the distance in

terms of skill between two worker types, the smaller will be the elasticity of substitution.

These elasticities are used to calculate the elasticities of complementarity by matrix

inversion. The elasticities of complementarity will peak sharply (in absolute value) at the

own type. This peak yields the large aggregation bias, since it will be smoothed out when

estimation is based on broad skill categories.

A practical advantage of the assumption of perfect within-job substitution is that it yields
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     1This requires the absense of mass points in the distribution of product demand, see
Teulings (1995a).

a one-to-one correspondence between skills and complexities: each skill type is employed

in single job type and vice versa. The economic rationale for this result is that with

perfect substitution within a job type, the productivity of each worker type is independent

of the number of workers of other types employed in that job type. Employers will

therefore hire only the worker type with the lowest cost per efficiency unit of labor. As

long as this cost curve has a global minimum,1 the one-to-one correspondence applies. 

With imperfect substitution, this result breaks down: several types of workers will be

employed in a single job type. By hiring more workers of the one type, the (marginal)

productivity of other types of workers will rise. Hence, employers will hire workers of

all types, each in such a ratio that its marginal productivity is equal to its wage. Market

equilibrium will therefore be described by a simultaneous distribution of skills and

complexities.

As a reminder for the reader, the paper starts with a short discussion of the model with

perfect within-job-between-worker substitution in Section 2. Section 3 develops the

general model with imperfect substitution. In Section 4, the elasticities of substitution and

complementarity are derived. The empirical application of these analytical results requires

estimates of the main parameters of the model. Section 5 discusses the estimation

procedure and its main results. Estimation refers to the United States economy for 4 years

(1973, 1979, 1985 and 1990), viewing the four major regions as separate economies.

Since the procedure is basically the same as in Teulings (1995a), the discussion is

confined to the main lines. Section 6 puts my ideas to the test. The elasticities of

complementarity estimated on the basis of DIDES/comparative advantage model are

comparable to previous estimates, for example those by Altonji and Card (1991) based

on the influx of migrants or the economy-wide estimates by Topel (1994). The analysis

reveals a large aggregation bias. The surplus value of the model comes to the surface most

clearly in an analysis of the effects of the decline in the real minimum wage between

1979 and 1990. The minimum wage paradox is largely resolved. A counterfactual
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     2This assumption is simply a matter of the presentation of the model. Nothing
would change in the equations if the assumption were relaxed.

calculation for 1990 where the minimum wage for 1979 applies reveals that most of the

increase in wage inequality can be explained by the decline in the minimum. Section 7

concludes.

2  The model with perfect within-job substitution

Four assumptions are crucial for the model with perfect within-job substitution:

i) single dimensionality for workers: workers can be classified by a single index

referred to as the skill; let s denote this skill index: s can take any real value;

ii) single dimensionality for jobs: like workers, jobs can be classified by a single

index referred to as job complexity; let c denote job complexity; c can take any

positive value;

iii) absolute advantage: let exp[ g(s,c) ] denote the productivity of worker type s in

job type c; better skilled workers will be more productive than less skilled,

irrespective of job complexity: gs(s,c) > 0;

iv) comparative advantage: better skilled workers have a comparative advantage in

complex jobs; their productivity ratio increases with complexity: gsc(s,c) > 0.

Types of labor are traded on labor markets. Each job type produces a commodity that is

traded on commodity markets. Firms maximize profits. For the sake of simplicity, each

firm is assumed to offer jobs at a single level of complexity.2 All markets are perfectly

competitive. Hence, firms face a zero profit constraint. The amount of leisure and job

characteristics do not enter into the utility function of the worker. Hence, workers simply

maximize their income from a fixed supply of labor and wages do not incorporate

compensating differentials. The specification above implies perfect substitution of worker

types within a job type; if not, the (marginal) productivity of type s in job type c would

be dependent on the number of workers of other skill types employed in that job type. 
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A convenient specification of the function g(s,c) is: g(s,c) = s c. This specification is

flexible. Since the scales of measurement of s and c have not yet been defined, it covers

the whole class of functions that is multiplicatively separable, g(s,c) = g1(s) g2(c), by a

suitable transform of s and c. Let w(s) denote the log market wage of type s. A firm

offering of a job of complexity c will minimize its cost per efficiency unit of labor, exp[

w(s) -g(s,c) ]. The first-order condition is:

w'(s) = c.

Since c > 0 by assumption, w'(s) > 0. This is the consequence of absolute advantage.

Higher s-types are more productive in any job type, so they will earn higher wages. This

first-order condition establishes a correspondence between the job type c to which a

particular s type is allotted in a particular economy and the return to skill w'(s) in that

economy. This correspondence will be the starting point for estimation, in particular for

the identification of the scale of measurement of s and c.

Let c(s) denote the complexity c of the firm employing type s workers in market

equilibrium. Since the first-order condition applies for all s, substitution of c by c(s) in

the first order condition and differentiation with respect to s yields:

w"(s) = c'(s) > 0.

where the inequality is due to the second-order condition of the firm. That c'(s) is positive

is the consequence of comparative advantage: better skilled workers are allotted to more

complex jobs.

The situation is depicted in graph form in Figure 1. The firm chooses its optimal worker

type s such that the relative cost of hiring an additional unit of skill, w'(s), is equal to the

relative productivity gain c. The second-order condition requires the relative cost of hiring

even better skilled workers to be increasing. Figure 1 reveals the optimal skill type for a

more complex job (a higher c) to be higher.

Figure 1 gives an intuition for a result which will turn out to be crucial: the degree of

economy-wide substitutability between worker types is inversely related to w"(s). The

higher w"(s), the more curved is the wage function at the point of tangency. By the

equality w"(s) = c'(s), w"(s) can be interpreted as a measure of the dispersion of job
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     3Weak instead of strict negativity applies only for the exponential and the uniform
distribution. Furthermore, for the limiting case of perfect within-job-between-skill-

complexity: the greater w"(s), the greater the job heterogeneity. The greater the job

heterogeneity, the more limited will be the scope for substitution. In the extreme case,

w"(s) = 0, all jobs have the same complexity and worker types will be perfectly

substitutable by the assumption of perfect within-job substitution.

Whether or not there is imperfect within-job substitution is largely an issue of the

coarseness of the classification of jobs. To see this, consider the following thought

experiment. Let the imperfection in the substitution be due to the fact that an employer

wants to have both experienced and inexperienced workers doing a particular job, so that

the experienced workers can transfer their skills to the inexperienced workers. This

imperfection in the degree of substitution would be resolved by defining the transfer of

skills as a separate job type. Hence, a model with perfect within-job substitution is fully

consistent with both economic theory and our empirical knowledge, in particular when

we allow for an infinite number of job types, as we do here. The only reason for

considering the model with imperfect substitution is that it enables the calculation of

economy-wide elasticities of substitution and complementarity. 

3  The model with imperfect within-job substitution

3.1  Assumptions

On top of the assumptions discussed in Section 2, the model with imperfect within-job

substitution requires some additional notation and assumptions. Without loss of genera-

lity, total labor supply is normalized to unity. The logarithm of the density function of s,

representing its distribution among labor supply, is denoted as e(s). It is exogenous by the

above assumptions. e(.) is assumed to be twice differentiable. Furthermore, it is assumed

that e"(.) < 0. This is a very weak assumption, which is satisfied for almost all standard

distributions.3
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type substitution, the assumption is superfluous.

     4MacDonald (1982) was the first to use the concept of a CES production function
with an infinite number of inputs. He considered the problem of a firm that has to allot
its workforce, made up of two types of workers, to an infinite number of 'tasks' (the
equivalent of 'jobs' in this paper) which together produce a single output. The
contribution of each task to output is governed by this CES function, analogous to
equation (3) below.
The present model generalizes Macdonald's model in two respects. First, it considers
an infinite number of worker types instead of just two. Secondly, the elasticity of
substitution between worker types is infinite in Macdonald's model, while it can take
any value in the present model: see equation (2) where the same type of CES function
is applied, but now to the relation between the inputs of worker types and the output
of a job type.

e )(s)'E fs(s,c)*s

e ))(s)'E fss(s,c)*s%V fs(s,c)*s
(1)

By the definition of exp[f(.)] as a density we have:

*0
4*-4

4 exp[ f(s,c) ] ds dc = 1.

e(.) is related to f(.) by:

e(s) = ln[ *0
4 exp[ f(s,c) ] dc ].

For future reference, when f(s,c) is twice differentiable, the first two derivatives of e(s)

are given by:

where E[.] and V[.] denote the expectation and the variance operator and where

subscripts refer to the relevant partial derivatives. Because e"(.) < 0 by assumption and

a variance is always positive: E[fss(s,c)*s] < 0. 

The output of a firm offering jobs of complexity c is governed by a CES production

function for a continuously changing pattern of factors of production:4



8

ó&1

ó
y(c)' ln m

4

&4

expg(s,c)% ó&1

ó
f(s,c) ds (2)

ç&1

ç
x' lnm

4

0

exph(c)% ç&1

ç
y(c) dc (3)

where:

f(s,c) = the logarithm of the joint density function of worker type s and job type c,

its shape will be determined endogenously;

g(s,c) = a function representing the technology for the production in job type c;

y(c) = the logarithm of the output of job type c;

ó = the within-job-between-skill elasticity of substitution; ó > 1.

The specification implies that production technology is characterized by constant returns

to scale. As in Section 2, g(.) is specified as:

g(s,c) = s c.

In the model with imperfect substitution, however, the interpretation of g(.) as

representing the productivity of type s in job c is less adequate, as the (marginal)

productivity of each worker type depends on the share of all other worker types in

production. 

Consumption is the only purpose of production. The utility functions of all consumers are

identical and homothetic. The demand for products of various complexity depends

therefore only on total income, not on its distribution. The utility function reads as:

where:

x = the logarithm of total consumption;

h(c) = a differentiable function measuring the preference of consumers for product

type c;

ç = the between-job elasticity of substitution, ç $ 0.
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f(s,c)'ó [sc&w(s)%p(c)]% y(c) (4)

w )(s)' c(s)& 1

ó
e )(s) (5)

3.2  Market equilibrium

Competition equates the wage rates for identical workers across job types. A firm of type

c chooses the optimal skill composition of its work force by maximizing its output subject

to its wage bill and to the market wages for each skill type. This is an iso-perimetric

problem (see MacDonald 1982). Adding up for all c-type firms, the solution reads: 

where:

w(s) = the logarithm of the equilibrium wage for type s;

p(c) = the logarithm of the price of products of job type c.

Equation (4) is a standard CES demand function. An increase of w(s) by one percent

would reduce labor demand by c-type firms for skill type s by ó percent. w(s), p(c), f(s,c)

and y(c) can be shown to be differentiable in market equilibrium.

Equation (4) holds identically for all s. Differentiating (4) with respect to s, taking the

expectation with respect to c and applying equation (1) yields:

where:

c(s) / E[c*s].

Equation (5) is central to the estimation of the model, as it postulates a relation between

job complexity and the return to skill. In the special case ó = 4, equation (5) reduces to:

w'(s) = c(s). This is the model of Section 2. c(s) measures the relative scarcity of skill: the

higher c(s) for a given s, the more scarce is skill. When the supply of highly skilled

workers decreases, an average skill type ends up in a more complex job. The other way

around, when the demand in highly complex job types goes up, the same average skill

type will also end up in a more complex job. In both cases, the return to skill goes up.
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     5Some discussants suggested that c(s) is analogous to a demand shifter and e'(s) to
a supply shifter, as in the standard approach of e.g. Katz and Murphy (1992), and 
hence that both should be included. This interpretation is mistaken. c(s) is affected by
both supply and demand shifts. The best way to see the difference is to note that c(s)
measures the type of job, where the usual demand shifters measure the number of jobs.
There is therefore a difference in dimension. 

     6px can either be interpreted as the price of a composite commodity composed of all
c-types or as the price deflator of income. The choice between both interpretations has
no implications for the subsequent results.

y(c)' ç[h(c)%px&p(c)]% x (6)

Testing whether ó = 4 or ó is finite can be done by a simple exclusion restriction of e'(s).5

Such tests are reported in Teulings (1995b); perfect substitution could not be rejected.

By differentiating equation (4) with respect to s twice we get:

fss(s,c) = - ó w"(s).

fss(s,c) does not depend on c and is therefore equal to its expectation. By equation (1) and

by the assumption that e"(s) < 0 we have: w"(s) > 0. 

The demand for products of various complexity follows again from solving an iso-

perimetric problem, analogous to equation (4). Its solution yields a CES demand function

for the products of job type c:

where:

px = the logarithm of the price of a unit of consumption.6

4  Elasticities of substitution and complementarity

4.1 General approach

Elasticities of substitution measure the effect of increasing the price of one input on the

demand for other inputs. They can be most easily derived from the first derivative of the



11

     7I assume constant returns to scale to be able to normalize the level of output to
unity and to suppress it from the subsequent notation.

p(c)' 1

1&ó
ln m

4

&4

expó sc% (1&ó)w(s) ds (7)

cost function: CP[P] / X[P], where C[P] is the cost as a function of a vector of input

prices P (vectors will be underlined) per unit of output7, where CP[P] is the vector of first

derivatives, and where X[P] denotes the vector of input demands. The second derivatives

give the effect of price increases on input demands: dX[P]/dP'= CPP' (bolds denote

matrices). The elasticities of substitution can be derived from this matrix by a

straightforward normalization.

Elasticities of complementarity, on the other hand, measure the effect of increasing the

supply of one input on the prices of all other inputs. These can be most easily derived

from the production function: FX[X] / P[X], where F[X] is the production  function and

P[X] the vector of input prices. Taking the second derivative yields the effect of supply

increases on input prices: dP[X]/dX' = FXX. 

Getting from elasticities of substitution to elasticities of complementarity requires

therefore matrix inversion, which can be quite cumbersome for large matrices. However,

in our case, the economy-wide cost function can be derived easily, but not the production

function. If we are interested in the elasticities of complementarity there is therefore no

alternative to first calculating the elasticities of substitution from the cost function and

then inverting the matrix to get the elasticities of complementarity.

4.2 Elasticities of substitution

The log cost function per unit of production in job type c and per unit of consumption

follows from substitution of the demand functions (4) and (6) for f(s,c) and y(c) in the

production and utility functions (2) and (3):

aand:
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     8Let H be the matrix of elasticities of substitution (ç ij being its {i,j}-th element).
The standard expression for H is:
H = C CP

-1 CPP' CP
-1, 

where CP is a diagonal matrix with: DIAG[CP] = CP (other symbols have been defined
in Section 4.1). The difference between this and equation (9) is that there the log of
factor prices is the arguments of the log cost function.

     9The subsequent results can also be derived by applying a variational argument,
e.g. Chiang (1992), which is both easier and more standard mathematically. I
nevertheless applied this `discretization' approach since it allows the matrix inversion
required for the calculation of the elasticities of complementarity.

px'
1

1&ç
lnm

4

0

expçh(c)% (1& ç)p(c) dc (8)

ç i j, i…j' 1 %
d 2px

dw(si) dw(sj)
/

dpx

dw(si)

dpx

dw(sj)
(9)

Substitution of equation (7) for p(c) in (8) yields the log cost function per unit of

consumption directly in terms of the wages per type of worker. The calculation of the

economy-wide elasticities of substitution ç ij between workers of type si and sj is based on

the second derivative of the log cost function:8

The equation for diagonal elements reads somewhat different, but is omitted for

convenience.

As w(s) is not a variable, but a function, the derivative dpx/dw(s) is not defined. My

approach is to partition the domain of s into a large but finite number of intervals.9 The

intervals are numbered consecutively i=1,I; si denotes the boundary value between

interval i and interval i+1 and wi denotes the wage earned by workers whose s falls within

the i-th interval. The integral in (7) is replaced by the summation:

Ói=1
I [si - si-1] exp[ósic + (1-ó)wi].

Written in this way, the consumption price px is a function of the log price wi of the inputs
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ç i j,i…j' ç % (ó& ç)
m
4

0

expx(c)%a(si,c)%a(sj,c) dc

m
4

0

expx(c)%a(si,c)dc m
4

0

expx(c)%a(sj,

(10)

ç i j,i…j . ç % ó
ów ))(sk)

4ð
exp& v(sk)&

ów ))(sk)

4
(si& sj)

2 (11)

i=1,I. Standard methods for the calculation of elasticities of substitution and

complementarity can be applied. For large values of I, the above summation can be

approximated by the integral in (7) and w(s) for si-1< s < si converges to wi.

For the sake of convenience, we switch back to the notation based on a continuous

variation of s, keeping in mind the analogy with discrete variation. By this analogy, the

elasticities of substitution ç ij can be calculated from equation (9) as:

where:

x(c) / ç h(c) + (1-ç) [p(c) - px];

a(s,c) / ó s c + (ó-1) p(c).

By equation (6), x(c) = y(c) + p(c) - x - px. Hence, x(c) can be interpreted as the log value

share of product type c in consumption. Equation (10) is a complicated expression.

However, for ó tending to infinity, it can be simplified, as shown in Appendix 1. The

basic idea is to use second order Taylor expansions for the log integrands, e.g. in equation

(7):

ósc + (1-ó)w(s) = ós0c + (1-ó)w(s0) + (1-ó)w"(s0) (s-s0)
2 + higher order terms,

where so is defined in such a way that the first derivative is equal to zero. Since the

second derivative is negative, the contribution of higher order terms to the value of the

integral can be ignored when ó tends to infinity. Hence, we can apply the formulas for the

integration of the normal distribution. This procedure yields the following expression:

where:
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sk / (si + sj)/2;

v(s) / e(s) + w(s) - x - px.

v(s) can be interpreted as the log value share of worker type s in production.

Equation (11) yields three corollaries:

Corollary 1:

The elasticities exhibit the distance-dependent elasticity of substitution (DIDES) structure

(Teulings 1992): the greater the gap between two types of workers measured in terms of

s, the smaller is the elasticity of substitution. 

Corollary 2:

The higher the value of w"(s), the quicker the elasticity of substitution decreases with the

skill gap between worker types.

Corollary 3:

limó64 ç ij = ç, œ i, j, i … j.

The first two corollaries match the analysis in Section 2. A low-skilled worker is better

substitute for a slightly better skilled worker than for a top specialist, which is in line with

common sense observations. Increasing the wage for one skill type will induce

substitution towards the skill types "at short distance". The higher the second derivative,

the more kinked is the wage curve and the less likely it is that distant skill types will be

affected by the wage increase, see Figure 1. When w"(s) = 0, all jobs are of equal

complexity and hence the distance between skill types does not affect the elasticity of

substitution, see Section 2.

Corollary 3 is probably more surprising. It states that almost everywhere the scope for

substitution is equal to the between-job substitution ç. Within-job-between-skill type
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     10So far, the support of s was assumed to be unbounded. For the partioning used
subsequently, a bounded support is required. We can expect that ignoring the extreme
tails of the distribution of s does not affect the results much. Define: s0 = s- and:
ø  / (s+ - s-) / ( Ói=1

I [I %w"(si)]
-1 ). Then, the partioning in the text implies:

sI = s+. si - si-1 can be written as: Äs/Äi. For a large I, the trajectory of si can be
approximated by a continuous function with a well defined inverse. This first
difference can then be interpreted as a derivative. Hence: di/ds = ø -1 I %w"(s). Its integral
over the support of s must be equal to I. This yields the expression for ø  in the text.

substitution is irrelevant. The analysis in Section 2 offers a clue, see Figure 1. Increasing

w(s) for small domain (s-,s+) will increase the demand for the neighboring skill types, s-

and s+, because these types are the new points of tangency to the productivity line with

slope c, but not for skill types at greater distance. Elasticities of substitution are therefore

a meaningless concept in this kind of world. We turn therefore to the calculation of their

counterparts, the elasticities of complementarity.

4.3 Elasticities of complementarity

Due to Corollary 3, equation (11) cannot be applied for the calculation of elasticities of

complementarity when ó = 4. This is the reason why we have to consider a model with

imperfect within-job substitution. First, the bordered Hessian matrix has to be inverted

for ó < 4, and then we let ó go to infinity. The limiting matrix of elasticities of

complementarity for ó tending to infinity will be shown to be well defined, independently

of the precise value of ó.

The analysis in Section 4.2 did not require a rule for the partioning of the domain of s in

intervals. However, the analysis in this section can be simplified by the choice of a

convenient partitioning:

si - si-1 = ø  [I %w"(si)]
-1,

where:

ø  / Is-
s+%w"(s) ds

where [s-,s+] denotes the support of s;10 ø  is a weighted sum of %w"(s) and is therefore a

measure of job heterogeneity. Were ø  equal to zero, all jobs would be of the same

complexity. Note that ø  does not depend on either ó or I.
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     11The effect of: w"(sk) … w"(si) … w"(sj) is of higher order, compare similar
arguments applied in Appendix 1.

ç ij,i…j . ç %
ø ó

vk I

ó

4ð
exp& óø 2

4

i& j

I

2
(12)

Substituting the expression for si - si-1 in equation (11) yields:11

w

where:

vi / exp[v(si)](si - si-1).

vi is the value share of the i-th skill type in production. Written in this way, the elasticities

of substitution depend on two factors: i) a distance measure between two skill types based

upon the curvature of the log wage function w"(s), and: ii) the value share of each skill

type. Note that the distance measure in i) is not defined independently of market

equilibrium. Changing the distribution labor supply over s or product demand over c will

affect w(s) and hence w"(s).

The approach which involves approximating the elasticities of complementarity for case

of ó = 4 and I = 4 by the case where both parameters are set at some large but finite

values makes sense only when the matrix of these elasticities converges to a limit. We

have therefore to characterize the inverse of a matrix of an arbitrary large dimension. I do

so for the special case of ç = 0 and vi = I-1 (the latter value satisfies the constraint of the

sum of the value shares being equal to unity) in Appendix 2. This characterization

justifies the following conjecture:

Conjecture:

For large values of ó and I, for ç = 0 and vi = I-1, the elasticities of complementarity gij

converge to:
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where INDx is an indicator function being equal to unity if x is true and zero otherwise.

The index i/I refers to the same skill type si, irrespective of the choice of I, see the

definition of the partioning (mutatis mutandis the same for j/I). The elasticities of

complementarity are therefore independent of both ó and I. The implications of this

conjecture can be better understood from the following characteristics of the trajectory

of gij for a fixed j, see also Figure 2. 

i) outside the main diagonal it is governed by a second order difference equation of

the form: Ä2  gij  = -ø 2/I2, where Ä is the first difference operator;

ii) at the main diagonal it is discontinuous; the elasticities gij are therefore points on

two branches of the same parabola; at the main diagonal, both branches reach their

minimum;

iii) at the boundaries of the matrix, for i = 1 and i = I, the derivative of the parabola

is zero; together, i) and iii) determine the slope of the trajectory of both branches

of the parabola at the main diagonal;

iv) the sum of the elasticities gij over i equals zero; this determines the level of the

trajectory.

The most remarkable feature of the trajectory is its discontinuity, causing the deep trough

at main diagonal. The negative effect of an increase in the supply of a particular skill type

on the wages of other skill types declines quickly with the skill distance. As discussed

before, ø  measures the dispersion of job complexity. The larger this parameter, the greater

the effects of changes in supply and demand on relative wages. When all jobs are of equal

complexity (ø  = 0), the wage of type s is independent of supply and demand. The

economic rationale is that, within this single job type, skill types are perfect substitutes

(for: ó = 4), differing only in their level of productivity.

The proofs in Appendix 2 reveal the second differential of the trajectory of gij to be
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     12See in particular equation (20).

     13See in particular characteristic ii) after Lemma 1 and how this would be changed
by allowing: vi … I-1.

independent of ó even when ó is finite.12  In the more general case where the value shares

vi are not evenly distributed across i, the second derivative is inversely related to vi.
13 

Figure 2 is helpful for understanding the importance of the aggregation bias in the

estimation of elasticities of complementarity. These elasticities peak sharply at the main

diagonal. When skill types are aggregated in a small number of broad categories, as is

usually done for estimation, the elasticities at short skill distances will be greatly

underestimated (in absolute value), because the trough in the elasticities is smoothed out.

This "smoothing out of the trough" has most impact when analyzing the effect of

minimum wages, which explains the minimum wage paradox. An increase in the

minimum wage is equivalent to a reduction in effective labor supply at the lowest skill

level employed. The effect on wages should therefore be calculated from the elasticities

of complementarity for the least skilled workers, for i = 1 so to speak. This will

necessarily be at the lower bound of a broad skill category, where the bias is at the

maximum. The problem is aggravated by the fact that the diagonal elements reach a

minimum for both extreme skill types, i = 1 and i = I, as follows from the trajectory along

the main diagonal: 

ø 2 [(i/I) - (i/I)2 - 1/3].

The economic rationale for this conclusion is that the extreme types have suitable

substitutes available only from one side, while for intermediate skill types both lower and

higher skill types are good substitutes. Hence, the effect of aggregation will hurt most in

the lowest and in the highest skill category.
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5  Estimation

5.1  Methodology

In order to get an impression of the numerical implications of the previous analysis,

estimates for the basic parameters of the model are required. Estimation refers to

parameters of the labor market only, in effect equation (5). The between-job elasticity of

substitution ç is not estimated. My approach is to make simulations for some values of

ç, just to gain an impression of their impact on the results. 

The estimation procedure is basically the same as in Teulings (1995a), with two

improvements. I shall therefore discuss the main lines only in order to give the reader an

idea. Likewise, I shall report only the main results. The reader interested in further details

should consult Teulings (1995b). The idea is to estimate the model on data for individuals

simultaneously for a number of economies, assuming the production technology within

each job type to be the same across these economies. Where a number of papers suggest

skill biased technological progress to be the main force driving the increase in the return

to skill, this assumption seems inadequate. However, biased technological progress shifts

the distribution of demand towards more complex jobs. With a proper definition of jobs,

the within-job technology must remain the same. This idea is confirmed by the results of

Juhn, Murphy, and Pierce (1993), who show that employment in occupation/industry cells

employing highly skilled workers has increased relative to employment in cells with low-

skilled workers. An occupation/industry cell can be interpreted as a job type. In fact, the

same notion of a constant technology within jobs underlies the analysis of for example

Katz and Murphy (1992) or Topel (1994), where the distribution of employment across

industries is used to measure the shift in the skill composition of labor demand. 

The estimation proceeds in two stages. In Stage 1, personal characteristics like years of

education, experience, sex and race are viewed as components of the skill index. The

relation between these characteristics and log wages is estimated for all economies

simultaneously. Although the relation between skill index and wages varies between

economies depending on the relative scarcity of skill, the contribution of each
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characteristic to the skill index is fixed across economies. This is the consequence of the

single dimensionality assumption of skill types, see Section 2. In Stage 2, these estimates

are applied to calculate the return to skill, wt'(s) for each economy t. This measure of the

return to skill is related to characteristics measuring job complexity, see equation (5).

Both stages will be elaborated subsequently.

Stage 1: personal characteristics and wages

The analysis in Section 2 and 4 shows elasticities of substitution and complementarity to

be determined mainly by the second derivative of the log wage function w"(s). The

problem in stage 1 is that we have no idea about the appropriate functional form of w(s),

except that w'(s), w"(s) > 0. Simply imposing a functional form that satisfies both

constraints would imply that we fix the elasticities a priori instead of estimating them.

The latent variable q is therefore introduced; s is defined by some increasing

transformation of q: 

s = S(q), S'(.) > 0.

which is constant across economies t. Hence:

w = wt[S(q)] / Wt(q), Wt'(.) > 0.

where the subscript t is introduced for both wage functions to stress the fact that wage

functions differ between economies, contrary to S(.). Wt(.) is estimated in stage 1, where

a flexible functional form is applied. We shall be able to establish the shape of S(.) in

stage 2. 

Suppose the relationship between the personal characteristics of worker i in economy t

and this latent variable qit to be:

qit = xit'á + sit

where:

xit: a vector of characteristics of person i, excluding a constant;

á: a vector of parameters of corresponding dimension; 
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sit: a random variable, distributed as N(0,ó2), which is independent of xit.

á is assumed to be the same across economies. This is a parameterization of the single

dimensionality assumption. We can normalize the value of ó to unity without loss of

generality because a multiplicative transformation of qit can always be offset by a

compensating transformation in Wt(.). In practice, we estimate not Wt(.), but its inverse.

We use a polynomial in wit as a flexible functional form. The estimation results refer to

a fifth orde polynomial. 

Minimum wages have had a considerable impact on the shape of wage distribution in the

U.S. economy, in particular in 1979 (see for example the graphs in DiNardo, Fortin and

Lemieux, 1996). Let qt
* be the value of qit for which Wt(qit) is equal to the minimum wage.

Wt(.) and Wt'(.) are probably discontinuous at qt
*. For qit slightly below qt

*, wit will either

be zero (if the minimum wage legislation is fully enforced and no jobs are paid at below

the minimum wage) or far below the minimum (partial enforcement, employers trading

the risk of being penalized against a lower wage bill, see Chang and Ehrlich, 1985).

Furthermore, Meyer and Wise (1983a,b) report a mass point (a spike) in the wage

distribution at the minimum. Although the model can explain why the distribution creeps

up against the minimum from the right, see Section 6, it cannot explain mass points.

Probably, only a monopsony model can. I consider monopsony to be a second- order

phenomenon relevant only for extremely low levels of the minimum, as in 1990. It will

be ignored here. Meanwhile, the mass point must not interfere with the estimation of

Wt'(.). For this reason, all observations below the minimum wage plus 1 % are deleted.

This selection does not endanger the validity of the estimation in Stage 2, since there

Wt'(.) is the exogenous variable. Following Meyer and Wise (1983a,b), a truncated model

is fitted to the remaining data.

Stage 2: job characteristics and the return to skill

Stage 2 requires information on the complexity of the job held by each worker. Using

equation (5) and the notation developed above, we have a relationship between job
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     14This equation deviates from the one applied in Teulings (1995a) in that jit instead
of lnWt'(qit) is the endogenous variable. The present approach is an improvement, since
it accounts for the selection bias due to the fact that we do not observe job
opportunities which employers choose to leave open, see Teulings (1995b, Section
4.2). The equation that is actually estimated does not use jit, but a flexible
transformation (i.c. a third order polynomial) of jit as the endogenous variable, but this
does not make much difference for the argument.

     15As direct information on qit is not available (only the observable characteristics), I
use the estimation results for Wt(qit) from Stage 1 to recover qit from wit.

complexity and the return to the qualification qit of the worker, all in economy t:

ct[S(qit)] = wt'[S(qit)] = Wt'(qit)/S'(qit).

By taking logs, this equation can be written as:

jit = â0 + â1 lnWt'(qit) + B(qit) + u,

where jit denotes the available information on job complexity (i.c. 30 dummies for

occupations), where u measures unobserved job characteristics and where B(.) is a

polynomial.14 In practice, a fourth order polynomial is applied. Then: 

lnS'(qit) = -B(qit)/â1.

Estimates for Wt'(qit) and qit are available from Stage 1.15 Hence, estimation of â0, â1 and

the parameters of B(.) is straightforward. Both the second and the third term on the right

hand side are transformations of qit. Many commentators have therefore doubted whether

the model is identified. However, the transformation lnWt(.) differs between economies

(depending on the return to skill in each economy), while the transformation B(.) does

not. If the allocation of workers with qualification qit to jobs with index jit was fixed

across all economies t, the coefficient â1 for the variation in the return to qit would be

estimated to be equal to zero. It is the variation in the relationship between jit and qit

across economies that allows the identification of both terms. This is an analogon of the

standard conclusion that supply or demand curves can only be identified when variation

in market equilibria is available.

A test of the model is whether the second-order condition, wt"(s) > 0, is satisfied for all

t and all s. We have: wt'(s) = Wt'(q)/S'(q). Hence:

wt"(s) = Wt"(q)/S'2(q) - Wt'(q) S"(q)/S'3(q) > 0,
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     16A more efficient alternative would be to impute weights in the likelihood
function. However, due to the large number of observations available, I can afford
some loss of information. The approach in the paper is more convenient.

or: d lnWt'(q)/dq > d lnS'(q)/dq.

From the point of view of the substitutability of skill types, the crucial parameter is the

dispersion of c (see the discussion on the parameter ø , in Section 4). The previous

discussion gives the reader an insight in the information that allows the identification of

this parameters. Inference is based on an inter-economy comparison of variation in the

return to the skill index Wt
'(qit) and variation in the allocation of workers (characterized

by qit) to jobs (characterized by jit). The larger the variation in the return to the skill

relative to that in the allocation of workers to jobs, the greater the dispersion of job

complexity. When variation in the allocation yields no variation in the wage structure at

all, all jobs are of equal complexity.

5.2  Data and estimation results

The estimation results refer to the US economy, with the exception of Alaska and Hawaii.

They are based upon CPS data for 1973, 1979, 1985 and 1990. All four years are close

to or at the top of the cycle so as to eliminate cyclical fluctuations in relative wages. The

four main regions are viewed as separate economies, so that the model is estimated for

16 economies (4 years x 4 regions) simultaneously. Since we are interested in substitution

between labor inputs of different skill types, a sample is required that is representative of

the work force by hour. In order to get such a sample, a proportion of the part-timers are

deleted. A full-timer is assumed to work 40 hours a week. A part-timer working 20 hours

is deleted with probability a half; a part-timer working 10 hours is deleted with

probability 0.75.16 Furthermore, all self-employed persons are deleted. Following this

selection and after deleting all observations for which crucial information is missing, a

sample of about 5,000 observations is drawn randomly for each of the 16 economies,

yielding a dataset totalling about 80,000 observations. After deletion of observations for

which the hourly wage rate is below the minimum wage plus 1 %, we are left with 74,453
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     17For example, consider the evidence of Katz and Murphy (1991) and Juhn,
Murphy and Pierce (1993) on the differences in the timing of the rise in the return to
education on the one hand and to experience on the other.

observations. 

Table 1 reports the estimation results for Stage 1, the relation between worker

characteristics and wages. Following the analysis of Murphy and Welch (1990), a third-

order term for experience is included. For education, the variable "highest grade attained"

and four dummy variables are included: high school completed, and 2, 4 and 6 years of

college completed. Furthermore, there are dummies for marital status (single vs.

married/divorced/widowed) for each sex and a dummy for black people. Tenure is not

included in the analysis, because of the endogenous nature of this variable.

The values for á's are in accordance with the results from ordinary wage regressions.

Their absolute value can be appreciated by noting that the standard deviation of the

residuals is normalized to unity. As the root mean squared error is about 0.40 in an

ordinary wage regression, á has to be multiplied by that number to make it comparable

to the coefficients from these regressions.

The single dimensionality assumption that á's are equal across economies can be tested

by estimating the model separately for (subsets of) the 16 economies in the analysis. If

the single dimensionality assumption was correct, these separate models would not predict

wages more accurately. This test is very strict: one can hardly expect that the assumption

that á is equal across markets will hold exactly.17 Two statistics of this type are calculated,

by running the model separately, firstly for each region, and secondly for each year. The

sum of the log likelihoods for each region and for each year are reported in Table 1.

Although the single dimensionality assumption is rejected, it performs fairly well. For

example, allowing for non-linearity in Wt(.) is a more important contribution to the

likelihood than allowing for differences in á between regions or years. Teulings (1995b)

also reports log likelihoods for different orders of the polynomial for the inverse Wt(.)

than the value of 5 that is applied here. A higher order for the polynomial improves the
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     18Minimum wages in the south are higher relative to the median because nominal
wages are 5-10 % lower in the south than in the rest of the country.

log likelihood significantly.

Embedded in the single dimensionality restriction is the restriction that ó varies

proportionally to coefficients for the other personal characteristics. This due to the fact

that ó is normalized to unity for all markets, so that its ratio to the elements of á is the

same across markets. Several researchers have reported a rise in the residual variance of

wage equations over time. The constancy of ó is justified if this rise is due, not to

increased dispersion of unobserved characteristics, but to an increased pay-off for these

characteristics. Juhn, Murphy and Pierce (1993) present evidence supporting this

conclusion. The test statistics above suggest that the interpretation of an increased pay-off

is easily squared with the data.

A convenient way to get a feel for the estimation results is a plot of the return to the skill

index q, Wt
'(q) for each economy t. In figure 3, this return is plotted as function of the

wage level w. The return is normalized by dividing by 0.4 (the standard deviation of the

residuals in a standard earnings equation), so that the return will be about unity on

average. Each region is presented in one panel. The four graphs in each panel refer to the

years in the sample. For each t, wages are scaled relative to the median wage level for the

sample used for estimation (hence excluding observation # minimum wage). Hence, w =

0 corresponds to the median. The vertical line represents the position of the minimum

wage in each economy.

Figure 3 reveals a clear pattern. For each economy, the return to the skill index is

inversely related to the level of the minimum, in particular in the bracket of the wage

distribution just above the minimum. Hence, the return is low in 1979 and in the south

region18. Apparently, minimum wages cause wage differentials in the bracket just above

the minimum to be compressed. As will be discussed in detail in Section 6, this outcome

squares precisely with the predictions of the DIDES model, where increases in the

minimum wage have substantial spill-over effects to wages just above the minimum. Note

that this conclusion is not driven by the assumptions on absolute or comparative
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advantage. The only assumption required for the estimation results till sofar is the single

index assumption for q. Teulings (1998) works out a formal method to use similar plots

for the evaluation of the effect of minimum wages on the wage distribution. His

conclusion, in line with the results of Lee (1998), is that the reduction in real minimum

wages is the most important factor explaining the rise in wage dispersion in the eighties.

The index for job complexity, jit, is based on a classification of three-digit occupational

codes into 30 groups. Details of this classification are discussed in Appendix 3. jit follows

from running the following regression:

xit'á = oit'ä + v,

where oit is a vector of 30 dummies for each occupational group, ä is a vector of

regression coefficients and v is an error term, and where the estimated values for á are

used to calculate xit'á. Then: jit / oit'ä. The coefficients ä (normalized on a 0-1 scale) are

reported in Table 2.

Like the single dimensionality assumption for s, the single dimensionality assumption for

c can be tested by running separate regressions for each region and for each year. If the

single dimensionality assumption was a perfect description of reality, the variations in the

return to skill would explain all the variation in the allocation of skill to job types across

economies. Take the case where we do not allow for any variation in the allocation as a

benchmark. The return to skill explains 15 % of the difference between the log likelihood

of this benchmark case and the case where we estimate the model for each year

separately. The second-order condition w"(s)> 0 is satisfied for all t and all s.
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     19In fact, equation (12) instead of the Conjecture is used. The assumptions vi = I-1

and ç = 0 for which the Conjecture applies will not hold in the real world. Hence,
matrix inversion is done numerically, with I set to 400 and ó to 1600. Some
experimentation showed that variation in these parameters had little impact on the
results.

     20The estimation procedure for the density function is not discussed in Section 4. A
flexible functional form is applied, comparable to the polynomial fitted to Wt(q) (see
Teulings (1995b) for details).

6  Some simulations

6.1 Elasticities of complementarity

Elasticities of complementarity can be calculated by applying the Conjecture of Section

4 and the estimation results in Section 5.19 The estimation results provide three ingredients

for our exercise: i) the wage function Wt(q), ii) the transformation of q into s, S(q), and

iii) the density function of wages, dt(w).20 The latter is required to calculate the value

share vi of each skill type. All other variables in the model can be derived by applying a

number of simple identities discussed throughout Section 3, 4, and 5. The only relevant

parameter for which no estimate is available is the between-job elasticity of substitution,

ç. I shall present calculations for both ç = 0 and ç = 1. 

The elasticities of complementarity can be presented in various ways. One possibility is

to look at the effect on the wage of type i in % of an increase in the supply of type j by

1 %, which is equal to gij vj. The value share vj in each category is inversely related to the

number of categories I. In order to eliminate this dependence on I, gij vj should be scaled

by the share of labor supply of skill type j, denoted dj; gij vj/dj measures the effect on the

wage of type i in % of an increase in the supply of type j by 1 % of the total labor force.

Table 3 reports the elasticities gij vj/dj for the south in 1979 and 1990. The results are in

line with the theoretical analysis in Section 4. The wage effects of an increase in the

supply for a particular type peak sharply at the own type, the more so for the highest and

the lowest type, where substitutes are available only from one side, while intermediate

types can be substituted for both slightly more and slightly less skilled worker types.
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     21When Altonji and Card account for differences in the level of schooling of
immigrants the estimated effect rises from 1.6 % to 12 %, but also becomes very
imprecise.

Contrary to our present understanding (see Hamermesh, 1993, pp. 113-127), the

elasticities are greater (in absolute value) for low-skilled than for highly skilled workers.

The between-job elasticity of substitution, ç, turns out to be of limited importance for the

values of elasticities of complementarity. Within-job-between-skill substitution is a more

important force than  between-job substitution. One should therefore be careful when

basing inferences about the distributional effect of shifts in labor supply on between-job

elasticities of substitution.

For low-skilled workers, the trough at the main diagonal is far more pronounced for 1990

than for 1979. The plots in Figure 3 are useful for getting an intuition for this result. The

return to the skill index q in the lower tier of the market is lower in 1979 than 1990: the

high minimum wage has stongly compressed wage differentials for low-skilled workers

in 1979. By the assumption of absolute advantage, the return to the skill index must be

positive. Hence, there is less scope for further compression of wage differentials in the

lower tier of the market in 1979 than in 1990. In 1979, any wage increase for the first

percentile will therefore necessarily apply almost alike for all other workers in the lower

quintile.

The results in table 3 can be directly compared to estimates of similar elasticities by

Altonji and Card (1991). In their most preferred estimate, an inflow of migrants of 1 %

point of the labor force reduces the wages of the groups competing most directly with the

entrants (in particular, low-skilled black women) by 1.6 %. This number is smaller (in

absolute value) than the effects for the lower tier of the labor market reported in Table 3,

but this might be explained by the broad skill categories applied by Altonji and Card.21

A comparison with the results of Topel (1994, Table 3) yields further insights into the

impact of aggregation bias. Topel categorizes labor supply by level of education and sex

into 5 classes, 3 for males and 2 for females. For comparison, labor supply in this study

is divided into five quintiles. The low-skilled men in Topel's study are comparable
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     22The procedure for comparison can be expected to yield a somewhat lower
estimate (in absolute value) than that found by Topel (1994) due to the assumption
that the increase in supply is divided proportionally over all skill categories in a
quintile, while in reality the increase will be concentrated around the median. This
concentration yields a higher effect on the median wage in Topel's procedure, compare
Figure 1.

approximately to the second skill group in this study. Table 4 summarizes the effect of

a 1 % increase in labor supply on the median wage for all quintiles (the sum of gij vj for

all j in a quintile, where i is the median of the quintile of which the wage is analyzed) for

1979 and 1990. For comparison with table 3, these numbers should be divided by the

employment share in the quintile, which is 0.20 by definition.

Compared to the own elasticities of complementarity reported by Topel (about -0.60), the

diagonal elements in Table 4 are slightly lower, in particular for ç = 1.22 However, the

results in Table 4 are roughly consistent with Topel's findings. However, Table 3 reveals

the divergence in elasticities of complementarity within broad skill categories hidden in

Table 4. For 1990, aggregation reduces the own wage elasticity for the lowest percentile

by a factor 2.5! For 1979, the consequences of aggregation are less severe. The reason for

this difference is again the compression of wage differentials in 1979 due to the high

minimum wage. There are almost no opportunities left for further relative wage changes

within the lower quintile. Hence, aggregation is less harmful.

6.2 The effect of minimum wages on employment and wage distribution

The results in Table 3 and 4 clarify the minimum wage paradox. Like Topel (1994), most

studies use rather broad skill categories for estimating elasticities of complementarity.

This approach underestimates (in absolute value) the value of these elasticities at short

skill distances. However, these are the relevant parameters for the analysis of the effects

of minimum wages because a change in the minimum wage changes the effective supply

of the lowest skill type. Furthermore, the own-elasticities of complementarity are larger

for the extreme than for intermediate skill types, see Figure 2 in Section 4.

The effects of an increase in the minimum wage are shown in Figure 4. An increase in the
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     23Meyer and Wise (1983a,b) implicitly assume relative wages to be fixed by
imposing perfect substitution between worker types. They attribute therefore the
whole increase to the first component. This yields an overestimation of the
disemployment effect because there are fewer workers with a skill level just below the
minimum than is expected when taking relative wage as being invariant to changes in
the minimum. This overestimation is partly compensated for by the way the spike at
the minimum is treated.

minimum is equivalent to the elimination of the least skilled worker types from labor

supply. Due to the distance dependence of the elasticities of substitution (DIDES)

structure, the wages of slightly better skilled workers will rise, while the wages for the

best skilled workers will fall. The wage function is therefore twisted towards a lower

return to skill along the whole schedule. The elasticities of complementarity reported in

Table 3 suggest the break-even point to be between the 40th and 50th percentile of the

distribution of labor supply. The wage distribution creeps therefore up towards the

minimum.

The increase in the minimum from wmin1 to wmin2 an be broken down into two

components, see Figure 4. The first component is the wage differential between the least

skilled worker employed before and the least skilled workers employed after the minimum

wage increase, measured on the wage schedule applying before the increase, wmin* -

wmin1 in Figure 4. This is the well-known metaphor that raising the minimum wage cuts

off the lower part of the productivity distribution, see for example Meyer and Wise

(1983a,b). I shall refer to it as the truncation component of the minimum wage increase.

The second component is the wage increase for the least skilled worker employed due to

the elimination of less skilled workers from supply. This component is measured by the

difference between both wage schedules, wmin2 - wmin* in Figure 4.23 I shall refer to it as

the compression component, since it compresses skill differentials. 

The distribution of the labor supply is assumed to be fixed. The higher wages for the

worker types just above the least skilled type still employed are therefore assumed not to

attract additional labor supply. Allowing for a supply effect would reduce the

compression component in the minimum wage increase, since the lower effective supply

of the least skilled types would be partly offset by an increase in the supply of slightly
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     24A similar calculation for i > 5 yields the effect of the minimum wage increase on
the wages for higher skill types.

better skilled types. 

The calculation proceeds in reverse order. We start from the loss of employment by

setting supply in the least skilled categories at zero. The supply in these categories

measures the disemployment effect. Next, the required increase in the minimum can be

calculated as the sum of both components discussed previously. For example, assume that

supply in the lowest five skill categories (j = 1,5) is set at zero. The employment loss is

equal to: Ój=1
5 dj. The magnitude of the productivity cut-off component is w6 - w1, that of

the complementarity component is equal to: Ój=1
5 g5j vj.

24 Since the results for ç = 0 are the

closest to Topel's estimates (1994), ç is set at zero for the calculations at hand.

This framework is applied to simulate the effects of an increase in the minimum wage

starting from the wage distributions in the south for 1979, 1985, and 1990, see Table 5.

The minimum wage is most binding in this region since average wages are 5-10 % lower

there than in the rest of the country. For each year, the effects on employment are listed

for an increase in the minimum of 5 %, 10 %, and 20 %. Furthermore, the breakdown of

the increase in the truncation and the compression component is presented.

For each year, employment effects increase linearly with the magnitude of the minimum

wage increase. However, across years, there are substantial differences, the employment

effects being smaller in 1990 than in 1979. This is due both to the truncation and the

compression effect, as can be seen from the ratio of both components to the employment

effect. For the truncation effect, the mechanism is obvious. The further left in the lower

tail of the wage distribution, the smaller will be the density. The effect on employment

of an increase in the truncation threshold will therefore be smaller when starting from a

low value of the minimum wage.

For the compression effect, the discussion on the results in Table 3 provides a clue. In

1979, when the wage structure in the lowest quintile is strongly compressed, there is little

scope for further compression. Hence, the compression effect of an increase in the

minimum is much smaller. The ratio of the compression effect to the employment loss for
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     25The employment loss for the lowest skill category j = 1 is equal to d1. The
compression effect is g11v1. Hence, the ratio is g11v1/d1, which is listed in Table 3.

     26Clearly, a Walrasian model like the one in this paper is incapable of generating
the positive employment effects of higher minimum wages reported by Card and
Krueger (1994). I tend to interpret these positive effects as second-order phenomena
becoming relevant only for very low values of the minimum wage (as in 1990).

1979 and 1990 corresponds roughly to the elasticities of complementarity for the second

percentile listed in Table 3, as is to be expected.25

The differences in the calculated employment loss for equal increases in the minimum for

1979 versus 1990 suggest that the linearity of the effects within a year in Table 5 should

be dealt with cautiously. The employment effects of a 20 % increase in the minimum in

1990 can probably be estimated more accurately by first using the results for 1990 to

calculate the employment loss of the first 10 % increase (bringing the minimum wage

close to its 1985 level) and nextly using the results for 1985 for the next 10 % increase.

This procedure yields a higher estimate for the employment loss than directly applying

the numbers for 1990. The reason for this phenomenon is that after having increased the

minimum wage by 10 %, the employment loss of further increases is larger than given in

Table 5 because the elasticities of complementarity are reduced, see Table 3. Hence, the

truncation component accounts for a larger share in the minimum wage increase.

The importance of the compression effect is strong evidence against the Meyer and Wise

(1983a,b) model on the employment effect of minimum wages. They assume the wage

distribution above the minimum to remain unaffected by changes in the minimum. This

assumption is clearly rejected by the results presented in this paper.

A 10 % minimum wage increase yields an employment loss of 0.8 % in 1990, suggesting

an overall elasticity of employment with respect to an increase of the minimum wage of

0.13. For 1979, this elasticity is higher. Even the number for 1990 is still substantially

higher than the elasticities mentioned in Brown, Gilroy and Kohen (1982), who report

elasticities of the employment for youngsters in the range of 0.10-0.30. Since youngsters

are only small proportion of total employment, the elasticity with respect to total

employment is an order of magnitude lower.26 However, the DIDES model goes a long
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     27The density of q is equal to: dt(w) dw/dq = dt(w) Wt'(q). I present the distribution
of q instead of s because it is easier to interpret as q is close to the standard human
capital specification in a Mincerian earnings equation. The index q has been
multiplied by a factor 0.4, to make its unit of measurement comparable to that of w,
see the discussion on Figure 3.

way towards offering an explanation for the minimum wage paradox.

The framework can also be applied to evaluate the employment effect of 28 % reduction

of the real minimum wage between 1979 and 1990. Figure 5 shows the actual

distributions of log wages w (in the south-west quadrant) and the skill index q (in the

north-east quadrant).27 Wages are in 1979 dollars. The distribution of the skill index has

a much fatter left tail in 1979, which is probably due to the large cohort size of youngsters

in that year, who show up at lower end of the skill distribution due to their lack of

experience. The lower (vertical) thresholds for the skill distributions in both years are the

skill levels which earn exactly the minimum wage for that year. Less skilled workers are

not employed. As was to be expected, the lower threshold is higher in 1979 than in 1990:

the high minimum wage in 1979 discards least skilled workers from employment. These

thresholds correspond to those (horizontal) for the wage distributions, which are equal to

minimum wage for each year. The wage distribution for 1979 has a concentration of

probability mass just above the minimum, while the distribution for 1990 is nicely bell

shaped. The relation between wages and the skill index, Wt(q) is depicted in south-east

quadrant. As is discussed in relation to Figure 3, the derivative Wt'(q) is low in the wage

bracket just above the minimum, the more so the higher is the minimum wage. In Figure

5, this phenomenon translates into a flatter trajectory for Wt(q) in the lower part of the

skill distribution in 1979 than in 1990.

The dotted lines are the counterfactuals for 1990 using the minimum wage for 1979. The

skill distribution is kept constant at its 1990 level (apart from the truncation of the left tail

due to increase in the minimum wage), so that there is no counterfactual. By construction,

the horizontal threshold (i.c. the minimum wage) for this counterfactual coincides with

the threshold for 1979. However, the equality of the vertical threshold (i.c. the lowest skill
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type employed) is pure coincidence. The dotted lines in the south-east and the south-west

quadrants represent the wage function and the wage distribution respectively. The

counterfactual wage function for 1990 turns out to be almost identical to the wage

function for 1979. According to DIDES model, the compression effect of raising the

minimum wage from its 1990 to its 1979 level would therefore undo most of the rise in

wage dispersion during the eighties, in particular in the left tail of the wage distribution.

This result squares nicely with the conclusions of Lee (1998) and Teulings (1998), who

both asses the effect of minimum wages on the wage distribution directly, by using the

minimum wage as an explanatory variable for wage distribution and return on human

capital. In the present study, the results on minimum wages presented in Figure 5 can in

no way be an artefact of the estimation procedure. The estimates of the elasticity structure

are based on inter-economy covariation of the return to the skill index and the allocation

of worker types to job types, not on variations in the minimum wage. That the model

nevertheless produces sensible results on the effects of minimum wages adds to its

credibility.

7  Conclusions

My analysis has revealed a large aggregation bias in most estimates of elasticities of

complementarity. The effect of increasing the supply of a particular, narrowly defined

worker type on its own wage is up to a factor 2.5 larger than emerges from the standard

estimation results. This aggregation bias offers at least a partial resolution of what I call

the minimum wage paradox. Both the employment effects of minimum wages and the

elasticities of complementarity are estimated to be small. However, apart from

monopsony, the only explanation for the limited employment effects of minimum wages

is that most of an increase in the minimum is swamped by an increase in the wages for

the least skilled workers. However, such a wage increase requires the elasticities of
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     28In some sense, this paper is a late echo of Rosen's (1974: 51) suggestion of
applying hedonic models to evaluate the impact of minimum quality standards on the
economy. This suggestion has turned out to be fruitful.

 complementarity to be large.28

My analysis is based on a simple and transparent economic principle, going back to the

days of Ricardo: comparative advantage. The analysis deals with the consequences of this

principle for the structure of substitution in an economy. The key result is the Distance

Dependent Elasticity of Substitution (DIDES) characteristic: skill types are more easily

substitutable the shorter the distance between the types in terms of the skill level. This

characteristic squares well with the reader's a priori intuition. Two further analytical

results are probably more surprising. First, elasticities of substitution are zero (or more

precisely: equal to the between-job elasticity of substitution) for almost all pairs of skill

types. The intuition is that under comparative advantage the neighboring skill types are

an almost perfect substitute, rendering substitution to other skill types at greater distance

meaningless. Or, using the DIDES metaphor, elasticities of substitution are so extremely

dependent on the skill distance that they converge to zero even at a short distance. The

second result refers to elasticities of complementarity. Consider a row of the matrix of

these elasticities. This row can be represented as a function. It has a minimum at the

diagonal element: increasing supply of a particular type has the biggest effect on the own

wages. However, the surprising feature is that it is non-differentiable at diagonal. This

yields a deep trough in its trajectory, see Figure 2 in Section 4. It is this trough, which is

smoothed out by aggregation in broad skill classes, that is responsible for the large

aggregation bias.

A look at simple pictures of wage distributions, such as provided by DiNardo, Fortin, and

Lemieux (1996), offers convincing evidence for the relevance of the comparative

advantage/DIDES model. These reveal a strong tendency for the wage distribution to

creep up against the minimum wage when the minimum is increased. Although this

feature is probably not a great surprise to the reader, the DIDES model offers the formal

underpinning that has not till now been available. For example, most of the literature in
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     29Interestingly, most of the supply and demand shifters used by authors applying
the CES framework (Bound and Johnson 1992; Katz and Murphy 1992; Juhn, Murphy
and Pierce 1993) implicitly require the combination of absolute and comparative
advantage applied in the present paper.

this field applied a CES technology. This assumption on technology will never yield the

type of shifts in the wage distribution due to changes in the minimum wage that are

observed empirically and produced naturally by a DIDES model.

One might argue that my approach suffers the disadvantage of being heavily

parameterized. However, the four main assumptions laid out in Section 2 are far less

restrictive than the arbitrary assumptions required for a CES model.29 To name a few: i)

a classification of individuals within broad skill groups, ii) perfect within-skill-group

substitution, iii) equal between-group elasticities of substitution. Obviously, one can

eliminate assumption iii) by applying some of Diewert's translog or generalized Leontieff

specifications. Assumptions i) and ii) will remain indispensable. Given the evidence on

the importance of aggregation bias, this is an important drawback to this type of approach.

Bearing in mind the above evidence on the magnitude of the aggregation bias, avoiding

aggregation altogether by distinguishing an infinite number of skill types is a fruitful

avenue to travel. The methods laid out in this paper can likewise be applied to other

markets where different quality types are close substitutes, like the housing market.

In comparison with the black box representation of the substitution process in CES

functions, the principle of comparative advantage is intuitively appealing. In the

comparative advantage model, the economy is explicitly modelled as an infinite number

of interrelated labor markets for each skill type. This feature highlights the fluidity of the

substitution process, where an increase in supply or demand in one market has spill-over

effects on all other markets, the more so the shorter the skill distance. Further work will

reveal some cook book recipes for applying these models, so that their complexity will

no longer be an obstacle. Obviously, the model can be improved, for example by allowing

different degrees of substitutability between labor and capital for each skill type. These

are merely amendments to the main philosophy.

The practical implications of the analysis are huge. For example, on the positive side, the
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influx of low-skilled immigrants into the United States may have had a larger impact on

wage distribution than suggested by previous research. Or on the normative side,

increasing wage dispersion probably becomes a less attractive strategy for combating low-

skilled unemployment in Europe. The alternative of trying to affect the distribution of

labor supply by extended education might be more feasible. 
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     30f(x) = O[x] means that › B such that limx60 *f(x)/x* < B.

     31The integral converges because w"(s) > 0 for all s, see Section 2. Similar
conditions will be available for all subsequent integrals that are handled in a similar
way.
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Appendix 1  Derivation of approximation for the elasticities of substitution

Suppose the values of w(.),  e(.), x(.), and ç to be fixed and consider what happens when

ó tends to infinity. For a fixed value of c, the following Taylor expansion for the

intergrand in equation (7) in Section 3 applies:

ó s0(c) c - (ó-1) w[s0(c)] - ½ (ó-1) w"[s0(c)] [s-s0(c)]2 + (ó-1) O[(s-s0(c))3] = 

ó s0(c) c - (ó-1) w[s0(c)] - ½ v2 + O[ó-1/2] O[v3].

where O[.] is the standard order function30 and where v is defined as: 

[ (ó-1)w"[s0(c)] ]1/2 [s-s0(c)], 

and where s0(.) is implicitly defined by: (ó-1) w'[s0(c)] / ó c. 

By this definition, the first derivative of the integrand of (7) is zero for s = s0(c). Hence,

the first-order effect drops out of the Taylor expansion above. Integrating out v by

applying the formula for the normal distribution, p(c) can be written as:31

D

ifferentiating equation (14) with respect to c twice and applying the definition of s0(.)

yields:

p'(c) = - s0(c) + O[ó-1];

p"(c) = - s0'(c) + O[ó-1] = - 1/w"[s0(c)] + O[ó-1] < 0.

The latter equality follows from differentiating the definition of s0(c).
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     32Provided that c0(s) > %(w"(s)/ó), with k is, for example, 4. In that case, the
truncation of the integral at the lower bound does not matter greatly because Ö(-4) is
small, Ö(.) being the standard normal distribution function. Note that this difference
converges to zero when: ó 6 4.

     33The expression x[c0(q)] + 2 a[q,c0(q)] is not the maximum of the integrand over c,
as its derivative for c = c0(q) is equal to x'[c]. Hence, the first order term does not drop
out. However, the deviation of the maximum is of order O[ó-1] as the second
derivative is of order O[ó]. Hence, this deviation is covered by the approximation term
in (16).

lnm
4

0

exp[x(c)%a(s,c)]dc' x[c0(s)]%a[s,c0(s)]% 1

2
ln 2ðw ))(s)

ó
% (15)

Similarly, for a fixed s, a Taylor expansion for the function x(c) + a(s,c) can be applied:

x[c0(s)] + a[s,c0(s)] - ½ v2 + O[ó-1/2] O[v3].

where v is defined as %ó [ p"[c0(s)] + O[ó-1] ]1/2 [c-c0(s)] and where c0(s) is implicitly

defined by: x'[c0(s)] + (ó-1) p'[c0(s)] / -ó s. 

It follows from this definition and the relation for p'(c) derived previously that: p'[c0(s)]

= - s + O[ó-1] = - s0[c0(s)] + O[ó-1].

Hence, when ó tends to infinity, s0(.) converges to the inverse function of c0(.). Hence:

p"[c0(s)] = - 1/w"(s) + O[ó-1].

Integrating out v by applying the formula for the normal distribution and applying the last

equality, the integrals in the denominator of equation (10) in Section 3 can be

approximated by:32

Define: q / ½ (u + r).

For the approximation of the numerator of (10), consider the function x[c0(q)] + a[u,c0(q)]

+ a[r,c0(q)]. By the definition of q, it is equal to x[c0(q)] + 2 a[q,c0(q)]. By the definition

of c0(q), the partial derivative of the latter function with respect to c0(q) is: - x'[c0(q)], and

the second derivative is: - ó [ 2/w"(q) + O[ó-1] ]. Using a similar approximation for the

integral in the numerator as is applied for the integrals in the denominator yields:33
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     34The first-order effect of equation (17) drops out because:
(u-q) = - (r-q).

lnm
4

0
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çru,r…u ' ç% ó ó
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exp& x[c0(q)]& ó w ))(q)

4
(u& r)2% (18)

By the definition of c0(q), the following Taylor expansion applies:

Combining equation (10) in Section 3 and the equations (15), (16) and (17), the

elasticities of substitution can be written as:34

It remains to be shown that x[c0(s)] converges to e(s) + w(s) - ln[w"(s)] - x - px when ó

tends to 4. An approximation of the integral in equation (2), using equation (4) to obtain

expressions for fs(s,c) and fss(s,c), yields:

y(c) = s0(c) c + f[s0(c),c] - 1/2ln[2 ð ó w"(s)] + O[ó-1].

Similarly, an approximation of the integral of the definition of e(s) yields:

e(s) = f[s,c0(s)] - 1/2ln[2 ð ó/w"(s)] + O[ó-1].

Using s0[c0(s)] = s + O[ó-1], p(c) = - s0(c) c + w[s0(c)] + O[ó-½], and 

x(c) = y(c) + p(c) - x - px, we have:

x[c0(s)] = e(s) + w(s) - ln[w"(s)] - x - px + O[ó-½].

Q.E.D.
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     35Using the notation applied in Section 4.1 and footnote 8, we have:
CPP' = C-1 CP H CP. Hence, the bordered Hessian matrix is:
[CPP' CP; CP' 0] = C-1 CP

+ H+ CP
+, where: CP

+ = [CP 0; 0' 1]. Inverting the bordered
Hessian and pre- and postmultiplying by F+-1, where F+ is a diagonal matrix with
DIAG[F+] = [FX;1] yields the elasticities of complementarity. C-1 CP

+ FX
+ = V+,

because CP = X and FX = P.

     36An element of H+ being close to zero means here that terms in the determinant or
co-factors of H+ that include at least one of these elements can be ignored relative to
the value of the determinant of the co-factor. Due to the definition of J, hi, i > J are
smaller than exp[-k2], while h1 is of the order of unity. By setting k at a higher value
the precision can refined without affecting the derivation presented below.

Appendix 2  The inverse of the bordered Hessian matrix

Let H denote matrix with elements {ç ij} as defined by equation (12) for i … j. Let v denote

the vector with value shares {vi}. The diagonal elements of H can be solved from: Hv =

0, where 0 is a vector of zeros. Define:

H+ / [H,1;1',0], 

H* / V+ H+ V+,

where V+ is a diagonal matrix with: DIAG[V+] / [v;1]. The matrix of elasticities of

complementarity G with elements {gij} follows from dropping the last column and row

of [H*]-1.35 

Under the assumptions: i) ç = 0 and: ii) vi = I-1, the elements ç ij, i … j, of H depend on the

distance between i and j only. We can therefore define:

hi / ç j,j-i = ½ ø  ó %(ó/ð) exp[ - ¼ ó ø 2(i/I)2 ], i $ 1. 

The value of hi declines rapidly with the value of i. Let: J / int[ 2 k I/(ø  %ó) ] where k is,

for example, 4; we assume: J << I. Then, hi for i > J is close to zero relative to h1.
36 In the

subsequent argument, we will therefore assume hi = 0 for i > J. 

Hence, for the case that J = 2, H* satisfies:



46

     37Similar equations are available for 1 # j # J and I-J < j # I. They are omitted for
convenience.

     38The above equation follows from rearranging terms in:
Óm=1

J hm (gi-m,j- 2 gij+ gi+m,j) = -I.

H ( ' I &2

d1 [h1 h2] 0 0 I

h1

h2
" " 0 !

0 " "
h2

h1
!

0 0 [h2 h1] dI I

I þ þ I 0

(19)

where the diagonal elements di are given by: di = - Ój,j…i ç ij (since: Hv = 0). Let hj and gj

denote the j-th column of H* and G respectively. Define the following difference

operators with respect to the elements of gj:

Ägij / gi+1,j - gij;

Ä2gij / gi+1,j - 2 gij - gi-1,j = Ägij - Ägi-1,j.

The inversion of H* yields the following equalities for every j, J < j # I-J:37

i) from the equation hI+1'gj = 0:

Ói=1
I gij = 0;

ii) for every i, J < i # I-J and i … j, from the equation hi'gj = 0:

æ1 Ä
2gij + Óm=1

J-1 æm+1 (Ä
2gi+m,j + Ä2gi-m,j) = -I,

where:

æm / Ón=m
J (n+1-m)hn;

38

iii) from the equation hj'gj = 1:

æ1 Ä
2gjj + Óm=1

J-1 æm+1 (Ä
2gj+m,j + Ä2gj-m,j) = I2 - I.

iv) for every i, i # J, from the equation hi'gj = 0:

è1i Ä
2gij + Óm=1

i-1 èm+1,i (Ä
2gi+m,j + Ä2gi-m,j) + Óm=i

J î m Ägi+m-1,j = -I,
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     39This equation follows from rearranging:
Óm=1

i-1 hm (gmj- gij) + Óm=1
J hm (gi+m,j- gij) = -I.

where:

èmi / Ón=m
i-1 (n+1-m)hn (hence: æm = èm,J+1),

î m / Ón=1
J hn;

39

and mutatis mutandis the same for i > I-J;

Consider the case of J = 1. In that case: æ1 = î 1 = h1. Equality ii) is a second order

difference equation of the form: Ä2gij = -I/h1.

The value of this second difference is independent of i. The elements of gj are therefore

points on a parabola. Equality iii) gives the value of the second differential on the main

diagonal. Equality iv) establishes the initial condition for the first differential of gj for i

= 1. Hence, the first differentials of gj are described by: 

Ägij = - (I/h1)i + (I2/h1)INDi$j,

where INDx is an indicator function being unity if x is true and zero otherwise. 

Äg1j = -ÄgI-1,j = -I/h1, as is required by equality iv). Integrating this differential equation

yields the trajectory of the elements of gj, where equality i) provides the initial condition.

Hence:

Lemma 1:

For J = 1:

gij = ½(I/h1)(i-i
2) + (I2/h1)INDi>j(i-j) + ½(I/h1)[(I+1)(I-1)/3 + (I-j)(I-j+1)].

The trajectory of gij is defined by the following characteristics:

i) Ói=1
I gij = 0;

ii) Ä2gij = -I/h1 for i … j;

iii) Äg1j - ÄgI-1,j = -2 JI/h1;

iv) Äg1j + ÄgI-1,j = 0;
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Lemma 2:

Consider the more general case of J > 1. Let: I 6 4 and let: ó 6 4, such that: I/%ó 6 4.

Define: fij / [Ägi-J+1,j;Ägi-J+2,j;...;Ägi+J-1,j], and ù  as a vector of dimension 2J-1 with all

elements being semi-positive. Hence: Äãij / [ù '1]-1ù 'fij defines a class of moving averages

of Ägij. Then, characteristic i) is satisfied for gij and the characteristics ii) till iv) are

satisfied in the limit each by at least one moving average of the class Äãij, where h1 =

I3/ø 2.

Proof:

Characteristic i) follows from equality i). 

Characteristic ii) follows from writing equality ii) as:

æ'[fij - fi-1,j] = -I,

where æ is a vector of dimension 2J-1 with the coefficients æm in the appropriate rows.

Hence: æ'1 = æ1 + 2 Óm=2
J æm. The moving average [æ'1]-1 æ'fij is an element of the class Äãij.

Hence: Ä2ãij = I/[æ'1]. We have:

where n(.) is the density function of the standard normal distribution. The first step

follows from the definition of æm, the second step from the definition of hm. The third step

is allowed because: J 6 4 by the assumption: I/%ó 6 4. A transform of variable is applied:

x = (ø /I) %(ó/2) m. Hence: h1 = I3/ø 2.

Characteristic iii) follows from taking the sum of Ä2ãij as defined for characteristic ii)

from i = J+1 to I-J (using equality iii) for Ä2ãjj) yields:

ÄãJj - ÄãI-J,j = -2 ø 2J/I2.

Characteristic iv) follows from considering equality iv) for i = 1 and i = I. These

equations can be written in vector notation as: î 'fJj = -I and î *'fI-J,j = I.
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where î  is a vector of dimension 2J-1 with elements æm and zero on the appropriate rows

and where î * is equal to î , but with the elements in the opposite order. Summing both

equations yields: î 'f*
1j + î *'f*

I-J,j = 0. Both [î '1]-1î 'f*
1j and [î '1]-1î *'f*

I-J,j are moving averages

of the type mentioned in Lemma 2. 

Q.E.D.

Lemma 1 and 2 are the basis for the Conjecture in Section 4. Note that the moving

average Äãij converges to Ägij relative to the domain for which Ägij is defined (i = 1,I-1)

because J/I 6 0. The reason for stating Conjecture 1 as a conjecture and not as proposition

is that the above proofs show that a moving average Äãij follows the trajectory described

in Lemma 1, but that the proofs do not rule out the possibility that  Ägi+m,j might cycle

around the trajectory in the range m=-J+1,J-1 covered by the moving average Äãij.

Numerical calculations show that there is indeed some cycling at boundaries of the matrix

(i . J, i . I-J) and at the main diagonal. However, for large I, the trajectory converges

quickly towards that in Lemma 1 outside these areas.
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Appendix 3  The classification of occupations

The classification of occupations into 30 groups is based upon the three-digit codes
available on the CPS tapes. Four criteria guided the construction of the classification:
1) in the aggregation of three-digit codes into 30 groups, the two-digit classification

of 43 groups available on the CPS tapes must be followed as closely as possible;
2) the differences in the mean hourly wage rate within a group must be small;
3) the codes before 1980 (1973 and 1979) differ from those after that date (1985 and

1990): the classification for the latter two years has to be replicable for the former
two years and vice versa (Bureau of the Census, 1989);

4) groups may not be too small.

For the occupations in manufacturing, criterion 1) conflicts strongly with criterion 2).
There, the only workable solution was to give criterion 2) preference. Applying these
criteria yielded the following classification:
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Coding of occupational groups of CPS codes

group description 1970 codes 1980 codes

1 public servants 201,222 3-6

2 managers & related 1,56,202-3,205,210-3,
215-6,224-5,231,233,
235,240,452

7-18,23-37

3 managers n.e.c. 195,220,223,230,245 19,243

4 specialists, lawyers 2,4-6,10-5,20-1,23,30-
1,34-6,55,164,704,931

43-68,178-9,227

5 scientists, teachers 3,25,42-5,51-4,64,75-6,
81,102-5,110-6,120-6,
130-5,140,153,155,172,
923

69-83,95-6,98-154,
204,213,215,229,233

6 med.specialists, pilots 61-3,65,71-3,163,170 84-6,226

7 non-secondary teachers 24,26,32,33,74,141-2,
144-5,174,181-5,190-2

97,156-65

8 recreation, entertaining 86,91-6,100,175,194,425 166-74,176,180-97

9 technicians 80,82-3,85,150-2,154,
156,161-2,165,171,173,
325,926

203,205-12,214,216-25,
228,234-5,363,366

10 sales representatives 22,260,265,270-1,281-2,
363

253-9

11 sales workers 261-2,264,266,283-5,310,
314

260-85

12 supervisors admin. 312 300-7

13 computer operators 343,350 308-9

14 typist 320,330,364,391 315-7,319-23

15 secretaries 370-2,376,390 313-4,318

16 clerks 301,303,305,311,313,
315,321,323,326,332-4,
341-2,344-5,355,360,362,
374-5,381-2,384-5,392,
394-5

325-8,336-53,356-89

17 postal service workers 331,361 354-5

18 private household, food 910-4,916,981-4 400-5,407,430-4,436-44

19 child care workers 980 406

20 waiters 915 435
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21 protective services 961,963-5 410-24

22 guards, packers 960,962 425-7

23 other medical & related 84,921-2,943 445-6,448,454-5

24 nurse aid, maids 90,101,143,180,193,901-
3,924-5,932-5,940-2,944-
5,950,952-4

155,175,177,198-9,447,
449-53,456-64,466-9

25 agricultural workers 740,752,755,761,801-2,
806,821-4

470-99

26 specialized manufac. 226,433,455-6,471,514,
525,550,552,554,710

508,527-43,553-5,557,577,
597,645,656,695,699,823-4,
826,845

27 skilled manufac. 221,403-4,410,412,415,
421,424,430-1,436,441,
445-6,453,461,470,474-
5,481-6,491-2,495,502,
515-6,520-2,530-1,533,
535,545,560-2,571,601,
603,614-5,626,640,642,
680,701,712-3

503,507,515-6,518-26,533-9,
544-9,556,558-63,565,567,573,
575,584-5,588-94,596,598,613-
37,643-44,653,655,676,689-
94,696,707,714-5,724,734-5,
757,783,797,803,825,828,833-
44,849-55,867

28 medium manufac. 405,411,413,416,420,
426,435,440,442,454,
462,472-3,480,503-5,510-
2,523,534,536,540,546,
602,610,620-1,635,641,
644,650-3,656,660-1,681,
690,692,694-5,703,706,
715,750-1,753-4,763

505,509-14,517,564,566,569,
576,579-83,587,595,599,639,
646-9,654,657,675,678-9,684,
703-6,708-13,717-23,736,755-6,
758-9,777-9,785,787,796,804,
808,829,848,856-9,869,875,883

29 low-skilled manufac. 401-2,422-3,434,443-4,
450,501,506,542-3,551,
563,604-5,612-3,622,624-
5,631,633-4,636,643,645,
662,665-6,670-4,705,
714,760,770,780,785

658-74,677,683,686-8,725-33,
737-43,749-54,763-74,784,786,
789-95,798-9,805-6,809,814,
863-6,873,876,878,888-9

30 unskilled manufac. 611,623,630,663-4,711,
762,764

744-8,813,877,885-7
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Table 2 The value of j, and C(jit) for occupational groups

waiters  0.000 - 9.596

unskilled manufac.  0.065 - 7.123

typist  0.124 - 5.121

private household, food  0.130 - 4.058

nurse aid, maids  0.166 - 3.326

agricultural workers  0.172 - 2.707

sales workers  0.179 - 2.566

medium manufac.  0.216 - 1.910

guards, packers  0.219 - 1.609

other medical & related  0.241 - 0.973

low-skilled manufac.  0.242 - 0.882

secretaries  0.270   0.377

non-secondary teachers  0.314   0.680

clerks  0.347   1.573

postal service workers  0.354   1.573

skilled manufac.  0.412   2.792

child care workers  0.442   3.375

technicians  0.452   3.701

specialized manufac.  0.462   4.016

protective services  0.484   4.033

managers & related  0.532   4.691

sales representatives  0.542   4.869

med.specialists, pilots  0.607   5.617

managers n.e.c.  0.611   5.771

computer operators  0.645   6.236

supervisors admin.  0.656   6.241

scientists, teachers  0.669   6.443

public servants  0.717   6.976

recreation, entertaining  0.735   7.126

specialists, lawyers        1.000  10.814
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Table 5 The effect unemployment, truncation and compression component of increasing the minimum
wage in the south

increase
minimum 
wage (%)

1979 1985 1990

1: 2: 3: 1: 2: 3: 1: 2: 3:

5 1.4 0.7 4.3 0.9 0.8 4.2 0.4 1.8 3.2

10 3.0 1.4 8.6 1.9 1.8 8.2 0.8 3.7 6.3

20 5.9 3.0 17.0 3.8 3.7 16.3 1.9 8.5 11.5
1: employment loss (%)
2: truncation component in wages (%)
3: compression component in wages (%)
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