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Abstract

Estimators of the extreme-value index are based on a set of upper
order statistics. We present an adaptive method to choose the num-
ber of order statistics involved in an optimal way, balancing variance
and bias components. Recently this has been achieved for the similar
but somewhat less involved case of regularly varying tails (Drees and
Kaufmann(1997); Danielsson et al.(1997)). The present paper follows
the line of proof of the last paper.
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1 Introduction

Suppose we have i.i.d. observations X, Xs, -, X,, whose common distri-
bution function F' is in the domain of attraction of an extreme-value dis-
tribution. The shape parameter v € R of this extreme-value distribution
(functional form: exp(—(1+7y2)~%/7)) can be estimated in various ways start-
ing from the sample X, X5, -+, X,,. Two popular estimators are Pickands’



estimator (in its generalized form see e.g. Pereira (1993)):

Xn n— - Xn n—
(B3, (k) := (= log#) *log —= [k0%] K] (1.1)

Xn,n—[kﬂ] - Xn,nfk

(0 € (0,1)) where X,,; < --- < X,,,, are the order statistics of Xy, ---,X,
and [z] denotes the largest integer which is not larger than z, and the moment
estimator

1 (M’f(ll))Q _

M3 (k) == M +1 - 5(1 YO )™ (1.2)

with MY .= %Zf:_ol (log Xy n—i — log Xy, n—r)?. For this estimator we have
to require that the right end point of the distribution is positive.

If the underlying probability distribution is known, the asymptotically op-
timal value of k£ can be determined (Dekkers and de Haan (1993)) in minimal
mean squared error sense by assuming some kind of second order condition.
However the asymptotically optimal value of k£ depends on the unknown pa-
rameter v and on the unknown second order function. We shall develop a
bootstrap procedure that gives the asymptotically optimal value of k£ adap-
tively. Results for moment estimator and for Pickands’ estimator are given in
section 2 and section 3 respectively. All the proofs are postponed till section
4. In appendix we shall explain why we use different second order conditions
in section 2 and section 3.

2 Main results for moment estimator

Throughout this section we assume U(oo) > 0 and the following second order
conditions:
log U(tx)—log U(t) N1

. a(t)/U(t) X i
tliglo A0 = H(x) (2.1)

where U(t) is the inverse function of the function 1/(1 — F), a(t) is positive
and A not changing sign eventually. The function H(z) is assumed not to be
a multiple of (7 — 1)/ and takes the form (supposing the function ¢ and A
are chosen properly)

1 xp+’y/\0 -1 1.7/\0 -1

- ], (2.2)

H(z) = =
(=) p p+yAO vAO




depending on a second order parameter p < 0 (see de Haan and Stadtmiiller,
relation (2.9) page 387).

First we restate in slightly greater generality a result from Dekkers and de
Haan (1993) providing the optimal number of order statistics for the moment
estimator as a function of v, p and the function A.

Theorem 2.1. Suppose (2.1) and (2.2) hold for p < 0. Let

ko(n) := arginf B("03, (k) — 7)”. (2.3)
Then

fa(o) ~ () (s (1) 24
where

1-2y.  (5-11y)(1—27)
1=3y. (1=3y)(1—4y)

V() =7 +(1=7-)’(1—2y_){4-38 }

(2.5)
with v+ =0V v and v = 0 Ay (the variance component) and
T+ (1—7-)d—27)

b(v, p) = — + = — 2.6

0= TG0 T = —2) 29

with p = 1— p (the bias component). The function s~ is the inverse function
of the decreasing function s satisfying

A2() = (1 + o(1) /toos(u) du. (2.7)

We are going to turn the formula in (2.3) into something we can handle
adaptively, the first step is to replace the unknown v in the formula by an
alternative estimator for . The alternative estimator is

(1) 2 7(2)
~ L (2) B 2 . Mn Mn -1
(k) = /M7 /241~ (1 o ).

The proof of the following Theorem is very similar to that of Theorem 2.1(in-
volving more lengthy calculations) and will be omitted.
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Theorem 2.2. Assume the conditions of Theorem 2.1. Let

ko(n) := arg 1%fE((M)’3/n(k) - ﬁ/n(k‘))Q

Then
. V2(7) |42 !
ko(n) ~ n(= )72 (57 (=)™
b*(7, p) n
where
(1=7)7V2(n) 1
= (7 —2(1 = 27-) + 3(1 = 372))* 15
(1—2y_)2 (1—2y-)(1-37-)\2 4(5—11vy_)
R U T B ¢ ] ( l mry
+3(1737_)2(1467371057_+19)
(1—4y-)(1-57-)(1-67-) )
T o e e )
g 2y=)(1—37-)
| 30202y )+ >—)(1-37-)
1—%7,
e e | ¢ 0| )
(1=2y-)(1—4y-)(1-57-)
and

b(y,p) = 7+S‘2;g Dy da gﬁ)gv_ 3)
+(1—77)(3—7%)(2ﬁ+1—47)
2(p—v-)(p—27v-)
(1=y-)(1=3y_)(1-2p+3p>+15py_ —Ty_+182)
2(p—v-)(p—27v-)(P—37-) ’

Next we are going to introduce the bootstrap procedure. One takes
ny independent drawings from the empirical distribution function of X, :=
{X1,---, X, }. This results in observations X7,---, X . We form the order
statistics X7 | <--- < X} | and define

11

k1
. 1 ) ) |
(J)Mnl (kl) = k_ E :(long,nl—i—l—l - log an,n1—k1)J

L=t
for k1 <ny and j =1, 2, 3. Next define

1 ((I)M* )2
(M) 2% (1) * ni -1
Yoy (k1) =" My +1 = S(1 = —52m)
" " 2 (Q)Mm



and

2 W prx @)
Ak = ) pr= - — _ T m  TTmy-l
A (k) == /O Mz J2+ 1 3(1 DL )L

By bootstrapping we can now estimate

Q(n1, k1) == E(("4; (k1) — A, (k1))*| X)

as well as we wish. The next Theorem connects the minimum of Q(ny, k;)
with the minimum considered in Theorem 2.2.

Theorem 2.3. Suppose the conditions of Theorem 2.1 hold andny = O(n'~)
for some 0 < € < 1. The random quantity kj(n,) is defined as follows:

ko(m) = arginf E(("037, (k) — 47, (k)| ).

Then

V2 1
72 ) )1}2” (s (
b*(v, p)

in probability (if x,,y, are two positive random sequences, we say that x, ~
Yn in probability if x,/y, — 1 in probability).

)

’56‘(”1) ~

ny

~ We now use the known quantity kj to estimate ko(n) and do this via
ko(n)

Corollary 2.1. Suppose the conditions of Theorem 2.3 hold and A(t) = ct?
with ¢ # 0 and p < 0. Then

— n —2p

Fo(n) ~ Fi(m) (o)™

1

tn probability.

—2
Next we get rid of the factor (n/n;)T% . We do this via a second bootstrap
procedure.

Theorem 2.4. Suppose the conditions of Corollary 2.1 hold and ny = (ny)*/n.
Let

ki(ny) := arg ing(((M)%(k) — Ay (£))?1 ).
Then

ko(n) ~ (ki(n1))?/k(ny)  in probability.



Corollary 2.2. Under the conditions of Theorem 2./,

_ 2(7)\j2 , _1
ko(n) ~ o) ()
-, (kg(n1))® (‘_/2(7)62(%/))

ki(n2) “VZ()b2(7.p)

Corollary 2.3. Suppose the conditions of Theorem 2.4 hold. Define
7 2 203 \I2(A A )

k‘g(n) = (k,o*(nl)) YZ(YTL)[L(YH’en) 1—2pn
with ki(n1) and ki (ny) as defined in Theorem 2.3 and Theorem 2.4 respec-

tively and with %, any consistent estimator of v (for instance M3, (k) with
k = k(n) any sequence with k — oo, k/n — 0) and

)5 (0 — o0).

. log ks (n1)

Pn = —2logn; + 2logki(ng)’
Then

ko(n) ~ ko(n)  in probability,
hence

B0, (ko(n)) = 7)* ~ inf (M5, (k) - 7)*

for n — oo.

3 Main results for Pickands’ estimator

Throughout this section we assume that F'is in the differentiable domain of
attraction of G, (notation: F' € Dgir(G,)), i.e., F is differentiable in a left
neighborhood of z, := sup{x : F(z) < 1} and there exist a, > 0 and b, € R
such that

tim 25 g+ )] = G ) )
locally uniformly for all # € R. The differentiable domains of attraction
were introduced by Pickands (1986). Clearly F' € Dg¢(G,) implies F' €
D(G,) for the same normalizing constants a, and b,,. Define U(t) := (1/(1—
F))~(t). The following proposition characterizes the differentiable domain of
attraction of G,.



Proposition 1. F' € Dy(G,) for some v € R if and only if U(t) is differ-
entiable for all sufficiently large t and U'(t) € RV, _;.

Proof. See Pickands (1986). O

In order to get the limit distribution function of estimator ()4, 4(k) we
have to require some kind of second order condition. Because of Proposition
1 it is quite natural to assume that there is a positive function A*(¢)(—
0 as t — o0) such that

it A1)

exists for every x > 0. In order to avoid trivialities we also assume that the
limit function is not a multiple of z7~!. Then the limit function must be of
the form ¢ x”’_l% for constants p < 0 and ¢ # 0 (see Theorem 1.9 of Geluk
and de Haan (1987) or Lemma 3.2.1 of Bingham et al. (1987); (2° —1)/0 is
defined as logz). We can and will subsume the constant ¢ in the function
A*. So suppose there is a function A with lim;_,.A(t) = 0 and not changing
sigh near infinity, such that
I [{J'(éf)) — a7 qah =1

L 2
e At T (3:2)

for all z > 0. The function |A|is then regularly varying with index p(notation :
|A| € RV,). It can be proved (see Pereira(1993) or de Haan and Stadtmiiller(1996))
that (3.2) is equivalent to

Ultz) — U(t) — tU' (1) ==L 1 27t — 1 v _1
fi )~ U) ®)% = hy (1) 1= —[ ~ T 70 (3.3)
t—0 tU'(t)A(t) ’ pYtp o

First we determine the theoretically optimal value kq(n) asymptotically.

Theorem 3.1. Assume F € Dy(G,) and (3.3) holds for A(t) = ct=" with
c# 0 and p < 0. Determine ko(n) such that E()3, o(k) — )? is minimal.
Then

(0~ -DHA+6~7"
ko(n)/{(_QPCZ(ﬂ)Q(G_'Y_P*I)Zepr

P v+p

Ve ERy

as n — Q.



Next we compute the optimum with v replaced by ()4, »(k6?).

Theorem 3.2. Assume F' € Dyy(G,) and (3.3) holds for A(t) = ct™" with
c# 0 and p < 0. Determine ko(n) such that E((7)3, o(k) =) 4, o(k6?))?
manimal. Then

_ O -DA+0 HA+0) o
ko(n)/{(_2p02(%)2(9 :;+Pp 1)29 zp( _972[,)2) } 1

as n — Oo0.

Corollary 3.1. Assume F' € Dgi(G,) and (3.3) holds for A(t) = ct=" with
¢ # 0 and p < 0. Determine ko(n) such that E(T)4, 9(k) — v)? is minimal
and ko(n) such that E(()3, o(k) =) 4, (k0?))? is minimal. Then

];50(7’1,) _)( 1—|—972 )ﬁ
ko(n) (1 —6-2r)2

as n — Q.

As in Section 2, we draw resamples X = {X7,---, X } from A,
{X1,-+-, Xy} with replacement. Let n; < n and X | < -+ < X;l n
denote the order statistics of X, and define

*

X D
(P)’S/:Ll 9(/€1) = (— log 9)—1 log )721*,711*%19 ] — X*l, 1 [kla].

ny,n1—[k16] n1,n1—k1

Then we propose to use the following bootstrap estimate of the mean square
error

E(("35, 5 (k) =7 4 g (k16))] ).
We can prove

Theorem 3.3. Assume F € Dy(G,) and (3.3) holds for A(t) = ct=* with
c# 0 and p < 0 Let ny = O(n =€) for some e € (0,1). Determine kj o(n1)

such that E((\P)35, o(k1) =) 4% 4(k10%))?|X,) is minimal. Then
. 0= — 1)1+ )1+ 072 =2
ko)A (2 i R £
—2pc* (=) (T, )07 (1 — 07%)?

as n — Q.



Finally we connect ko(n) with &} ; and k3, asymptotically.

Theorem 3.4. Assume F' € Dyf(G.) and (3.3) holds for A(t)t " — ¢ (p <
0). Let ny = O(n'~ ) for some € € (0,1/2) and ny = (ny1)?/n. Determine
kio(ni) such that E((‘47 g(k) —P) g o (ki6?))?|X,) s minimal (i = 1,2).
Define fq(p) = (%) . Then

(K1,)”

log k7
k;,[]fa ( 2(log kf o—logny) )

[ko(n) =1

as n — Q.

So as before we get an estimator for ky(n) which leads to an estimator
for # which has asymptotically the lowest mean squared error.

4 Proofs

We shall give some lemmas first.

Lemma 1. Let Yy, -+ .Y, be i.i.d. random variables with common distribu-
tion function 1 —z™' (x > 1) and Y1 < --- < Y, be the order statistics.
Assume k — oo, k/n — 0. Then

(i) Yoni/% — 1 in probability

(ii) Define
n ,M—1 Yn ,n— 777
% z :1 +1// k)) - 1—177
k n n—1u Yn n -1
- %Zz:l( = - )2 B (1—7,)?1—27,)
lz ((Ynn z+1/Ynn k)’y_f )3 _ 6
k £ai=1 7- (I=y)(1=2y-)(1=3v-)"

We have Vk(P,, Qn, R,) converges in distribution to (P, Q, R), say, which is
normally distributed with mean vector zero and covariance matriz

_ 1
( EP*= 5y 70
5 4(52117
EQ” = topi= pa—s o1,
ER2 . 36(19 105y— +146’y )
¢ ~(I=r-)P(1-27- f(l 37-)?(1—4y-)(1-57-)(1-67-)
E(PQ) = (1_7,)2(1_27,&1—37,)
E(PR) = (P02 T 5770
| E(QR) = 5

(1—7-)2(1=27-)?(1=37y-)(1—4y-)(1-57-)



Proof. Similar to the proof of Lemma 3.1 of Dekkers et al. (1989). O
The following is an extension of a result by Drees (1995).

Lemma 2. Let f be a measurable function. Suppose there exist a real pa-
rameter o and functions ai(t) > 0 and Ay(t) — 0 such that for all x > 0

fGx)—f) _ z*-1

. a1(t) a
- )

where

1[xo‘+5—1 ¢ —1
B a+p «

Then for any € > 0 there exists ty > 0 such that for all t > ty, tx > to,

f(tw)(—{(t) _ ozl

ai(t «

1 —H <ell a9 a+03 el log x| )

| 0 1(z)] < €[l 4+ 2%+ 22% e ]

Proof. Suppose o # 0. Then from relation (2.2) of Theorem 1 of de Haan
and Stadmiiller (1996), we have

H(x) =

] (B<0)

(tz)~%a(tx) — t~%aq(t) . 2’ —1
t—ay (t) A (1) 154

Hence

fltr)—ay (tz)/a—(f(t)—a1(t)/c)
a1 (t)Al (tg/a
fltz)—f(t)—ar ()1
ay (t)A1 (t)/a
o (tx) " “aq(tz)—t “a1(t)

-z a0 N
N aHl(x) — oz ﬂfl — _IanrEI‘

Similar to the proof of Lemma 2.2 of de Haan and Peng (1996), we get

a(tz)"Ya1(tz)—t"*a1(t) azh—1
|2 = aiidﬁAl(t)/Zl — o]
< z%(1 + zfecllosal]

and

|f(tff)*al(tl‘)/a (f(B)—ar(B)/0) | go+f— 1|
a1(t)A1(t)/a a+8
< 6[1+xa+pee\logx\]
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Hence

fz)—f(t) =2%-—1

i — H(x)

A1 t)
= |f(tfﬂ)*al(tm)/a*(f(t)*al(t)/a) 4ozetil
_m®A() a(a+p)
+xa(tw) a1 (tz)/a—t"“a1(t)/a _xamﬂ,1

t—%ay (t)Al (t)

Fi\[l + 2@  2potBecllogl),

o
<

Suppose @ = 0 and # < 0. Then from the proof of Theorem 2 (iii) of de
Haan and Stadtmiiller (1996) we have a,(t) — ¢y € (—00,0) U (0,00) and

co—ay(t
al"(t)All((z) — —1/3. Hence

f(tx) — colog(tx) — (f(t) — colog t) 129 -1
a1 (¢)A(t) ﬂ g

Similarly as above we know the lemma holds for & = 0 and 3 # 0.
Suppose a« = 3 = 0. Write

olt) = )= 5 [ 1(s)ds

which implies

(see Corollary 1.2.1 of de Haan (1970)). From Omey and Willekens (1988)
we have

g(tr) — g(t)
— = s logux.
ar (£) A1 (1) &
Note that
f(tx)—f(t)—ai1(t) logx
to)-a) e yes)—an(t) oF
_ T S)—ai
- fm t)Alg t) + fl sal(t Al(t
Hence

g(tz) — ar(t)

ai(t)Aq(t)

— logx — 1.
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Furthermore

o) - () |

a1(t)Ai(t)
Using Proposition 1.19.4 of Geluk and de Haan (1987), we can easily see the
lemma holds. Thus we complete the proof. O

Let F,, denote the empirical distribution function of X, and U,, = (ﬁ)*

Lemma 3. If (2.1) and (2.2) hold and n; = O(n'=%) for some ¢, € (0,1).
Then for any 0 < € < 1 there exists ty > 0 such that for all ty < t <
ni(logny)? and ty <tz < ny(logn,)?

log Up (tz)—log Up(t) 27— —1

| a(t)/U(;)(t) v_ . H(l‘)|
< [YERER 4 d(y-, p)aredlioe
+[ﬂ£g" +ed(v-, p)
te[l 4 27~ + 227~ Frecllosa]

d n
T I(Z(tp oL [\/E_'_ \/_]

(4.1)

where d(y_, p) > 0 is a constant which only depends on ~v_ and p.

Proof. Let GG, denote the empirical distribution function of n independent,
uniformly distributed random variables. As n is large enough and n; =
O(n'~%), we have

1
1/2<  sup |JtG, (=) <2 as. (4.2)
t<ni(logn1)? t

and

S,EEM( () 1)| l(z/gﬁn

(see equations (10) and (17) of Chapter 10.5 of Shorack and Wellner (1986)).
Hence

IN

a.s.

1 1 logn

-Gl <

|G (G (

sup a.s.

4<t<ni(logni)? G, (%)
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Therefore for all 4 < ¢t < n(logn,)?

2v/tlogn

NG (4.3)

1
tGa(5) — 1] <

Now we use Lemma 2, (4.2), (4.3),

7 — 1| < |27 P v2rthy — 1] for 1/2<y <2

and U, < U(tG_t(l))' It follows that for any € € (0, 1) there exists ¢y > 4 such
n (%
that for all to <t < ny(logn;)? and to <t < ny(logny)?

log Up (tz)—log Un(t) 27— —1

| a(t)/U(;)(t) v o H($)|

a(te) (oG (£5) 77— 1
)~log U(te)— i) o Ata)a(tz)/U(tz)
A(tz)a(tz) U (tz) A()a(t)/U(t)

(1) a(t) (tGp ($)) 7= =1

Y—
(t)a((tt))/ga) 1
log U (tz)—log U(t)— g(t) z '7_7_
AWa()/70) — H(z)
a(te) (tzGy (g5)) '~ -1
Dl _ GGy

MO OO R0

{{H (7 )|—|—6[1—|—(th (£)) -
P2t (L) o ST 4 et v
+|H(tG & ))| +ell + (tG, (7)) -

+2(th(t)) ’Yf-l-pee\log(tG;(%))\]

_|_€[1 + 7 + Qx’yf-l-pee\logx\]

log U(

oS

tc(1>

IN

(taGr (2) - —1| , |(tGz (1) -1
A+l G+ 5 e
< [ p) YR 4 ey, et

-mwﬂmi%ﬂ+M<ﬂ>
+e[l + 27 + 2x7*+p65“0g’”‘]

+d(7— ,0) Vizlogn + d(y-,p) Vtlogn
A Vn [A]  vn

where d(y_,p) > 0 is a constant only depending on v and p. The lemma
follows. [

Proof of Theorem 2.1. A full proof of a somewhat restricted case has been
given in Dekkers and de Haan (1993). We shall give a sketch of the proof.
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By Lemma 2, for any € > 0 there exists ¢y > 0 such that for all ¢ > ¢,
tr > 1y
logU(tx)—logU(t)  z7'— -1

| a(t)/U(Z(t) - H(x)| < 6[1 + - +2x7_+p+p66|10g$|],

Applying this relation with ¢ replaced by Y, and = by Y, i/ Yo k.,
adding the inequalities for ¢ = 0,1,--- ,k — 1 and dividing by k£ we get

miH
a(Yn,nfk)/U(Yn,nfk)

1—1'7, + Pn + A(Ynm/_k)% ZfZI H(Yn,n—i-l-l/yn,n—k)

+€A(Yn,nfk)% 25:1{1 + (Yn,n7i+1/Yn,n7k)77
+2(Ynn—iv1/) Yomi)'~ e 1080 mn—it1/Ynn-p)l}

IN

Note that {Y, . it1/Ynn x}5, L {Y/}E_ withY/,--- Y/ iid. with common
distribution function 1 — 1/z (x > 1). We apply the law of large numbers
to the third term. Also note that %Yn,n_k — 1 in probability, so that since
|A] is regularly varying, we have (A(n/k)) 'A(Y,n-r) — 1 in probability.
As a result

My ! Aln/H)
UV R R (S e R
Hence
(M7’(L1))2
a?(Yn,n—k)/U? (Yo, n—rk)
= (1_$,)2 + 12_?, + (1_33(?(/;_)%) + o(A(n/k)).
Similarly

M)
az(Yn,nfk)/Uz(Yn,nfk)

2A(n/k)(2p+1—4~_
= oy O+ S e ey + o(A/R)).

Combining these expansions we get (since a(Y;n—k)/U(Ynn—k) — 7+ in prob-
ability),

(M)’S/n(k) (2) (1)
_ (1) | My~ —2(M, ")
= Mn + QMT(LZ)—Q((My(Ll)))z

A(n/k
= (1 + 0 (W= + Pu+ 55565

+y_ + (1 — 77)2(1 — 2’)/,)[(1/2 - 77)Qn - 2Pn]
+A(n/k) 52502 + o(A(n/k)).

(P—v=)(Pp—27-)
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Consequently, by Lemma 1, we have

B3, (k) = )
= (V2)/k+ B3, p) 42 (/1)) (1 + o(1)
= (V()r/n+ 10, ) A1 + (1)

with r := k/n. One obtains the minimum with respect to r by using (2.5)
and equating the derivative to zero (for details see Dekkers and de Haan
(1993)). The theorem follows. O

Proof of Theorem 2.3. Given X, := {Xy,---,X,}, we have

« d
(I)M = Z log U n1 n1— z—l—l) 10g Un(Yn1,n1—k1)

with {Y,, ;}72, the order statistics from a distribution function 1-1/z (2 >
1) and independent of X,,. By the same arguments as in the proof of Theorem
2.1 using Lemma 3 instead of Lemma 2 we get
WM (k1)
(Ynl nq— kl)/U(Ynl ny— kl)

ni/ki n1/kilogn
T Py ) (A k) + O,

Note that 7””{21()% = 0(1/v/ky), so that the last term can be absorbed into

the second one. The expansion for (VM* (k) is the same as for Mﬁ)(kl)
given X,. Similarly for @M} (k) and (3)M » (k1). The Theorem follows. [

Proof of Corollary 2.1. Note that A(t) = ct” implies

s (1/t) = (=22 p) T2 tT7%.
The Corollary easily follows. O

Proof of Theorem 2.4. This follows by combining the results of Corollary 2.1
for kj(n1) and kf(ns). O

Proof of Corollary 2.3. We only have to prove that p, is a consistent esti-
=2
mator of p. By Theorem 2.3 the sequence ki(n;) is asymptotic to c;n, .

Hence

—2p

—2p

in probability. This gives the consistency. O

log kg (ny)/logn, — !

15



Lemma 4. If F € Dy/(G,), then (3.1) holds for a, = nU'(n) and b, = U(n)
and for any k — oo, k/n — 0 and 6 € (0, 1], the stochastic process

Xon-two) — Ul3)

Wi (0) := Vi 6 k0

converges (in the sense of convergence of all finite marginal distributions) to
a gaussian process w(0) which has mean zero and covariance structure

Cov(w(fy), w(B)) = 077,77, 0< 6 <By <1.
Proof. See Theorem 2.3 of Cooil (1985). O

Lemma 5. If (5.3) holds and n; = O(n'~%) for some ¢, € (0,1). Then for
any 0 < € < 1 there exists to > 0 such that for all to < t < ny(logny)? and
t() S tx S nl(logn1)2
Un(tz)=Un(t)  «¥—1
| a( )A(t) — - h’%p(x”
< [\/Elogn + E]D(’Y, p)xwrpee\logz\
[ 4 D(y, p) (44
+e[l + 27 + 2z FPecllosl]
D ogn
+|I§ztp)xflg VZ +1]

where D(7y, p) > 0 is a constant which only depends on y and p.

Proof. Similar to the proof of Lemma 3. O
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Proof of Theorem 3.1. By Lemma 4 we have

VE(M3gk) =)
\/E( 1 logln,nf[ké'z]_ n,n—[k6] _7)

710g0 Xn,nf[k:e]*Xn,nfk

k Xn,nf k62 7X"a”*[k9]
- _\1{)%0 log(l + 97 Xn,n[—[k:G]]_Xn,n—k: o 1)
4V Xnnowe=Xnn 001707 (X n ko) = Xnin k) (1+0(1))
- - IOgg 077(Xn,n—[k:9]_Xn,n—k:)
_ [ Vi Xnn-we1—U(55z) = (14077 ) (X e (ko) =U (55 ) +0 77 (X - =U(%))
_IOga giw(xn,n—[ke]_xn,n—k)

iz U(@;&?Z ;Z%l*fflf“%ﬁu +o(1))
( note Xmncfo—Xnn—k P, 9771

wU(%) v
< g X 62)~U G )~ 07" ) (X o)~ Ui )0 (X n—ie —U(R))
— —loga %U/(%)Q,,YQ*’Y—l
U(452)— (107U (55)+077U()
+—\1{)Eg0 = QUr(g)gfyelVEW—l - ](1+0(1))
k k %
d _ _
L e (w(6?) — (1407w (8) + 6 w(1)) + o(1)
Y
U(4pz) (107U (55)+07U(%)
+—\1{)Eg0 - ﬂU!(E)gffkaf'y—l : (1+0(1))7
k

k vy

thus the variance of vk(("4, 4(k) — ) asymptotically equals to

P20 —1)(1 407271
(log 0)*(6=7 — 1)°

and the bias of V/k((")4, (k) — v) asymptotically equals to

n, 077 vy 1=07077"" -1
kA(— .
vk (k)—log99*7—1 p Y+p

By A(t) = c¢t" we get in a way similar to the proof of Theorem 2.1

1 —27—1
— 1)1+ =

kO( )/{( _2p02(17_p99)2(9—;;”pfl)2972p
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Proof of Theorem 3.2. By Lemma 4 we have

\/E((P)’S/n,ﬂ(k) —(P) ’A)/n,ﬂ(kgz))
VE(P 50(k) = 7) = VE(,0(k07) — )

I~ I

[ \/E Xn,n—[m02]_U(M%)_(l‘l'g_‘y)(xn,n—[ke]_U(W)H’a_’y(xn,n—k_[](%))
—log 6 Q_V(Xn,—[ke]an,nfk)
VE Ul (100U 107 0(3)
+10g9 Q—V(Xn,n,[kg]an,n,k)
_ VE X n—rot;Ua) —(LH077) (X, 03~ U gz D H077 (X, 0 e2)—U(52))
—log 0 0=7(X,, k631~ X, n—k62))
B Ul (UGG,
,logeY G_V(Xn,)?—[ké?’]7Xn,n—[k:92])
“nn—[k03]" *n,n—[k2] P — —v—-1
( note [%[]],(%) k6% P, g 2707)

1B

L (w(?) — (1 + 0 ")w(®) + 6 "w(1)) + o(1)

—log6 9779—":771
_n_\_ - n - n
e e i (1 o(1)
——togr ;e (W) — (L+ 07 )w(t?) + 0 7w(6?)) + o(1)
VR UG ) U () U ()
~loe? U=

+

(1+0(1)),

thus the variance of V/k((P)4, (k) =) 4, o(k6?)) asymptotically equals to

YA+ O -1)(1+607?)
(log8)*(0=7 —1)?

and the bias of Vk(("4, (k) =) 4, o(k6?)) asymptotically equals to

n, 077 1—-60P077P—-1
kA(— 1—0727).
vk (k)—logH p Y+p 9*7—1( )

By A(t) = c¢t—” we get in a way similar to the proof of Theorem 2.1

@ =11+ H(1+072)

)172 1-2 }—)I
N P

ko(n)/{(

P T+e
O
Proof of Theorem 3.3. Similar to the proof of Theorem 2.3 by using Lemma
5 instead of Lemma 3. O
Proof of Theorem 8.4. Similar to the proof of Corollary 2.3. O
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Appendix

The following theorem and remark explain why we use different second
order conditions in section 2 and section 3.

Theorem A. Assume U(oo) > 0 and there exist functions a(t) > 0 and
A(t) — 0 such that

Ultz)=U(t)  a7—1

a(t) v
A(t) — H(x)

where
1 P -1 x7—1

H(x) =
provtp v

] (p<0).

Suppose that v # p. Then
a(t)

-7
Jim S = e € 00,00
where
- +oo f0<y<—p orp<vy<0
- finite  otherwise .
Furthermore
logU(tx)—logU(t)  z'——1
a(t)/U(tZ v— N _H(l')
Alt)
where
- A(t)  if c € (—o0,00)
A(t) = { a(t) _ otherwise
U(t) T+ ’
A(t) € RV,

- f0<y<—p
p = v ifp<y<0
p  otherwise
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and

c(Z=1)? ify <0,c € (—00,0)
2 : < —
H(ZU): 7 Zf’y_o,cfw 1j:oo.
v "H(z) — £(logz +*—=) if 7> 0,c € (—00,00)

%(lognc—i- %) if v>0,c= +o00.

Proof. Suppose that v # 0. Then from the proof of Lemma 2 we have

U(tz) —ate)/y = (U@R) —a(t)/y)  1a7 -1

a(t)A(t) Y v+p
If v+ p >0, then
U(t) —a(t)/y 1
a(t)A(t) (v +p)

Hence

aO/U(W) — 1 altyyalt))y - UH)
A U amam 0T

Ify+p=0,ie,y=—p>0, then

Hence

— +00.

a(t)/U{) —y _ a(t)ya(t)/y —U(t)
A U alt)A(1)

If v+ p <0, then

U(t) —a(t)/y — ¢y € (—00,0) U (0, 00)
U)=a(t)/y=co _, _ 1
a(t)A(t) v(v+p)°

For v > 0, we have

a(t)/U(t) =y _ a(t)v(a(t)/v —Ul)+a ) — oo
A0 0 () A(t) a(t)A(t) '
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For v <0, we |a(t)/(U(t)A(t))| € RV,_,. Hence

/U0 - {500

Suppose that v = 0 and p < 0. Then from the proof of Lemma 2
a(t) — ¢ € (—00,0) U (0,00). Hence

a(t)/(U()A(t)) ~ e1/(U(00)A(t)) — Foo.

We have now proved that the first part of the theorem.
Note that a(t)/U(t) — 4. For v < 0, we have
U(tx)
log 0)
a(t V- —
= U((t))[t =+ A()H (2) + o(A(1))]

(V[T A1) H ) + o A(1)]2 + o (1)),

ie.,

log U(tx)—log U(t) 27— —1

a(t)/U(t) 7-

= A(t)H(x)w—i-o(A(t))w
— O [(E=0)2 2= A1) H () + 0( A(1))] + o 555).

For v > 0, we have

= 27 G e RS IA H ) + o(A(t)]

® 7 ot U(t) ot
= 14 (@7 = 1)(1— 0 4 o 0@ H ) + o( (D))

ie.,

logU(tz)—log U(t

OTG (7) g
= —(logz + === #0 (a(t) /U (1) — )

+2 YA(t)H () + o(A(t)) + o(a(t)/U(t) — 1).

So the second part of the theorem follows easily. O
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Remark A. It is not true that a second order condition for U always implies
a second order condition for logU: Let v = p and define

t
U'(#) = £ exp / 5712 + sin(loglog 5)) s}
1

From the representation (2.5) of de Haan and Resnick (1996) we find

U(te)-U()  z7—1

HO) T /’” PR
t7[2 + sin(loglogt)] 1 '

Hence

a(t)/(U(1)A(1))
tu'(t)
U (t)tY[2+sin(loglog t)]
exp{fliQ 71t [Qisirgl(log log s)] ds
U(o0)[2+sin(log log t)]

which does not have a limit.
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