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1 Introduction and statement of results.

In their basic paper on extreme value distributions R.A. Fisher and L.H.C.

Tippett [1928] remark that if one approximates the distribution of the suc-

cessive maxima of normal samples not by the limit distribution exp�e�x

but by a sequence of other extreme value distributions converging to the

limit distribution, the approximation is asymptotically improved. This se-

quence of approximating extreme value distributions they called penultimate

distributions.

The subject has been taken up by a number of authors. We mention

C.W. Anderson in his thesis [1971], J.P. Cohen [1982], M.I. Gomes [1984],

Gomes and Pestana [1987] and R.-D. Reiss [1989].

The present paper aims at answering the following questions:

1. In what circumstances can the convergence rate be improved by the

use of penultimate approximations?

2. What are the precise conditions for improvement and what is the new

convergence rate?

It is by now well understood that the proper framework for convergence

rate results is second order theory. This means in short that while for con-

vergence in distribution for maxima a �rst order expansion su�ces, for a

rate of convergence result an expansion of second order is needed. The

second order theory has been worked out in full generality (de Haan and
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Stadtm�uller (1996)). However this leads to the need to consider many dif-

ferent cases and to calculate complicated integrals. This would be rather

tedious particularly in the case of penultimate approximations since in that

case even third order theory is needed. So rather than to proceed in full

generality we shall assume su�cient di�erentiability (i.e. von Mises type

conditions) and this allows us to proceed in a uni�ed and relatively elegant

way.

Suppose X1;X2; : : : are i.i.d. random variables with common distribu-

tion function F . Assume that the sequence of sample maxima

max(X1;X2; : : : ;Xn), suitably normalized, converges to one of the extreme-

value distributions

G
(x) := exp�(1 + 
x)�1=
 (
 2 R; 1 + 
x > 0):

We assume that von Mises' su�cient conditions for the convergence of

F n(anx+ bn) to G
(x) are ful�lled i.e. with

u(x) := � log� logF

and

v(t) := u (t)

(the arrow denoting the inverse function) we assume

lim
t"x�

�
1

u0

�0
(t) = 
 (1.1)
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where x� := supfx j F (x) < 1g or equivalently

lim
t!1

v00(t)

v0(t)
= 
: (1.2)

Relations (1.1) or (1.2) imply

lim
t"x�

u(t+
x

u0(t)
)� u(t) = 
�1 log(1 + 
x) (1.3)

for 1 + 
x > 0 or equivalently

lim
t!1

v(t+ x)� v(t)

v0(t)
=

e
x � 1



(1.4)

for all x. This is �rst order theory. Next we discuss second order conditions.

Write for t < x�

'(t) :=

�
1

u0

�0
(t)� 
:

Suppose that moreover for some � � 0

lim
t"x�

'0(t)

u0(t)'(t)
= � (1.5)

or equivalently

lim
t!1

v000(t)� 
v00(t)

v00(t)� 
v0(t)
= 
 + �: (1.6)

Then

lim
t!1

v00(t+x)
v0(t+x) � 


v00(t)
v0(t) � 


= e�x (1.7)

for all x and second order versions of (1.3) and (1.4) hold:

lim
t"x�

u
�
t+ x

u0(t)

�
� u(t)� 
�1 log(1 + 
x)

'(t)
=

�

Z x

0
(1 + 
s)�2

Z s

0
(1 + 
p)�=
dpds: (1.8)
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locally uniformly for 1 + 
x > 0 or equivalently

lim
t!1

v(t+x)�v(t)
v0(t) � e
x�1




v00(t)
v0(t) � 


=

Z x

0
e
s

Z s

0
e�ydyds =: H
;�(x) (1.9)

(see de Haan and Resnick, 1996b).

Since (1.9) is considerably easier to handle than (1.8), we shall mainly

use (1.9) as in de Haan and Resnick (1996b).

Also (1.9) has a simple interpretation. Let W be a random variable

with distribution function exp�e�x. Then Mn has the same distribution as

v(W + log n). Hence

Mn � v(log n)

v0(log n)
�
e
W � 1




d
=
v(W + logn)� v(log n)

v0(log n)
�
e
W � 1



;

so (1.9) shows that the rate of convergence of (Mn � v(log n)) =v0(log n) to-

wards its limit (e
W � 1)=
 is of order v00(logn)=fv0(log n)g � 
.

Now we return to our �rst question: in what circumstances (i.e. for which

combination of 
 and � in (1.8)) can the convergence rate be improved by the

use of penultimate approximations? Following loosely de Haan and Resnick

(1996b, pages 112 and 113) we write with the transformation anx + bn =

v(u+ logn)

F n(anx+ bn)�G
(x)

= G


�
eu
 � 1




�
�G


�
v(u+ log n)� bn

an

�

=

�
v(u+ logn)� bn

an
�
eu
 � 1




�
�
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G0


�
eu
 � 1



+ �

�
v(u+ log n)� bn

an
�
eu
 � 1




��

for some � 2 [0; 1], depending on u; 
 and n.

So the uniform rate of convergence of F n(anx+bn) to G
(x) is controlled

by the uniform rate of convergence of v(u+log n)�bn
an

to e
u�1

 . Hence, if we

want to improve the rate for the former, we have to improve the rate for

the latter, i.e. we have to improve the rate in (1.9) by using penultimate

approximations. So we look at the convergence rate of

v(t+ x)� v(t)

v0(t)
�
e
(t)x � 1


(t)

to zero as t ! 1 where 
(t) is a suitably chosen function converging to 


as t!1. We have

v(t+ x)� v(t)

v0(t)
�
e
x � 1



=

�
v00(t)

v0(t)
� 


�
H
;�(x) + o

�
v00(t)

v0(t)
� 


�

(1.10)

by (1.9) and

e
(t)x � 1


(t)
�
e
x � 1



=

Z x

0
(e
(t)s � e
s)ds =

= (
(t) � 
)

Z x

0
se
sds+

+
1

2
(
(t) � 
)2

Z x

0
s2e
sds+ o

�
(
(t)� 
)2

�
(1.11)

as t ! 1. Now the �rst order terms in (1.10) and (1.11) should cancel in

order to get an improvement. Hence improvement is possible only if � = 0

and one chooses 
(t) := v00(t)=v0(t). This answers the �rst question.
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In order to answer the second question (precise conditions and ensuing

rate) we start again and proceed in a slightly di�erent manner. Write 
(t) :=

v00(t)
v0(t) .

Note that

v(t+ x)� v(t)

v0(t)
�
e
(t)x � 1


(t)

=

Z x

0

�
expflog v0(t+ s)� log v0(t)g � expfs

v00(t)

v0(t)
g

�
ds

=

Z x

0
e
(t)s

�
exp

�Z s

0

�
v00(t+ u)

v0(t+ u)
�
v00(t)

v0(t)

�
du

�
� 1

�
ds

=

Z x

0
e
(t)s

�
exp

�Z s

0

Z u

0

0(t+ v)dvdu

�
� 1

�
ds:

Hence

v(t+x)�v(t)
v0(t) � e
(t)x�1


(t)


0(t)

=

Z x

0
e
(t)s

exp
n

0(t)

R s
0

R u
0


0(t+u)

0(t) dvdu

o
� 1


0(t)
ds

It is clear that in order to get convergence for t ! 1, we need to have

lim
t!1


0(t) = 0 and lim
t!1


0(t + u)=
0(t) exists for all u, locally uniformly.

Given (1.2) and (1.6) this is ensured if we assume

lim
t!1


00(t)


0(t)
= 0: (1.12)

Then lim
t!1


0(t+ u)=
0(t) = 1 for all u, locally uniformly, lim
t!1


0(t) = 0 and

lim
t!1

v(t+x)�v(t)
v0(t) � e
(t)x�1


(t)


0(t)
=

Z x

0
e
s

Z s

0

Z u

0
1dvduds =

1

2

Z x

0
s2e
sds

(1.13)
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for all x (see Lemma 2.1). We remark that the limit in (1.12) has to be zero,

otherwise (1.9) would not hold with � = 0.

In the next section it will be shown that (1.12) is the precise condition

for improvement of the convergence rate. As relation (1.13) suggests, the

new rate is 
0(log n). This provides an answer to the second question.

Two issues remain to be considered. Firstly, the condition (1.12) is

phrased in terms of v, which is the inverse function of � log� logF . It is

much more convenient to have a condition phrased in terms of the distribu-

tion function itself and its derivatives. It will be proved (Lemma 2.2) that

(1.12) is equivalent to

lim
t"x�

'00(t)

u0(t)'0(t)
= �
 (1.14)

with as before '(t) =
�
1
u0

�
(t)�
. We now formulate the resulting statement.

Theorem 1 Let u := � log� logF . Suppose

lim
t"x�

(
1

u0
)0(t) = 
 (1.15)

(von Mises0 �rst order condition),

lim
t"x�

'0(t)

u0(t)'(t)
= 0 (1.16)

with '(t) := ( 1
u0 )
0(t)� 
 (von Mises type second order condition) and

lim
t"x�

'00(t)

u0(t)'0(t)
= �
 (1.17)
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(von Mises type penultimate condition). Then

lim
n!1

F n(anx+ bn)�G
n(x)


0(log n)
=

(� logG
(x))
1+
G
(x)M
(� log� logG
(x)) (1.18)

uniformly for x 2 R with an := v0(log n),

bn :=

8>><
>>:

v(log n) for 
 � 0

v(1)� 
�1v0(log n) for 
 < 0;

here v := u (the inverse of the function u). Further


n := 
(log n)

with


(t) :=
v00(t)

v0(t)

and

M
(x) :=

8>><
>>:

R x
0 u2e
udu for 
 � 0

�
R1
x u2e
udu for 
 < 0:

Moreover

lim
n!1

R1
�1

�� d
dxF

n(anx+ bn)�G0
n(x)
�� dx


0(log n)
=

=

Z 1
�1

e�(
+1)u exp
�
e�u

� ��M 0
(u)� (
 + 1)M
(u) + e�uM
(u)
�� du:
(1.19)

Remark. The results should be compared with Theorems 3.1 and 4.1 of de

Haan and Resnick (1994b). Under the given conditions 
0(t) is of lower order
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than the original rate function 
(t) � 
, but the improvement is not great

since 
0 satis�es lim
t!1


0(t+ x)=
0(t) = 1, the same relation as for j
(t)� 
j.

The result of Theorem 1 can be simpli�ed somewhat with some loss of

generality. In order to do so let us return to the expansions (1.10) and (1.11).

Since the second order terms (the �rst to the right) cancel by choosing � = 0

and 
(t) = v00(t)=v0(t), the third order terms take over. So we need a third

order expansion in (1.10). This is done in Lemma 2.3 below. The third order

rate function in Lemma 2.3 is fv000(t) � 
v00(t) � 
(v00(t) � 
v0(t))g=v0(t).

We want this rate function to be smaller than the one in (1.11) which is

(
(t) � 
)2, so that the resulting convergence rate is (
(t) � 
)2. Hence we

assume

lim
t!1

fv000(t)� 
v00(t)� 
(v00(t)� 
v0(t))g

v0(t) �
�
v00(t)
v0(t) � 


�2 = 0: (1.20)

We shall show (proof of Theorem 2) that this is equivalent to

lim
t!1

'0(t)

u0(t)f'(t)g2
= �1: (1.21)

It turns out that this condition alone (with the �rst and second order con-

ditions (1.15) and (1.16) but without condition (1.17)) is su�cient for the

desired convergence rate:

Theorem 2. Suppose (1.15), (1.16) and

lim
t"x�

'0(t)

u0(t)f'(t)g2
= �1: (1.22)

Then (1.18) and (1.19) hold with 
0(log n) replaced by �(
n � 
)2.
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The conclusion is that improvement by penultimate approximations is

possible only in case the approximation by the limiting extreme-value dis-

tribution is very slow (i.e. if � = 0). In that case the improvement is not

spectacular: the rate becomes (
n � 
)2 instead of 
n � 
 (both are slowly

varying functions).

We conclude with three remarks.

1. With some e�ort it can be proved that for 
 > 0 Theorems 1 and 2

also hold with G
�n(x) instead of G
n(x) where


�n := log v(log n)�
1

logn

Z log n

0
log v(log s)ds:

This can be connected with estimation theory as follows. The well-

known Hill estimator for 


Hk;n :=
1

k

kX
i=1

log
X(n�i+1;n)

X(n�k;n)

is really designed to estimate 
�n rather than 
 (see e.g. de Haan and

Resnick (1996a), Proposition 2.2). So approximation of the distribu-

tion of the maximum by penultimate distributions using the estimated

extreme value indexHk;n rather than 
, may turn out to be quite good

in the � = 0 case. We do not elaborate on this.

2. No further rate improvement is possible by changing the attraction

coe�cients an and bn.

3. I have tried to �nd a third order relation for u equivalent to (2.12)
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below but failed. Only under the extra condition (1.22) such equivalent

third order relation has been found.

2 Proofs.

We need a number of auxiliary results.

Lemma 2.1 Suppose (1.2) and (1.6) hold. Set 
(t) := v00(t)=v0(t) and

'(t) :=
�
1
u0

�0
(t)� 
. Assume

lim
t!1


00(t)


0(t)
= 0: (2.1)

Then

lim
t!1


0(t) = 0 and lim
t!1


0(t+ x)


0(t)
= 1 (2.2)

locally uniformly. Moreover we have the following inequalities:

Given " > 0, there exists t" = t0(") such that for t � t0 and t+ x � t0

(1� ")e�"jxj
x2

2
e
x <

v0(t+x)
v0(t) � e
(t)x


0(t)
< (1 + ")e"jxj

x2

2
e
x: (2.3)

Moreover, for 
 � 0,

(1� ")e�"jxj <

v(t+x)�v(t)
v0(t) � e
(t)x�1


(t)


0(t)M
(x)
< (1 + ")e"jxj (2.4)

and for 
 < 0 (note that then v(1) <1)

(1� ")e�"jxj <

v(t+x)�v(1)�
�1v0(t)
v0(t) � e
(t)x�1


(t)


0(t)M
(x)
< (1 + ")e"jxj; (2.5)

with

M
(x) :=

8>><
>>:

R x
0 u2e
udu for 
 � 0

�
R1
x u2e
udu for 
 < 0:

(2.6)
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Proof. First note that by (2.1)

log 
0(t+ x)� log 
0(t) =

Z x

0


00(t+ u)


0(t+ u)
du! 0

locally uniformly as t!1. Hence,

lim
t!1


0(t+ x)


0(t)
= 1 (2.7)

locally uniformly.

Relation (2.7) implies

lim
t!1


(t+ x)� 
(t)


0(t)
= lim

t!1

Z x

0


0(t+ u)


(t)
du = x

locally uniformly.

This implies by the theory of �-variation, since limt!1 
(t) = 
,

lim
t!1


0(t)


(t)� 

= 0:

and hence lim
t!1


0(t) = 0.

We have Potter type bounds: given "0 > 0 there exists t00 = t00("
0) such that

for t � t00; t+ x � t00.

(1� "0)e�"
0jxj <


0(t+ x)


0(t)
< (1 + "0)e"

0jxj:

This implies

(1� "0)e�"
0jxj �

x2

2
<

Z x

0

Z u

0


0(t+ v)


0(t)
dvdu < (1 + "0)e"

0jxj �
x2

2
(2.8)

Further for jwj < w0("
0)

1� "0 <
ew � 1

w
< 1 + "0: (2.9)
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Next note that

v0(t+ x)

v0(t)
� e
(t)x = e
(t)x:

expf
0(t)
R x
0

R u
0


0(t+v)

0(t) dudug � 1


0(t)
:

Application of the inequalities (2.7) and (2.8) yields (2.2). Relations (2.3)

and (2.4) are obtained by straightforward integration from (2.2). 2

Remark. Since a limit � < 0 in (2.1) would result in lim
t!1


0(t)=f
(t)�
g =

� , the rate of convergence can not be improved in that case.

Lemma 2.2. Suppose (1.2) and (1.6) hold. The statements (1.12) and

(1.14) are equivalent.

Proof. Since


(t)� 
 =
v00(t)

v0(t)
� 
 = (

1

u0
)0(v(t) � 
 = '(v(t)) (recall that v = u );

we have


00(t)


0(t)
=

v00(t)

v0(t)
+ v0(t)

'00(v(t))

'0(v(t))
=
v00(t)

v0(t)
+

'00(v(t))

u0(v(t))'0(v(t))
:

We know that v00(t)=v0(t)! 
 (t!1) (cf.(1.2)). Hence (1.12) and (1.14)

are equivalent.

Proof of Theorem 1. The line of proof is exactly the same as the proof

of Theorem 3.1 in De Haan and Resnick (1996b). Corollary 2.4 of that

paper should be replaced by our Lemma 2.1. Lemma 3.3 from De Haan and

Resnick (1996b) holds without change in our situation. The statement of

Lemma 3.2 from De Haan and Resnick (1996b) on M
 for � = 0 holds for
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our M
 without change (except for the fact that the "^" in the statement

of Lemma 3.2 should be a "_" sign. With these alterations the proof of

Theorem 3.1 in De Haan and Resnick applies in our context. 2

Lemma 2.3. Suppose (1.2) and (1.6) so that (1.10) holds. Set

Q(t) :=
v000(t)� 
v00(t)

v00(t)� 
v0(t)
� 
 � �:

Assume

lim
t!1

Q0(t)

Q(t)
= � � 0; (2.10)

then

v(t+ x)� v(t)� v0(t)
e
x � 1



� fv00(t)� 
v0(t)gH
;�(x) =

=
�
v000(t)� 
v00(t)� (�+ 
)fv00(t)� 
v0(t)g

�
�Z x

0
e
s

Z s

0
e�y

Z y

0
e�ududyds+ o(t)

�
(2.11)

for all x(t!1).

Remark. The function in square brackets is

e(
+�)t d

dt
e��t

d

dt
e
t

d

dt
v(t):

This reveals the structure of the expansion and enables one to extend it at

will.

Proof. Relation (2.10) implies

lim
t!1

Q(t+ x)

Q(t)
= e�x (2.12)
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for all x.

Hence by combining with (1.2) (implying v0(t+x)=v0(t)! e
x; t!1) and

(1.7) we get

lim
t!1

v000(t+ x)� 
v00(t+ x)� (�+ 
) [v00(t+ x)� 
v0(t+ x)]

v000(t)� 
v00(t)� (�+ 
) [v00(t)� 
v0(t)]
= e(
+�+�)x

(2.13)

for all x. Now

v(t+ x)� v(t)� v0(t)
e
x � 1



� fv00(t)� 
v0(t)gH
;�(x) = (2.14)

Z y

0
e
s

Z s

0
e�y

Z y

0
e�(�+
)u

�
v000(log n+ u)� 
v00(log n+ u)� (�+ 
)

�
v00(log n+ u)� 
v0(log n+ u)

�	
dudyds:

The statement follows by the local uniformity in (2.13).

Proof of Theorem 2.

Note that


0(t) = (
(t) � 
)

�
v000(t)� 
v00(t)

v00(t)� 
v0(t)
� 


�
� (
(t)� 
)2:

Hence (1.20) holds if and only if

lim
t!1


0(t)

(
(t)� 
)2
= �1: (2.15)

Moreover one sees by working out the derivatives that

v000(u(t)) � 
v00(u(t))

v00(u(t)) � 
v0(u(t))
�
v00(u(t))

v0(u(t))
=

'0(t)

u0(t) � '(t)
:
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Hence (1.20) is equivalent to (1.22).

Next note that (2.16) is equivalent to

lim
t!1

d

dt

�
1


(t)� 


�
= 1:

As a consequence

lim
t!1


(t+ x)� 
(t)

�(
(t)� 
)2
= lim

t!1

1


(t+ x)� 

�

1


(t)� 

= x

for all x, locally uniformly. It follows that the function (
(t) � 
)2 satis�es

lim
t!1

(
(t+ x)� 
)2

(
(t) � 
)2
= 1

for all x and hence by (2.16)

lim
t!1


0(t+ x)


0(t)
= 1 (2.16)

for all x. The proof of Lemma 2.1 reveals that (2.17) is su�cient for the

results of Lemma 2.1. Hence Theorem 1 holds. But by (2.16) one can replace

the rate function 
0(log n) in Theorem1 by the rate function�(
(log n)�
)2.

The proof is complete. 2
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