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Abstract

Estimators of the extreme-value index are based on a set of upper

order statistics. We present an adaptive method to choose the num-

ber of order statistics involved in an optimal way, balancing variance

and bias components. Recently this has been achieved for the similar

but somewhat less involved case of regularly varying tails (Drees and

Kaufmann(1997); Danielsson et al.(1997)). The present paper follows

the line of proof of the last paper.
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bootstrap, mean squared error.

1 Introduction

Suppose we have i.i.d. observations X1; X2; � � � ; Xn whose common distri-

bution function F is in the domain of attraction of an extreme-value dis-

tribution. The shape parameter 
 2 R of this extreme-value distribution

(functional form: exp(�(1+
x)�1=
)) can be estimated in various ways start-

ing from the sample X1; X2; � � � ; Xn. Two popular estimators are Pickands'
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estimator (in its generalized form see e.g. Pereira (1993)):

(P )
̂n;�(k) := (� log �)�1 log
Xn;n�[k�2] �Xn;n�[k�]

Xn;n�[k�] �Xn;n�k
(1.1)

(� 2 (0; 1)) where Xn;1 � � � � � Xn;n are the order statistics of X1; � � � ; Xn

and [z] denotes the largest integer which is not larger than z, and the moment

estimator

(M)
̂n(k) := M (1)
n + 1� 1

2
(1� (M

(1)
n )2

M
(2)
n

)�1 (1.2)

with M
(j)
n := 1

k

Pk�1
i=0 (logXn;n�i � logXn;n�k)j. For this estimator we have

to require that the right end point of the distribution is positive.

If the underlying probability distribution is known, the asymptotically op-

timal value of k can be determined (Dekkers and de Haan (1993)) in minimal

mean squared error sense by assuming some kind of second order condition.

However the asymptotically optimal value of k depends on the unknown pa-

rameter 
 and on the unknown second order function. We shall develop a

bootstrap procedure that gives the asymptotically optimal value of k adap-

tively. Results for moment estimator and for Pickands' estimator are given in

section 2 and section 3 respectively. All the proofs are postponed till section

4. In appendix we shall explain why we use di�erent second order conditions

in section 2 and section 3.

2 Main results for moment estimator

Throughout this section we assume U(1) > 0 and the following second order

conditions:

lim
t!1

logU(tx)�logU(t)

a(t)=U(t)
� x
^0�1


^0
A(t)

= H(x) (2.1)

where U(t) is the inverse function of the function 1=(1� F ), a(t) is positive

and A not changing sign eventually. The function H(x) is assumed not to be

a multiple of (x
 � 1)=
 and takes the form (supposing the function a and A

are chosen properly)

H(x) =
1

�
[
x�+
^0 � 1

� + 
 ^ 0
� x
^0 � 1


 ^ 0
]; (2.2)
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depending on a second order parameter � � 0 (see de Haan and Stadtm�uller,

relation (2.9) page 387).

First we restate in slightly greater generality a result from Dekkers and de

Haan (1993) providing the optimal number of order statistics for the moment

estimator as a function of 
; � and the function A.

Theorem 2.1. Suppose (2.1) and (2.2) hold for � < 0. Let

k0(n) := arg inf
k
E((M)
̂n(k)� 
)2: (2.3)

Then

k0(n) � n(
V 2(
)

b2(
; �)
)

1
1�2� (s�(

1

n
))�1 (2.4)

where

V 2(
) = 
2
+ + (1� 
�)

2(1� 2
�)f4� 8
1� 2
�
1� 3
�

+
(5� 11
�)(1� 2
�)

(1� 3
�)(1� 4
�)
g

(2.5)

with 
+ = 0 _ 
 and 
� = 0 ^ 
 (the variance component) and

b(
; �) =

+

(1� 
�)(��� 
�)
+

(1� 
�)(1� 2
�)

(��� 
�)(��� 2
�)
(2.6)

with �� = 1�� (the bias component). The function s� is the inverse function
of the decreasing function s satisfying

A2(t) = (1 + o(1))

Z 1

t

s(u) du: (2.7)

We are going to turn the formula in (2.3) into something we can handle

adaptively, the �rst step is to replace the unknown 
 in the formula by an

alternative estimator for 
. The alternative estimator is


̂n(k) :=

q
M

(2)
n =2 + 1� 2

3
(1� M

(1)
n M

(2)
n

M
(3)
n

)�1:

The proof of the following Theorem is very similar to that of Theorem 2.1(in-

volving more lengthy calculations) and will be omitted.
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Theorem 2.2. Assume the conditions of Theorem 2.1. Let

�k0(n) := arg inf
k
E((M)
̂n(k)� 
̂n(k))

2:

Then

�k0(n) � n(
�V 2(
)
�b2(
; �)

)
1

1�2� (s�(
1

n
))�1

where

(1� 
�)�2 �V 2(
)

= (
+ � 2(1� 2
�) +
1
2
(1� 3
�))2

1
1�2
�

+(�
+
4
+

(1�2
�)2

2
+

(1�2
�)(1�3
�)

4
)2

4(5�11
�)

(1�2
�)2(1�3
�)(1�4
�)

+
3(1�3
�)2(146
2

�
�105
�+19)

(1�4
�)(1�5
�)(1�6
�)

+
8(
+�2(1�2
�)+

1�3

�

2
)(� 
+

4
+

(1�2

�
)2

2
+

(1�2

�
)(1�3


�
)

4
)

(1�2
�)(1�3
�)

+
3(
+�2(1�2
�)+

1�3

�

2
)(1�3
�)

1�4
�

�6(� 
+
4
+

(1�2

�
)2

2
+

(1�2

�
)(1�3


�
)

4
)(1�3
�)(7
��3)

(1�2
�)(1�4
�)(1�5
�)

and

�b(
; �) =

+(2���1)

4��2
+

(1�
�)(5
��3)

2(���
�)

+
(1�
�)(3�7
�)(2��+1�4
)

2(���
�)(���2
�)

� (1�
�)(1�3
�)(1�2��+3��2+15��
��7
�+18
2
�
)

2(���
�)(���2
�)(���3
�)
:

Next we are going to introduce the bootstrap procedure. One takes

n1 independent drawings from the empirical distribution function of Xn :=

fX1; � � � ; Xng. This results in observations X�
1 ; � � � ; X�

n1
. We form the order

statistics X�
n1;1

� � � � � X�
n1;n1

and de�ne

(j)M�
n1
(k1) :=

1

k1

k1X
i=1

(logX�
n1;n1�i+1 � logX�

n1;n1�k1)
j

for k1 < n1 and j = 1; 2; 3: Next de�ne

(M)
̂�n1(k1) :=
(1) M�

n1
+ 1� 1

2
(1� ((1)M�

n1
)2

(2)M�
n1

)�1
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and


̂�n1(k1) :=
q

(2)M�
n1
=2 + 1� 2

3
(1�

(1)M�
n1

(2)M�
n1

(3)M�
n1

)�1:

By bootstrapping we can now estimate

Q(n1; k1) := E(((M)
̂�n1(k1)� 
̂�n1(k1))
2jXn)

as well as we wish. The next Theorem connects the minimum of Q(n1; k1)

with the minimum considered in Theorem 2.2.

Theorem 2.3. Suppose the conditions of Theorem 2.1 hold and n1 = O(n1��)
for some 0 < � < 1. The random quantity �k�0(n1) is de�ned as follows:

�k�0(n1) := arg inf
k
E(((M)
̂�n1(k)� 
̂�n1(k))

2jXn):

Then

�k�0(n1) � n1(
�V 2(
)
�b2(
; �)

)
1

1�2� (s�(
1

n1

))�1

in probability (if xn; yn are two positive random sequences, we say that xn �
yn in probability if xn=yn ! 1 in probability).

We now use the known quantity �k�0 to estimate k0(n) and do this via
�k0(n).

Corollary 2.1. Suppose the conditions of Theorem 2.3 hold and A(t) = ct�

with c 6= 0 and � < 0. Then

�k0(n) � �k�0(n1)(
n

n1

)
�2�

1�2�

in probability.

Next we get rid of the factor (n=n1)
�2�

1�2� . We do this via a second bootstrap

procedure.

Theorem 2.4. Suppose the conditions of Corollary 2.1 hold and n2 = (n1)
2=n.

Let

�k�1(n2) := arg inf
k
E(((M)
̂�n2(k)� 
̂�n2(k))

2jXn):

Then

�k0(n) � (�k�0(n1))
2=�k�1(n2) in probability.
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Corollary 2.2. Under the conditions of Theorem 2.4,

k0(n) � �k0(n)(
V 2(
)�b2(
;�)
�V 2(
)b2(
;�)

)
1

1�2�

� (�k�0(n1))
2

�k�1(n2)
(
V 2(
)�b2(
;�)
�V 2(
)b2(
;�)

)
1

1�2� (n!1):

Corollary 2.3. Suppose the conditions of Theorem 2.4 hold. De�ne

k̂0(n) :=
(�k�0(n1))

2

�k�1(n2)
(
V 2(
̂n)�b

2(
̂n; �̂n)
�V 2(
̂n)b2(
̂n; �̂n)

)
1

1�2�̂n

with �k�0(n1) and �k�1(n2) as de�ned in Theorem 2.3 and Theorem 2.4 respec-

tively and with 
̂n any consistent estimator of 
 (for instance (M)
̂n(k) with

k = k(n) any sequence with k!1; k=n! 0) and

�̂n :=
log �k�0(n1)

�2 logn1 + 2 log �k�0(n1)
:

Then

k̂0(n) � k0(n) in probability;

hence

E((M)
̂n(k̂0(n))� 
)2 � inf
k
E((M)
̂n(k)� 
)2

for n!1.

3 Main results for Pickands' estimator

Throughout this section we assume that F is in the di�erentiable domain of

attraction of G
 (notation: F 2 Ddif(G
)), i.e., F is di�erentiable in a left

neighborhood of x1 := supfx : F (x) < 1g and there exist an > 0 and bn 2 R

such that

lim
n!1

@

@x
[F n(anx + bn)] = G0


(x) (3.1)

locally uniformly for all x 2 R. The di�erentiable domains of attraction

were introduced by Pickands (1986). Clearly F 2 Ddif(G
) implies F 2
D(G
) for the same normalizing constants an and bn. De�ne U(t) := (1=(1�
F ))�(t). The following proposition characterizes the di�erentiable domain of

attraction of G
.
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Proposition 1. F 2 Ddif(G
) for some 
 2 R if and only if U(t) is di�er-

entiable for all su�ciently large t and U 0(t) 2 RV
�1.

Proof. See Pickands (1986).

In order to get the limit distribution function of estimator (P )
̂n;�(k) we

have to require some kind of second order condition. Because of Proposition

1 it is quite natural to assume that there is a positive function A�(t)(!
0 as t!1) such that

lim
t!1

U 0(tx)

U 0(t)
� x
�1

A�(t)

exists for every x > 0. In order to avoid trivialities we also assume that the

limit function is not a multiple of x
�1. Then the limit function must be of

the form c0x
�1 x��1
�

for constants � � 0 and c0 6= 0 (see Theorem 1.9 of Geluk

and de Haan (1987) or Lemma 3.2.1 of Bingham et al. (1987); (x0 � 1)=0 is

de�ned as logx). We can and will subsume the constant c0 in the function

A�. So suppose there is a function A with limt!1A(t) = 0 and not changing

sigh near in�nity, such that

lim
t!1

U 0(tx)

U 0(t)
� x
�1

A(t)
= x
�1x

� � 1

�
(3.2)

for all x > 0. The function jAj is then regularly varying with index �(notation :

jAj 2 RV�). It can be proved (see Pereira(1993) or de Haan and Stadtm�uller(1996))

that (3.2) is equivalent to

lim
t!1

U(tx)� U(t)� tU 0(t)x

�1



tU 0(t)A(t)
= h
;�(x) :=

1

�
[
x
+� � 1


 + �
� x
 � 1



]: (3.3)

First we determine the theoretically optimal value k0(n) asymptotically.

Theorem 3.1. Assume F 2 Ddif(G
) and (3.3) holds for A(t) = ct�� with

c 6= 0 and � < 0. Determine k0(n) such that E((P )
̂n;�(k) � 
)2 is minimal.

Then

k0(n)=f(
(��1 � 1)(1 + ��2
�1)

�2�c2(1���
�

)2( �
�
���1

+�

)2��2�
)

1
1�2�n

�2�

1�2� g ! 1

as n!1:
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Next we compute the optimum with 
 replaced by (P )
̂n;�(k�
2):

Theorem 3.2. Assume F 2 Ddif(G
) and (3.3) holds for A(t) = ct�� with

c 6= 0 and � < 0. Determine �k0(n) such that E((P )
̂n;�(k)�(P ) 
̂n;�(k�
2))2 is

minimal. Then

�k0(n)=f(
(��1 � 1)(1 + ��2
�1)(1 + ��2)

�2�c2(1���
�

)2( �
�
���1

+�

)2��2�(1� ��2�)2
)

1
1�2�n

�2�

1�2� g ! 1

as n!1:

Corollary 3.1. Assume F 2 Ddif(G
) and (3.3) holds for A(t) = ct�� with

c 6= 0 and � < 0. Determine k0(n) such that E((P )
̂n;�(k) � 
)2 is minimal

and �k0(n) such that E((P )
̂n;�(k)�(P ) 
̂n;�(k�
2))2 is minimal. Then

�k0(n)

k0(n)
! (

1 + ��2

(1� ��2�)2
)

1
1�2�

as n!1:

As in Section 2, we draw resamples X �
n1

= fX�
1 ; � � � ; X�

n1
g from Xn =

fX1; � � � ; Xng with replacement. Let n1 < n and X�
n1;1

� � � � � X�
n1;n1

denote the order statistics of X �
n1

and de�ne

(P )
̂�n1;�(k1) := (� log �)�1 log
X�

n1;n1�[k1�2]
�X�

n1;n1�[k1�]

X�
n1;n1�[k1�]

�X�
n1;n1�k1

:

Then we propose to use the following bootstrap estimate of the mean square

error

E(((P )
̂�n1;�(k1)�(P ) 
̂�n1;�(k1�
2))2jXn):

We can prove

Theorem 3.3. Assume F 2 Ddif(G
) and (3.3) holds for A(t) = ct�� with
c 6= 0 and � < 0. Let n1 = O(n1��) for some � 2 (0; 1). Determine k�1;0(n1)

such that E(((P )
̂�n1;�(k1)�(P ) 
̂�n1;�(k1�
2))2jXn) is minimal. Then

k�1;0(n1)=f(
(��1 � 1)(1 + ��2
�1)(1 + ��2)

�2�c2(1���
�

)2( �
�
���1

+�

)2��2�(1� ��2�)2
)

1
1�2�n

�2�

1�2�

1 g p! 1

as n!1:
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Finally we connect k0(n) with k�1;0 and k�2;0 asymptotically.

Theorem 3.4. Assume F 2 Ddif(G
) and (3.3) holds for A(t)t�� ! c (� <

0). Let n1 = O(n1��) for some � 2 (0; 1=2) and n2 = (n1)
2=n. Determine

k�i;0(ni) such that E(((P )
̂�ni;�(ki) �(P ) 
̂�ni;�(ki�
2))2jXn) is minimal (i = 1; 2).

De�ne f�(�) = ( 1+��2

(1���2�)2
)

1
1�2� : Then

(k�1;0)
2

k�2;0f�(
log k�1;0

2(log k�1;0�log n1)
)
=k0(n)

p! 1

as n!1:

So as before we get an estimator for k0(n) which leads to an estimator

for � which has asymptotically the lowest mean squared error.

4 Proofs

We shall give some lemmas �rst.

Lemma 1. Let Y1; � � � ; Yn be i.i.d. random variables with common distribu-

tion function 1 � x�1 (x > 1) and Yn;1 � � � � � Yn;n be the order statistics.
Assume k!1; k=n! 0. Then

(i) Yn;n�k=
n
k
! 1 in probability

(ii) De�ne8><
>:

Pn :=
1
k

Pk
i=1

(Yn;n�i+1=Yn;n�k)


��1


�
� 1

1�
�
Qn :=

1
k

Pk
i=1(

(Yn;n�i+1=Yn;n�k)


��1


�
)2 � 2

(1�
�)(1�2
�)

Rn :=
1
k

Pk

i=1(
(Yn;n�i+1=Yn;n�k)



��1


�
)3 � 6

(1�
�)(1�2
�)(1�3
�)
:

We have
p
k(Pn; Qn; Rn) converges in distribution to (P;Q;R), say, which is

normally distributed with mean vector zero and covariance matrix8>>>>>>>><
>>>>>>>>:

EP 2 = 1
(1�
�)2(1�2
�)

EQ2 =
4(5�11
�)

(1�
�)2(1�2
�)2(1�3
�)(1�4
�)

ER2 =
36(19�105
�+146
2

�
)

(1�
�)2(1�2
�)2(1�3
�)2(1�4
�)(1�5
�)(1�6
�)

E(PQ) = 4
(1�
�)2(1�2
�)(1�3
�)

E(PR) = 18
(1�
�)2(1�2
�)(1�3
�)(1�4
�)

E(QR) = 12(9�21
�)

(1�
�)2(1�2
�)2(1�3
�)(1�4
�)(1�5
�)
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Proof. Similar to the proof of Lemma 3.1 of Dekkers et al. (1989).

The following is an extension of a result by Drees (1995).

Lemma 2. Let f be a measurable function. Suppose there exist a real pa-

rameter � and functions a1(t) > 0 and A1(t)! 0 such that for all x > 0

lim
t!1

f(tx)�f(t)
a1(t)

� x��1
�

A1(t)
= H1(x)

where

H1(x) =
1

�
[
x�+� � 1

� + �
� x� � 1

�
] (� � 0):

Then for any � > 0 there exists t0 > 0 such that for all t � t0, tx � t0,

j
f(tx)�f(t)

a1(t)
� x��1

�

A1(t)
�H1(x)j � �[1 + x� + 2x�+�e�j log xj]:

Proof. Suppose � 6= 0. Then from relation (2.2) of Theorem 1 of de Haan

and Stadm�uller (1996), we have

(tx)��a1(tx)� t��a1(t)

t��a1(t)A1(t)
! x� � 1

�
:

Hence

f(tx)�a1(tx)=��(f(t)�a1 (t)=�)
a1(t)A1(t)=�

=
f(tx)�f(t)�a1(t)x

�
�1
�

a1(t)A1(t)=�

�x� (tx)��a1(tx)�t��a1(t)
t��a1(t)A1(t)

! �H1(x)� x� x��1
�

= �x�+��1
�+�

:

Similar to the proof of Lemma 2.2 of de Haan and Peng (1996), we get

jx� (tx)��a1(tx)�t��a1(t)
t��a1(t)A1(t)=�

� x� x��1
�
j

� x��[1 + x�e�j log xj]

and

jf(tx)�a1(tx)=��(f(t)�a1 (t)=�)
a1(t)A1(t)=�

+ x�+��1
�+�

j
� �[1 + x�+�e�j logxj]:

10



Hence

j
f(tx)�f(t)

a1(t)
�x

�
�1
�

A1(t)
�H1(x)j

= jf(tx)�a1(tx)=��(f(t)�a1 (t)=�)
a1(t)A1(t)

+ x�+��1
�(�+�)

+x� (tx)��a1(tx)=��t��a1(t)=�
t��a1(t)A1(t)

� x� x��1
��

j
� �

j�j [1 + x� + 2x�+�e�j log xj]:

Suppose � = 0 and � < 0. Then from the proof of Theorem 2 (iii) of de

Haan and Stadtm�uller (1996) we have a1(t) ! c0 2 (�1; 0) [ (0;1) and
c0�a1(t)
a1(t)A1(t)

! �1=�. Hence

f(tx)� c0 log(tx)� (f(t)� c0 log t)

a1(t)A(t)
! 1

�

x� � 1

�
:

Similarly as above we know the lemma holds for � = 0 and � 6= 0.

Suppose � = � = 0. Write

g(t) := f(t)� 1

t

Z t

0

f(s) ds

which implies

f(t) = g(t) +

Z t

0

g(s)

s
ds

(see Corollary 1.2.1 of de Haan (1970)). From Omey and Willekens (1988)

we have

g(tx)� g(t)

a1(t)A1(t)
! logx:

Note that

f(tx)�f(t)�a1(t) log x
a1(t)A1(t)

=
g(tx)�g(t)
a1(t)A1(t)

+
R x
1

g(ts)�a1(t)
sa1(t)A1(t)

ds:

Hence

g(tx)� a1(t)

a1(t)A1(t)
! log x� 1:

11



Furthermore

g(t)� a1(t)

a1(t)A1(t)
! �1:

Using Proposition 1.19.4 of Geluk and de Haan (1987), we can easily see the

lemma holds. Thus we complete the proof.

Let Fn denote the empirical distribution function of Xn and Un = ( 1
1�Fn )

�.

Lemma 3. If (2.1) and (2.2) hold and n1 = O(n1��0) for some �0 2 (0; 1).

Then for any 0 < � < 1 there exists t0 > 0 such that for all t0 � t �
n1(logn1)

2 and t0 � tx � n1(logn1)
2

j
logUn(tx)�logUn(t)

a(t)=U(t)
�x



�
�1



�

A(t)
�H(x)j

� [
p
tx log n
n

+ �]d(
�; �)x�e�j log xj

+[
p
t log n
n

+ �]d(
�; �)
+�[1 + x
� + 2x
�+�e�j log xj]
+

d(
�;�)

jA(t)j
log n
n
[
p
tx +

p
t]

(4.1)

where d(
�; �) > 0 is a constant which only depends on 
� and �.

Proof. Let Gn denote the empirical distribution function of n independent,

uniformly distributed random variables. As n is large enough and n1 =

O(n1��0), we have

1=2 � sup
t�n1(log n1)2

jtG�
n (

1

t
)j � 2 a.s. (4.2)

and

sup
t�2

j
p
t(Gn(

1

t
)� 1

t
)j � lognp

n
a.s.

(see equations (10) and (17) of Chapter 10.5 of Shorack and Wellner (1986)).

Hence

sup
4�t�n1(log n1)2

s
1

G�
n (

1
t
)
jGn(G

�
n (

1

t
))�G�

n (
1

t
)j � lognp

n
a.s.

12



Therefore for all 4 � t � n1(logn1)
2

jtGn(
1

t
)� 1j � 2

p
t lognp
n

a.s. (4.3)

Now we use Lemma 2, (4.2), (4.3),

jy
 � 1j � j
j(2
�1 _ 2
+1)jy � 1j for 1=2 � y � 2

and Un
d
= U( t

tG�n ( 1
t
)
): It follows that for any � 2 (0; 1) there exists t0 > 4 such

that for all t0 � t � n1(logn1)
2 and t0 � t � n1(logn1)

2

j
logUn(tx)�logUn(t)

a(t)=U(t)
�x



�
�1



�

A(t)
�H(x)j

d
= j

logU( tx

txG
�

n ( 1
tx

)
)�logU(tx)� a(tx)

U(tx)

(txG
�

n ( 1
tx

))
�

�
�1



�

A(tx)a(tx)=U(tx)

A(tx)a(tx)=U(tx)

A(t)a(t)=U(t)

�
logU( t

tG
�

n ( 1
t
)
)�logU(t)� a(t)

U(t)

(tG
�

n ( 1
t
))
�

�
�1



�

A(t)a(t)=U(t)

+
logU(tx)�logU(t)� a(t)

U(t)
x


�
�1



�

A(t)a(t)=U(t)
�H(x)

+
a(tx)

U(tx)

(txG
�

n ( 1
tx

))
�

�
�1



�

A(t)a(t)=U(t)
� (tG�n ( 1

t
))�
��1


�A(t)
j

� fjH( 1

txG�n ( 1
tx

)
)j+ �[1 + (txG�

n (
1
tx
))�
�

+2(txG�
n (

1
tx
))�
�+�e�j log(txG

�

n ( 1
tx

))jg(1 + �)x�e�j log xj

+jH( 1

tG�n ( 1
t
)
)j+ �[1 + (tG�

n (
1
t
))�
�

+2(tG�
n (

1
t
))�
�+�e�j log(tG

�

n ( 1
t
))j]

+�[1 + x
� + 2x
�+�e�j log xj]

+(1 + �)j (txG
�

n ( 1
tx

))�
��1


�A(t)
j+ j (tG

�

n ( 1
t
))�
��1


�A(t)
j

� [d(
�; �)
p
tx log np

n
+ �d(
�; �)]x�e� log xj

+d(
�; �)
p
t log np
n

+ �d(
�; �)

+�[1 + x
� + 2x
�+�e�j log xj]

+
d(
�;�)

jA(t)j
p
tx log np

n
+

d(
�;�)

jA(t)j
p
t log np
n

where d(
�; �) > 0 is a constant only depending on 
� and �: The lemma

follows.

Proof of Theorem 2.1. A full proof of a somewhat restricted case has been

given in Dekkers and de Haan (1993). We shall give a sketch of the proof.

13



By Lemma 2, for any � > 0 there exists t0 > 0 such that for all t � t0,

tx � t0

j
logU(tx)�logU(t)

a(t)=U(t)
� x
��1


�

A(t)
�H(x)j � �[1 + x
� + 2x
�+�+�e�j log xj]:

Applying this relation with t replaced by Yn;n�k and x by Yn;n�i=Yn;n�k,
adding the inequalities for i = 0; 1; � � � ; k � 1 and dividing by k we get

M
(1)
n

a(Yn;n�k)=U(Yn;n�k)

� 1
1�
� + Pn + A(Yn;n�k)

1
k

Pk

i=1H(Yn;n�i+1=Yn;n�k)

+�A(Yn;n�k)
1
k

Pk
i=1f1 + (Yn;n�i+1=Yn;n�k)
�

+2(Yn;n�i+1=Yn;n�k)
�+�e�j log(Yn;n�i+1=Yn;n�k)jg

Note that fYn;n�i+1=Yn;n�kgki=1

d
= fY 0

i gki=1 with Y
0
1 ; � � � ; Y 0

k i.i.d. with common

distribution function 1 � 1=x (x > 1). We apply the law of large numbers

to the third term. Also note that k
n
Yn;n�k ! 1 in probability, so that since

jAj is regularly varying, we have (A(n=k))�1A(Yn;n�k) ! 1 in probability.

As a result

M
(1)
n

a(Yn;n�k)=U(Yn;n�k)
=

1

1� 
�
+ Pn +

A(n=k)

(1� 
�)(��� 
�)
+ o(A(n=k)):

Hence

(M
(1)
n )2

a2(Yn;n�k)=U2(Yn;n�k)

= 1
(1�
�)2

+ 2Pn
1�
� +

2A(n=k)

(1�
�)2(���
�)
+ o(A(n=k)):

Similarly

M
(2)
n

a2(Yn;n�k)=U2(Yn;n�k)

= 2
(1�
�)(1�2
�)

+Qn +
2A(n=k)(2��+1�4
�)

(1�
�)(1�2
�)(���
�)(���2
�)
+ o(A(n=k)):

Combining these expansions we get (since a(Yn;n�k)=U(Yn;n�k)! 
+ in prob-

ability),

(M)
̂n(k)

= M
(1)
n +

M
(2)
n �2(M

(1)
n )2

2M
(2)
n �2(M

(1)
n )2

= (
+ + op(1))[
1

1�
� + Pn +
A(n=k)

(1�
�)(���
�)
]

+
� + (1� 
�)2(1� 2
�)[(1=2� 
�)Qn � 2Pn]

+A(n=k)
(1�
�)(1�2
�)

(���
�)(���2
�)
+ o(A(n=k)):
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Consequently, by Lemma 1, we have

E((M)
̂n(k)� 
)2

= (V 2(
)=k + b2(
; �)A2(n=k))(1 + o(1))

= (V 2(
)r=n+ b2(
; �)A2(r))(1 + o(1))

with r := k=n. One obtains the minimum with respect to r by using (2.5)

and equating the derivative to zero (for details see Dekkers and de Haan

(1993)). The theorem follows.

Proof of Theorem 2.3. Given Xn := fX1; � � � ; Xng, we have

(1)M�
n1
(k1)

d
=

1

k1

k1X
i=1

logUn(Yn1;n1�i+1)� logUn(Yn1;n1�k1)

with fYn1;ign1i=1 the order statistics from a distribution function 1�1=x (x >

1) and independent of Xn. By the same arguments as in the proof of Theorem

2.1 using Lemma 3 instead of Lemma 2 we get

(1)M�

n1
(k1)

a(Yn1 ;n1�k1 )=U(Yn1 ;n1�k1)

= 1
1�
� + Pn1 +

A(n1=k1)

(1�
�)(���
�)
+ o(A(n1=k1)) +O(

p
n1=k1 log np

n
):

Note that

p
n1=k1 log np

n
= o(1=

p
k1), so that the last term can be absorbed into

the second one. The expansion for (1)M�
n1
(k1) is the same as for M

(1)
n1 (k1)

given Xn. Similarly for (2)M�
n1
(k1) and

(3)M�
n1
(k1). The Theorem follows.

Proof of Corollary 2.1. Note that A(t) = ct� implies

s�(1=t) = (�2c2�) 1
1�2� t

1
1�2� :

The Corollary easily follows.

Proof of Theorem 2.4. This follows by combining the results of Corollary 2.1

for �k�0(n1) and �k�1(n2).

Proof of Corollary 2.3. We only have to prove that �̂n is a consistent esti-

mator of �. By Theorem 2.3 the sequence �k�0(n1) is asymptotic to c1n
�2�

1�2�

1 .

Hence

log �k�0(n1)= logn1 !
�2�
1� 2�

in probability. This gives the consistency.
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Lemma 4. If F 2 Ddif(G
), then (3.1) holds for an = nU 0(n) and bn = U(n)

and for any k!1, k=n! 0 and � 2 (0; 1], the stochastic process

Wn;k(�) :=
p
k
Xn;n�[k�] � U( n

k�
)

n
k
U 0(n

k
)

converges (in the sense of convergence of all �nite marginal distributions) to

a gaussian process w(�) which has mean zero and covariance structure

Cov(w(�1); w(�2)) = ��
1 ��
�1
2 ; 0 < �1 � �2 � 1:

Proof. See Theorem 2.3 of Cooil (1985).

Lemma 5. If (3.3) holds and n1 = O(n1��0) for some �0 2 (0; 1). Then for

any 0 < � < 1 there exists t0 > 0 such that for all t0 � t � n1(logn1)
2 and

t0 � tx � n1(logn1)
2

j
Un(tx)�Un(t)

a(t)
�x



�1



A(t)
� h
;�(x)j

� [
p
tx log n
n

+ �]D(
; �)x
+�e�j log xj

+[
p
t log n
n

+ �]D(
; �)

+�[1 + x
 + 2x
+�e�j log xj]

+
D(
;�)

jA(t)j
p
t log n
n

[
p
x+ 1]

(4.4)

where D(
; �) > 0 is a constant which only depends on 
 and �.

Proof. Similar to the proof of Lemma 3.
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Proof of Theorem 3.1. By Lemma 4 we have

p
k((P )
̂n;�(k)� 
)

=
p
k( 1

� log �
log

X
n;n�[k�2]

�Xn;n�[k�]

Xn;n�[k�]�Xn;n�k

� 
)

=
p
k

� log �
log(1 + �


X
n;n�[k�2]

�Xn;n�[k�]

Xn;n�[k�]�Xn;n�k

� 1)

d
=

p
k

� log �

X
n;n�[k�2]

�Xn;n�[k�]���
(Xn;n�[k�]�Xn;n�k)

��
(Xn;n�[k�]�Xn;n�k)
(1 + o(1))

= [
p
k

� log �

Xn;n�[k�]�U( n

k�2
)�(1+��
 )(Xn;n�[k�]�U( n

k�
))+��
(Xn;n�k�U(n

k
))

��
(Xn;n�[k�]�Xn;n�k)

+
p
k

� log �

U( n

k�2
)�(1+��
 )U( n

k�
)+��
U(n

k
)

��
(Xn;n�[k�]�Xn;n�k)
](1 + o(1))

( note
Xn;n�[k�]�Xn;n�k

n

k
U 0(n

k
)

p! ��
�1



)

d
= [

p
k

� log �

X
n;n�[k�2]

�U( n

k�2
)�(1+��
)(Xn;n�[k�]�U( n

k�
))+��
 (Xn;n�k�U(n

k
))

n

k
U 0(n

k
)��
 �

�

�1




+
p
k

� log �

U( n

k�2
)�(1+��
 )U( n

k�
)+��
U(n

k
)

n

k
U 0(n

k
)��
 �

�

�1




](1 + o(1))

d
= 1

� log �
1

��
 �
�


�1



(w(�2)� (1 + ��
)w(�) + ��
w(1)) + o(1)

+
p
k

� log �

U( n

k�2
)�(1+��
 )U( n

k�
)+��
U(n

k
)

n

k
U 0(n

k
)��
 �

�

�1




(1 + o(1));

thus the variance of
p
k((P )
̂n;�(k)� 
) asymptotically equals to


2(��1 � 1)(1 + ��2
�1)

(log �)2(��
 � 1)2

and the bias of
p
k((P )
̂n;�(k)� 
) asymptotically equals to

p
kA(

n

k
)

���

� log �




��
 � 1

1� ��

�

��
�� � 1


 + �
:

By A(t) = ct�� we get in a way similar to the proof of Theorem 2.1

k0(n)=f(
(��1 � 1)(1 + ��2
�1)

�2�c2(1���
�

)2( �
�
���1

+�

)2��2�
)

1
1�2�n

�2�

1�2� g ! 1:
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Proof of Theorem 3.2. By Lemma 4 we have

p
k((P )
̂n;�(k)�(P ) 
̂n;�(k�

2))

=
p
k((P )
̂n;�(k)� 
)�

p
k((P )
̂n;�(k�

2)� 
)
d
= [

p
k

� log �

X
n;n�[m�2]

�U( n

k�2
)�(1+��
)(Xn;n�[k�]�U( n

k�
))+��
(Xn;n�k�U(n

k
))

��
(Xn;�[k�]�Xn;n�k)

+
p
k

log �

U( n

k�2
)�(1+��
 )U( n

k�
)+��
U(n

k
)

��
(Xn;n�[k�]�Xn;n�k)

�
p
k

� log �

X
n;n�[k�4]

�U( n

k�4
)�(1+��
 )(X

n;n�[k�3]
�U( n

k�3
))+��
(X

n;n�[k�2]
�U( n

k�2
))

��
(X
n;n�[k�3]

�X
n;n�[k�2]

)

�
p
k

� log �

U( n

k�3
)�(1+��
 )U( n

k�2
)+��
U( n

k�2
)

��
(X
n;n�[k�3]

�X
n;n�[k�2]

)
](1 + o(1))

( note
X
n;n�[k�3]

�X
n;n�[k�2]

n

k
U 0(n

k
)

p! ��2
 ��
�1



)

d
= 1

� log �
1

��
 �
�


�1



(w(�2)� (1 + ��
)w(�) + ��
w(1)) + o(1)

+
p
k

� log �

U( n

k�2
)�(1+��
)U( n

k�
)+��
U(n

k
)

n

k
U 0(n

k
)��
 �

�

�1




(1 + o(1))

� 1
� log �

1

��3
 �
�


�1



(w(�4)� (1 + ��
)w(�3) + ��
w(�2)) + o(1)

�
p
k

� log �

U( n

k�4
)�(1+��
 )U( n

k�3
)+��
U( n

k�2
)

n

k
U 0(n

k
)��3
 �

�

�1




(1 + o(1));

thus the variance of
p
k((P )
̂n;�(k)�(P ) 
̂n;�(k�

2)) asymptotically equals to


2(1 + ��2
�1)(��1 � 1)(1 + ��2)

(log �)2(��
 � 1)2

and the bias of
p
k((P )
̂n;�(k)�(P ) 
̂n;�(k�

2)) asymptotically equals to

p
kA(

n

k
)

���

� log �

1� ��

�

��
�� � 1


 + �




��
 � 1
(1� ��2�):

By A(t) = ct�� we get in a way similar to the proof of Theorem 2.1

�k0(n)=f(
(��1 � 1)(1 + ��2
�1)(1 + ��2)

�2�c2(1���
�

)2( �
�
���1

+�

)2��2�(1� ��2�)2
)

1
1�2�n

�2�

1�2� g ! 1:

Proof of Theorem 3.3. Similar to the proof of Theorem 2.3 by using Lemma

5 instead of Lemma 3.

Proof of Theorem 3.4. Similar to the proof of Corollary 2.3.
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Appendix

The following theorem and remark explain why we use di�erent second

order conditions in section 2 and section 3.

Theorem A. Assume U(1) > 0 and there exist functions a(t) > 0 and

A(t)! 0 such that

U(tx)�U(t)

a(t)
� x
�1




A(t)
! H(x)

where

H(x) =
1

�
[
x
+� � 1


 + �
� x
 � 1



] (� � 0):

Suppose that 
 6= �. Then

lim
t!1

a(t)

U(t)
� 
+

A(t)
= c 2 [�1;1]

where

c =

� �1 if 0 < 
 � �� or � < 
 � 0

�nite otherwise :

Furthermore

logU(tx)�logU(t)

a(t)=U(t)
� x
��1


�

~A(t)
! ~H(x)

where

~A(t) =

(
A(t) if c 2 (�1;1)
a(t)

U(t)
� 
+ otherwise ;

~A(t) 2 RV�0,

�0 =

8<
:

�
 if 0 < 
 � ��

 if � < 
 � 0

� otherwise
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and

~H(x) =

8>>><
>>>:

H(x)� c
2
(x


�1



)2 if 
 � 0; c 2 (�1;1)

�1
2
(x


�1



)2 if 
 � 0; c = �1
x�
H(x)� c



(log x+ x�
�1



) if 
 > 0; c 2 (�1;1)

� 1


(log x+ x�
�1



) if 
 > 0; c = �1:

Proof. Suppose that 
 6= 0. Then from the proof of Lemma 2 we have

U(tx)� a(tx)=
 � (U(t)� a(t)=
)

a(t)A(t)
! 1




x
+� � 1


 + �
:

If 
 + � > 0, then

U(t)� a(t)=


a(t)A(t)
! 1


(
 + �)
:

Hence

a(t)=U(t)� 


A(t)
=
a(t)


U(t)

a(t)=
 � U(t)

a(t)A(t)
! 
=(
 + �):

If 
 + � = 0, i.e., 
 = �� > 0, then

U(t)� a(t)=


a(t)A(t)
! �1:

Hence

a(t)=U(t)� 


A(t)
=
a(t)


U(t)

a(t)=
 � U(t)

a(t)A(t)
! �1:

If 
 + � < 0, then(
U(t)� a(t)=
 ! c0 2 (�1; 0) [ (0;1)
U(t)�a(t)=
�c0

a(t)A(t)
! 1


(
+�)
:

For 
 > 0, we have

a(t)=U(t)� 


A(t)
=
a(t)


U(t)
(
a(t)=
 � U(t) + c0

a(t)A(t)
� c0

a(t)A(t)
)! �1:
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For 
 < 0, we ja(t)=(U(t)A(t))j 2 RV
��: Hence

a(t)=(U(t)A(t))!
� �1 if 
 � � > 0

0 if 
 � � < 0:

Suppose that 
 = 0 and � < 0. Then from the proof of Lemma 2

a(t)! c1 2 (�1; 0) [ (0;1). Hence

a(t)=(U(t)A(t)) � c1=(U(1)A(t))! �1:

We have now proved that the �rst part of the theorem.

Note that a(t)=U(t)! 
+: For 
 � 0; we have

log
U(tx)

U(t)

=
a(t)

U(t)
[x



��1

�

+ A(t)H(x) + o(A(t))]

+(
a(t)

U(t)
)2[x



��1

�

+ A(t)H(x) + o(A(t))]2 + o(( a(t)
U(t)

)2);

i.e.,

logU(tx)�logU(t)

a(t)=U(t)
� x
��1


�

= A(t)H(x) + o(A(t))

� a(t)

2U(t)
[(x



��1

�

)2 + 2x


��1

�

A(t)H(x) + o(A(t))] + o( a(t)
U(t)

):

For 
 > 0, we have

x�
 U(tx)

U(t)

= x�
 + a(t)

U(t)
1�x�




+ x�
 a(t)

U(t)
[A(t)H(x) + o(A(t))]

= 1 + (x�
 � 1)(1� a(t)


U(t)
) + x�
 a(t)

U(t)
[A(t)H(x) + o(A(t))];

i.e.,

logU(tx)�logU(t)

a(t)=U(t)
� log x

= �(log x+ x�
�1



)
a(t)

U(t)
(a(t)=U(t)� 
)

+x�
A(t)H(x) + o(A(t)) + o(a(t)=U(t)� 1):

So the second part of the theorem follows easily.
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Remark A. It is not true that a second order condition for U always implies

a second order condition for logU : Let 
 = � and de�ne

U 0(t) = t
�1 expf
Z t

1

s
�1(2 + sin(log log s)) dsg:

From the representation (2.5) of de Haan and Resnick (1996) we �nd

U(tx)�U(t)

tU 0(t)
� x
�1




t
 [2 + sin(log log t)]
!
Z x

1

u
�1u
�
 � 1

�
 du:

Hence

a(t)=(U(t)A(t))

=
tU 0(t)

U(t)t
 [2+sin(log log t)]

� expf
R
1

1
s
�1[2+sin(log log s)] ds

U(1)[2+sin(log log t)]

which does not have a limit.
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