
Bayesian Simultaneous Equations Analysis

using Reduced Rank Structures

Frank Kleibergen¤ Herman K. van Dijky

February 24, 1998

Abstract

Di®use priors lead to pathological posterior behavior when used in
Bayesian analyses of Simultaneous Equation Models (SEMs). This results
from the local nonidenti¯cation of certain parameters in SEMs. When
this, a priori known, feature is not captured appropriately, it results in an
a posteriori favoring of certain speci¯c parameter values that is not the
consequence of strong data information but of local nonidenti¯cation. We
show that a proper consistent Bayesian analysis of a SEM explicitly has
to consider the reduced form of the SEM as a standard linear model on
which nonlinear (reduced rank) restrictions are imposed, which result from
a singular value decomposition. The priors/posteriors of the parameters
of the SEM are therefore proportional to the priors/posteriors of the para-
meters of the linear model under the condition that the restrictions hold.
This leads to a framework for constructing priors and posteriors for the
parameters of SEMs. The framework is used to construct priors and pos-
teriors for one, two and three structural equation SEMs. These examples
together with a theorem, showing that the reduced forms of SEMs accord
with sets of reduced rank restrictions on standard linear models, show how
Bayesian analyses of generally speci¯ed SEMs can be conducted.
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1 Introduction

Since the early forties a lot of research has focussed on the development of sta-
tistical methods for analyzing Simultaneous Equation Models (SEMs), see a.o.
Haavelmo (1943) and Anderson and Rubin (1949). It shows that models which
are able to generate variables simultaneously are important since this is a stylized
fact of many economic time series. The SEM is not only important but also rather
complicated due to the problems regarding the identi¯cation of its parameters.
The identi¯cation of the structural parameters is re°ected in the rank and or-
der conditions which result from the implied reduced form, see Hausman (1983).
The order condition re°ects overall identi¯cation while the rank condition re-
°ects local (non) identi¯cation. This latter phenomenon, local nonidenti¯cation,
is shown to lead to pathological posterior behavior when °at priors are used in
Bayesian analyses of the SEM. This behavior occurs in the traditional Bayesian
analyses of SEMs documented in the literature, see a.o. Drµeze (1976), Drµeze and
Morales (1976) and Drµeze and Richard (1983). We show its occurence in a limited
information (one equation) analysis of the SEM. Similar behavior can be found
in other speci¯cations of the SEM as well since the origin of the pathological
posterior behavior, local nonidenti¯cation of parameters, is exemplary to SEMs.

In order to obtain a consistent Bayesian analysis of a SEM, which does not
su®er from these pathologies, we construct a framework in which the reduced form
of a SEM is speci¯ed as a multivariate linear model with nonlinear (reduced rank)
restrictions on its parameters. Using singular value decompositions we specify
the restrictions such that an one-to-one correspondence with a linear model is
obtained when the restrictions do not hold; and the reduced form of the SEM is
obtained when they hold. The prior and posterior analysis then results when this
speci¯cation is used in the framework for analyzing nested models as parameter
restrictions of embedding models constructed in Kleibergen (1997). It a.o. leads
to invariance of the priors and posteriors with respect to the speci¯cation of the
model. The resulting posteriors of the parameters of the SEM accord with the
posterior of the embedding linear model. Our analysis is therefore similar to the
construction of the Savage-Dickey density ratio, see Dickey (1971). That is, we
construct the priors/posteriors in the points where the hypothesis (restriction)
holds. In contrast, the posterior of the parameters of a SEM, derived in the usual
way using a di®use prior, is inconsistent in the sense that its implied posterior of
the parameters of the embedding linear model is not a member of the standard
class of posteriors of the parameters of linear models, see Kleibergen (1997).

The contents of the paper is organized as follows. In section 2, we show
the pathologies arising in the posteriors of the parameters of an incomplete (one
structural equation analysis of a) SEM when °at priors are used. Sections 3
and 4 show how an incomplete SEM is rewritten as a multivariate linear model
with nonlinear parameter restrictions. We use this speci¯cation jointly with the
framework for analyzing nested models as parameter restrictions of embedding
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models to obtain the prior and posterior analysis. Singular value decompositions
are also involved which are similar to the canonical correlations used in a limited
information maximum likelihood analysis, see Anderson and Rubin (1949). In
section 5, posterior simulators are constructed to sample from the posterior of the
parameters of an incomplete SEM. Section 6 extends the one structural equation
analysis to a full system analysis by showing that a fully speci¯ed SEM accords
with a set of reduced rank restrictions on a linear model. Di®erent subsections
then show the framework for prior and posterior analysis for two and three struc-
tural equations and also show that the order condition for a full system analysis
of a SEM can di®er from the order condition resulting from an one structural
equation analysis. Finally, the seventh section contains conclusions.

2 Nonidenti¯cation and Pathological Posterior

Behavior

To show the consequences which local nonidenti¯cation of parameters of SEMs
has for posterior distributions, we analyze, as an example, the case of one (set
of) structural equation(s). This model is also known as INcomplete Simultane-
ous Equations Model (INSEM). As the results for the posteriors of the INSEM
are exemplary for other speci¯cations of the SEM, the importance of a proper
treatment of the issue of local nonidenti¯cation is shown by the analysis of the
INSEM.

We use as speci¯cation of the INSEM, see Zellner et. al. (1988),

y1 = Y2¯ + Z1° + "1; (1)

Y2 = Z1¦12 + Z2¦22 + "2;

where y1 : T £ 1; and Y2 : T £ (m¡ 1); are endogenous and Z1 : T £ k1; and Z2 :
T £k2; k = k1+k2; contain the (weakly) exogenous, see Engle et. al. (1983), and
lagged dependent variables, ¯ : (m¡1)£1; ° : k1£1; ¦2 = (¦0

12 ¦
0
22)

0 : k£(m¡1)
and we assume that ("1 "2) » n(0;§­IT ): The identi¯cation problems arise when
the parameter ¦22 = 0 (or has reduced rank) as (parts of) the structural form
parameter ¯ is then nonidenti¯ed. This is easily seen when we construct the
reduced form of the INSEM (1),

y1 = Z1¼11 + Z2¦22¯ + »1; (2)

Y2 = Z1¦12 + Z2¦22 + "2;

where ¼11 = ° + ¦12¯; »1 = "1 + "2¯; (»1 "2) » n(0;­); § = B0­B; B =Ã
1 0
¡¯ Im¡1

!
: When ¦22 = 0; ¯ is not identi¯ed in (2) and the disturbances »1

are not a®ected by the value of ¯. So, the likelihood is °at and nonzero in the
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Figure 1: Bivariate Posterior (¯; ¼22) demand equation Tintner model

direction of ¯ when ¦22 = 0: If we use °at (di®use) priors in a Bayesian analysis of
the INSEM, such that the joint posterior is proportional to the likelihood, also the
joint posterior of the di®erent parameters will be °at and nonzero in the direction
of ¯ for zero values of ¦22: This property is passed on to the marginal posteriors,
which are the integrals of the joint posterior over the di®erent parameters. To
show the consequences for the marginal posteriors in practice, we calculated the
marginal posteriors of the parameters of the demand equation of the "Tintner
meat market" model, see Tintner (1952). In this exact identi¯ed model, y1 re°ects
quantity of meat consumed, y2 is the price of meat, z1 is national income per
capita, z2 is the cost of processing meat (all variables are in deviation from their
mean), m = 2; k1 = k2 = 1:

In ¯gure 1, the joint posterior of ¯ and ¦22 is drawn for the Tintner meat
market dataset and ¯gure 2 contains the contourlines of this bivariate posterior.
The functional form of this posterior is obtained by using a °at prior (/ 1) and
integrating out (§; ¼11;¦12); and reads,

p(¯;¦22jY; Z) / j(y1 ¡ Z2¦22¯)
0M(Z1 "2)(y1 ¡ Z2¦22¯)j

¡ 1

2
(T¡k1¡m¡1) (3)

j(Y2 ¡ Z2¦22)
0MZ1(Y2 ¡ Z2¦22)j

¡1

2
(T¡k1¡m¡1);

as Y2 = Z1¦12 + Z2¦22 + "2 and MV = IT ¡ V (V 0V )¡1V 0; V = Z1; V = (Z1 "2):
Both ¯gures 1, 2, and the functional form of the posterior in (3) show that the
marginal posterior does not depend on ¯ when ¦22 = 0 as it is °at and nonzero in
the direction of ¯ for zero values of ¦22: This implies that the marginal posterior
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Figure 2: Contourlines marginal posterior (¯;¦22) demand equation

of ¦22, which is the integral of the posterior (3) over ¯, will be in¯nite at ¦22 = 0
as at this particular value of ¦22; we construct an integral of a function over
an in¯nite parameter region while the function itself does not depend on the
parameter ¯ over which we integrate. So, the integral will be proportional to
the size of the parameter region, i.e. in¯nity. Both the functional form of the
marginal posterior of ¦22;

p(¦22jY; Z) / j¦0
22Z

0
2M(Z1 "2)Z2¦22j

¡ 1

2 [
j¦0

22Z
0
2M(Z1 Y2)Z2¦22j

j¦0
22Z

0
2M(Z1 Y1 Y2)Z2¦22j

]¡
1

2
(T¡k1¡2(m¡1))

j(Y2 ¡ Z2¦22)
0MZ1(Y2 ¡ Z2¦22)j

¡ 1

2
(T¡k1¡m¡1); (4)

and the marginal posterior of ¦22 for the Tintner dataset from ¯gure 3 show
this phenomenon and consequently the value of the posterior of ¦22 is in¯nite at
¦22 = 0.

The nonidenti¯cation of ¯ has also consequences for its own marginal poste-
rior, which belongs to the class of 1-1 poly t densities, see Bauwens and van Dijk
(1989), Drµeze (1976), Drµeze (1977), Drµeze and Richard (1983), and Richard and
Tompa (1980) for an e±cient algorithm to calculate the moments of this class of
densities. This posterior reads

p(¯jY; Z) / j(y1 ¡ Y2¯)
0M(Z1 Z2)(y1 ¡ Y2¯)j

1

2
(T¡k1¡k2¡m¡1) (5)

j(y1 ¡ Y2¯)
0MZ1(y1 ¡ Y2¯)j

¡1

2
(T¡k1¡m¡1);
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Figure 3: Marginal posterior ¼22 demand equation Tintner model

and it has fat tails resulting from the °at nonzero conditional posterior of ¯ given
¦22 = 0: For the case of the Tintner model, the marginal posterior is even nonin-
tegrable which is plausible given the fat tails of the marginal posterior of ¯ shown
in ¯gure 4. In general, the moments of the posterior in (5) exist up to/including
the degree of overidenti¯cation minus 1 implying that exact identi¯ed models
lead to nonintegrable posteriors when °at (di®use) priors are used.

A popular method for numerical calculation of posterior densities is to con-
struct the conditional posteriors and use them to perform Gibbs Sampling, see
Gelfand and Smith (1989) and Smith and Roberts (1993). When this Markov
Chain Monte Carlo (MC2) algorithm is used to compute the marginal posteriors
of the parameters of the INSEM, as in Geweke (1996), the local nonidenti¯cation
problems lead to a reducible Markov Chain since when a locally nonidenti¯ed
parameter value is drawn, the sampler continues drawing nonidenti¯ed parame-
ter values. Stated di®erently, the region of locally nonidenti¯ed parameter values
is an absorbing state in the Markov chain. The posterior, therefore, violates
the convergence conditions for Gibbs Samplers as outlined in Roberts and Smith
(1994). A solution to this problem is to use informative priors but this approach
is questionable when priors are used which are not in accordance with the likeli-
hood, see Kleibergen (1997).

The integrability problems of the posteriors discussed previously result from
the dependence of the structural form parameter ¯ on ¦22. In classical econo-
metric analysis, see Anderson (1982), Phillips (1983) and Poirier (1994), the pa-
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Figure 4: Marginal posterior ¯ demand equation Tintner model

rameter ¯ is analyzed conditional on a so-called concentration parameter. This is
essentially a statistic to test the hypothesisH0 : ¦22 = 0 and it shows whether the
information in the likelihood is concentrated around ¦22 = 0: When this concen-
tration parameter tends to in¯nity when the sample size becomes large, normal
asymptotic theory can be applied, see Anderson (1982) and Phillips (1983). When
¦22 = 0; however, estimators of ¯; like 2SLS, converge to random variables, see
Phillips (1989). The integrability problems outlined above show that also in a
Bayesian analysis ¯ has to be analyzed given ¦22; which is natural given that the
identi¯cation problems in the likelihood result from model properties, i.e. the
nonidenti¯cation of ¯ at ¦22 = 0; and are not the result of inferior data. Since
we know a priori that these integration problems arise, a framework is needed
which formalizes the way the parameters are analyzed conditional on one another
and which leads to nonpathological posteriors. This framework is constructed in
Kleibergen (1997) and is used in the following sections.

3 Priors for the INSEM parameters

In the previous section, we showed that the parameters which su®er from local
nonidenti¯cation problems should be analyzed conditional on the value of their
identifying parameters. This is one of the main properties obtained through
the priors constructed in this section. In previous versions of this paper, see
Kleibergen and van Dijk (1992,1994a), and also Kleibergen and van Dijk (1994b)

7



and Chao and Phillips (1996), Je®reys' priors are used to obtain this property.
The resulting posterior, when this prior is used, is, however, not nested within
the assumed posterior of the parameters of the embedding unrestricted linear
model. This is a key property of the priors constructed in this section. The prior
we construct in this section results from Kleibergen (1997), where it is shown
that a whole range of models can be considered as nonlinear restrictions on the
parameters of standard linear models. This gives a general framework for the
analysis of a large class of models, see also Kleibergen and Hoek (1996) and
Kleibergen and Paap (1997).

3.1 SEMs as linear models with nonlinear parameter re-
strictions

Overidenti¯ed SEMs can be considered as a nonlinear restriction on the parame-
ters of a multivariate linear model. It is well known how di®use and conjugate
priors and their resulting posteriors are constructed for the parameters of linear
models, see Zellner (1971). When we explicitly consider the SEM as a nonlinear
restriction on the parameters of a linear model, the priors and posteriors of the
parameters of the SEM result, straightforwardly, as proportional to the priors
and posteriors of the parameters of the linear model under the condition that the
restrictions on these parameters hold, see Kleibergen (1997).

To analyze the restrictions imposed by a SEM on the parameters of a linear
model consider the INSEM (1) and its implied reduced form (2). To show the
imposed restrictions, we add a parameter ¸ to this model which is such that
when it is nonzero, (i) there is an one-to-one correspondence with a standard
linear model and when it equals zero both (ii) the reduced form of the INSEM
results and (iii) it is locally uncorrelated with speci¯c other parameters. This
latter property is needed to obtain priors and posteriors of the parameters of
the INSEM which are invariant with respect to the speci¯cation of the model,
see Kleibergen (1997) for an exact speci¯cation of the conditions the restrictions
have to satisfy. Several restrictions imposed on the linear model namely lead
to the reduced form of the INSEM but only one restriction leads to priors and
posteriors which are invariant with respect to parameter transformations. This
invariance property is needed in order to avoid the Borel-Kolmogorov Paradox,
see Billingsley (1986) and Drµeze and Richard (1983), and for more details on this
posterior invariance, see Kleibergen (1997). The resulting model, which we call
the unrestricted SEM, reads,³

y1 Y2
´

= Z1

³
¼11 ¦12

´
+ Z2¦22

³
¯ Im¡1

´
(6)

+Z2¦22?¸
³
¯ Im¡1

´
?
+
³
»1 "2

´
;

where ¸ : (k2¡m+1)£1 and ¦22?;
³
¯ Im¡1

´
?
are the orthogonal complements
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of ¦22;
³
¯ Im¡1

´
resp., such that ¦0

22¦22? ´ 0;
³
¯ Im¡1

´ ³
¯ Im¡1

´0
?
´

0; and ¦0
22?¦22? ´ Ik2¡m+1;

³
¯ Im¡1

´
?

³
¯ Im¡1

´0
?
´ 1 (i.e. ¦22? =³

¡¦222¦
¡1
221 Ik2¡m+1

´0
(Ik2¡m+1+¦222¦

¡1
221¦

¡10
221¦

0
222)

¡1

2 ; when ¦22 =
³
¦0
221 ¦0

222

´0
;

¦221 : (m ¡ 1) £ (m ¡ 1); ¦222 : (k2 ¡m + 1) £ (m ¡ 1); and
³
¯ Im¡1

´
?
=

(1+¯0¯)¡
1

2

³
1 ¡¯ 0

´
):We note that the orthogonal complements used in other

parts of the paper are de¯ned identical to the ones stated above.
It is clear that when ¸ = 0; (6) is identical to (2) and since ¸ is multiplied by

the orthogonal complements of the matrices containing ¯ and ¦22; the information
matrix is block diagonal at ¸ = 0: We therefore say that ¸ is locally uncorrelated
with ¯ and ¦22 at ¸ = 0: The one-to-one correspondence between the parameters
of (6) and a multivariate linear model,

³
y1 Y2

´
=
³
Z1 Z2

´Ã ¼11 ¦12

Á1 ©2

!
+
³
»1 "2

´
; (7)

where Á1 : k2 £ 1; ©2 : k2 £ (m ¡ 1); can be shown using a Singular Value

Decomposition (SVD) of © =
³
Á1 ©2

´
; see Golub and van Loan (1989) and

Magnus and Neudecker (1988) for de¯nitions of a SVD. The equality of (7) and
(6) is shown in appendix E and uses the SVD of ©,

© = USV 0; (8)

where U : k2 £ k2; U
0U = Ik2; V : m £ m; V 0V = Im; and S : k2 £ m is a

rectangular matrix containing the (nonnegative) singular values (in decreasing
order) on its main diagonal (= (s11:::smm)). If we now write,

U =

Ã
U11 U12

U21 U22

!
; S =

Ã
S1 0
0 s2

!
and V =

Ã
v11 v12
V21 v22

!
; (9)

where U11; S1; V21 : (m ¡ 1) £ (m ¡ 1); v12 : 1 £ 1; v011; v22 : (m ¡ 1) £ 1;
U12 : (m¡1)£(k2¡m+1); U21 : (k2¡m+1)£(m¡1); U22 : (k2¡m+1)£(k2¡m+1);
s2 : (k2 ¡ m + 1) £ 1; then the following relationship between (¦22; ¯; ¸) and
(U; S; V ) results,

¦22 =

Ã
U11

U21

!
S1V

0
21; ¯ = V 0¡1

21 v011; and ¸ = (U22U
0
22)

¡ 1

2U22s2v
0
12(v12v

0
12)

¡ 1

2 :

(10)
Furthermore, the SVD shows that ¸ is identi¯ed by the smallest singular value
of © contained in s2 and is essentially a rotation of s2 since s2 is pre and post-
multiplied by orthogonal matrices to obtain ¸: Because the singular value s2 is
invariant with respect to the ordering of the variables contained in Y (= (y1 Y2))
and Z2; the length of ¸; which is equal to the length of s2 since it is a rotation
of s2; is identical for all orderings of the variables contained in Y and Z2: This
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property is needed to obtain a prior/posterior of the parameters of the INSEM
which is invariant with respect to the ordering of the variables in Y and Z2:

When we use the least squares estimator of © in (8), ©̂ = (Z 0
2MZ1Z2)

¡1Z 0
2MZ1

(y1 Y2); the estimators for ¯ and ¦22 resulting from (10) are identical to the limited
information maximum likelihood estimators, see Anderson and Rubin (1949) and
Hausman (1983), when the instruments are reasonable, see Kleibergen and Zivot
(1998) for a proof of this. The hypothesis H0 : ¸ = 0 can also be tested in that
setting to check the validity of the imposed overidenti¯cation.

The above shows that the INSEM can be considered as a nonlinear (reduced
rank) restriction, ¸ = 0; on the parameters of the linear model (7). We there-
fore construct the priors and posteriors of the parameters of the INSEM (1) as
proportional to the priors and posteriors of the parameters of the linear model
(7) evaluated in ¸ = 0: This framework for constructing priors and posteriors
results from Kleibergen (1997) and we discuss its results for the INSEM in the
following (sub)section. The framework can also be used in a full system analysis
in which SVDs have to be applied recursively. As this becomes notationally more
complicated we discuss it in a later section. Note also that the analysis for exact
identi¯ed SEMs directly results from the standard linear model since in that case
there is an one-to-one correspondence between the parameters of the structural
form and the linear model.

3.2 Prior Framework for SEMs

As shown previously, the INSEM can be considered as a nonlinear restriction on
the parameters of a multivariate linear model. It is, however, not possible to
analytically construct the conditional posterior of the parameters, ­; ¼11; ¯; ¦12

and ¦22; given the parameter re°ecting the restrictions, ¸; see Kleibergen (1997).
To show this let µ = (¼11; ¯;¦12;¦22) and ´ = (©; ¼11;¦12); then

punsem(µ; ¸j­; Y; Z) / plin(´(µ; ¸)j­; Y; Z)j
@´

@(µ; ¸)
j; (11)

where ´ is a function of µ and ¸; unsem stands for unrestricted SEM and lin

for linear model. Assume that the posterior of ´ is well behaved, which is typi-
cally the case for the posterior of the parameters of a multivariate linear model,
then we cannot give an exact expression of the conditional posterior of µ given ¸;
punsem(µj¸;­; Y; Z); including its normalizing constants because we cannot con-
struct the marginal posterior of ¸, punsem(¸jY; Z); analytically. This results as ¸

is multiplied by ¦22? and
³
¯ Im¡1

´
?
in (6). ¸ is therefore partly a nonlinear

function of ¯ and ¦22 such that we cannot construct its marginal posterior an-
alytically. So, to obtain a consistent analysis, in the sense that the INSEM has
to accord with its embedding linear model, we cannot ignore that the INSEM is
a linear model with nonlinear restrictions on its parameters and just proceed by
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constructing the posterior like in section 2. In that section we namely implicitly
assumed that the involved posterior is proportional to punsem(µ; ¸j­; Y; Z)j¸=0:
This implies a posterior for the parameters of the linear model in ¸ = 0,

plin(´j­; Y; Z)j¸=0 / punsem(´(µ; ¸)j­; Y; Z)j¸=0j(
@(µ; ¸)

@´
)j¸=0j: (12)

As shown in section 2 the posterior punsem(µ; ¸j­; Y; Z)j¸=0 is badly behaved and
the resulting plin(´j­; Y; Z)j¸=0 is thus also badly behaved. This is, however, a
posterior of the parameters of a linear model which is normally well-behaved and
well understood. It therefore does not belong to (or is nested within) the standard
class of posteriors of parameters of linear models. For more details we refer
to Kleibergen (1997). Also slight modi¯cations of the INSEM, to for example
an INSEM which is nested in the original INSEM, lead to a di®erent implied
posterior of the parameters of the embedding linear model. We therefore use the
priors/posteriors of the parameters of the linear model as a base to construct the
priors/posteriors of the parameters of the INSEM. So, we specify a prior for the
parameters of the linear model, for example a di®use or natural-conjugate prior,
see Zellner (1971), and we evaluate this prior in ¸ = 0 to obtain the prior for the
INSEM, see Kleibergen (1997) and Kleibergen and Paap (1997),

pinsem(µ;­) / punsem(µ; ¸;­)j¸=0 (13)

/ plin(´(µ; ¸);­)j¸=0j(
@´

@(µ; ¸)
)j¸=0j:

where insem stands for INSEM. We note that we can also perform the con-
struction of the prior vice versa by constructing a prior on the structural form
parameters and check whether the implied prior on the parameters of the embed-
ding linear model is plausible, see Kleibergen (1997) and Kleibergen and Zivot
(1998).

3.2.1 Di®use Prior

Using the framework resulting from (13), a di®use (Je®reys') prior for the para-
meters of the linear model, (¼11;¦12;©;­);

plin(¼11;¦12;©;­) / j­j¡
1

2
(k+m+1) / j­j¡

1

2
(m+1)j­¡1 ­ Z 0Zj

1

2 ; (14)

implies the prior for the parameters of the INSEM, (¯; ¼11;¦12;¦22;­);

pinsem(¯; ¼11;¦12;¦22;­) (15)

/ j­j¡
1

2
(m+1)j­¡1 ­ Z 0Zj

1

2 jJ(©; (¦22; ¯; ¸))j¸=0j

/ j­j¡
1

2
(k1+m+1)jZ 0

1Z1j
1

2
mjB?­B

0
?j

¡ 1

2
(k2¡m+1)j¦0

22?(Z
0
2MZ1Z2)

¡1¦22?j
¡1

2

j

Ã
B­¡1B0 ­ Z 0

2MZ1Z2 B­¡1e1 ­ Z 0
2MZ1Z2¦22

e01­
¡1B 0 ­ ¦0

22Z
0
2MZ1Z2 e01­

¡1e1 ­ ¦0
22Z

0
2MZ1Z2¦22

!
j
1

2
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where e1 : m £ 1 is the ¯rst m dimensional unity vector, B =
³
¯ Im¡1

´
;

jJ(©; (¦22; ¯; ¸))j = j @´

@(µ;¸)
j and is constructed in appendix A.

The prior (15) shows that ¯ is analyzed conditional on the value of ¦22; as it
should be according to the local nonidenti¯cation of ¯ for lower rank values of
¦22: Furthermore, the prior shows the functional form of a di®use prior for the
parameters of the INSEM. This accords with our conclusions from the previous
section that di®useness for models like the INSEM has to be de¯ned in a di®erent
way than the usual one for parameters of linear models.

We note that the prior (15) is the Je®reys' prior of the unrestricted reduced
form of the INSEM (6) evaluated in ¸ = 0. In Kleibergen and van Dijk (1994a),
the Je®reys' prior of the reduced form of the INSEM (2) is used to obtain well-
behaved posteriors, see also Chao and Phillips (1996). This prior is apart from

jB?­B
0
?j

¡ 1

2
(k2¡m+1)j¦0

22?(Z
0
2MZ1Z2)

¡1¦22?j
¡1

2 identical to (15). We use (15) in-
stead of that prior for three reasons. First, (15) results in a generic manner from
the linear model (7) instead of being a tool specially designed to solve the inte-
grability problem of the marginal posterior. Second, the concept for constructing
(15) can also be applied in the full system analysis while the Je®reys' priors of
the reduced forms of full system SEMs are intractable. Third, allthough we use
datamatrices in (15) to obtain a more interpretable expression of the prior, it is
not datadependent as no datamatrices appear in the jacobian J(©; (¦22; ¯; ¸))
and jZ 0Zj can just be left out. A Je®reys' prior on the reduced form (2) is
datadependent however.

The prior (15) is identical to the Je®reys' prior for the reduced form of the
orthonormal SEM, see Phillips (1983) and Chao and Phillips (1996), where ­ =
Im and Z 0

2MZ1Z2 = Ik2; as B?B
0
? = 1; ¦0

22?¦22? = Ik2¡m+1: Using Rayleigh
quotients it can also be shown that the ratio of the prior (15) and a Je®reys'
prior on the reduced form (2) is bounded between ¯nite nonzero constants.

3.2.2 Natural Conjugate Prior

In case of a natural conjugate prior for the parameters of the linear model, we
specify an inverted-Wishart prior for ­ and a matrix normal prior for (¼11;¦12;©)
given ­;

plin(­) / jGj
1

2
hj­j¡

1

2
(h+m+1) exp[¡

1

2
tr(­¡1G)] (16)

plin(¼11;¦12;©j­) / j­j¡
1

2
mjAj

1

2
k exp[¡

1

2
tr(­¡1(

Ã
¼11 ¦12

'1 ©2

!
¡ P )0

A(

Ã
¼11 ¦12

'1 ©2

!
¡ P ))];

where G : m £ m; A : k £ k; G and A are positive de¯nite symmetric (pds)
matrices, P : k£m; and h is the prior degrees of freedom parameter. The matrix
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A can be decomposed as

A =

Ã
A11 A12

A21 A22

!
; (17)

where A11 : k1£k1; A12 = A0
21 : k2£k1; A22 : k2£k2: The prior of the parameters

of the INSEM resulting from plin(¼11;¦12;©;­) can again be constructed using
(13),

pinsem(¯; ¼11;¦12;¦22;­) (18)

/ plin(¼11;¦12;©(¯;¦22; ¸);­)j¸=0jJ(©; (¦22; ¯; ¸))j¸=0j

/ Gj
1

2
hj­j¡

1

2
(h+k1+m+1)jA11j

1

2
mjB?­B

0
?j

¡ 1

2
(k2¡m+1)j¦0

22?A
¡1
22:1¦22?j

¡ 1

2

j

Ã
B­¡1B0 ­A22:1 B­¡1e1 ­ A22:1¦22

e01­
¡1B0 ­ ¦0

22A22:1 e01­
¡1e1 ­¦0

22A22:1¦22

!
j
1

2

exp[¡
1

2
tr(­¡1(G+ (

Ã
¼11 ¦12

¦22¯ ¦22

!
¡ P )0A(

Ã
¼11 ¦12

¦22¯ ¦22

!
¡ P )))];

where A22:1 = A22¡A21A
¡1
11 A12 and the speci¯cation of (18) is not unique in the

sense that certain scaling factors are used in order to obtain a more interpretable
expression.

It may be that we have more knowledge about possible values of the pa-
rameters of the INSEM than about the parameters of the linear model. This
knowledge can be used in the construction of the prior of the parameters of the
linear model though as these parameters are an exact function of the parameters
of the INSEM when the restriction ¸ = 0 holds. We can also directly specify a
prior on the parameters of the INSEM and check whether the implied prior on
the parameters of the embedding linear model is plausible, see Kleibergen and
Zivot (1998).

The prior (18) does not belong to a known class of probability density func-
tions and we do not know analytical expressions of its moments (which even only
exist up to its ¯rst order (but not including)) or normalizing constant. These
properties can be calculated using Monte-Carlo simulation and in the ¯fth sec-
tion we construct a simulation algorithm to obtain drawings from (18).

4 Posteriors of the INSEM parameters

The framework for constructing the priors of the parameters of the INSEM can
directly be applied to construct the posteriors of the parameters of the INSEM.
This results since the likelihood of the INSEM is a continuous function of the
parameters such that the posterior, which is proportional to the product of the
prior and the likelihood, can be evaluated in the same way as the prior,

pinsem(¯; ¼11;¦12;¦22;­jY; Z) (19)
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/ pinsem(¯; ¼11;¦12;¦22;­)Linsem(Y j¯; ¼11;¦12;¦22;­; Z)

/ punsem(¯; ¸; ¼11;¦12;¦22;­)j¸=0Lunsem(Y j¯; ¸; ¼11;¦12;¦22;­; Z)j¸=0

/ plin(¼11;¦12;©(¯; ¸;¦22);­)j¸=0jJ(©; (¦22; ¯; ¸))j¸=0j

Llin(Y j¼11;¦12;©(¯; ¸;¦22);­; Z)j¸=0:

In the following two subsections, we construct the posteriors for di®erent speci¯-
cations of the prior, i.e. a di®use and natural conjugate prior.

4.1 Posterior INSEM using Di®use Prior

Using the di®use prior (15), the joint posterior of the parameters of the INSEM
can directly be constructed from this prior and the likelihood using (19),

pinsem(¯; ¼11;¦12;¦22;­jY;Z) (20)

/ pinsem(¯; ¼11;¦12;¦22;­)L(Y j¯; ¼11;¦12;¦22;­; Z)

/ j­j¡
1

2
(T+k1+m+1)jZ 0

1Z1j
1

2
mjB?­B

0
?j

¡ 1

2
(k2¡m+1)j¦0

22?(Z
0
2MZ1Z2)

¡1¦22?j
¡1

2

j

Ã
B­¡1B0 ­ Z 0

2MZ1Z2 B­¡1e1 ­ Z 0
2MZ1Z2¦22

e01­
¡1B0 ­ ¦0

22Z
0
2MZ1Z2 e01­

¡1e1 ­ ¦0
22Z

0
2MZ1Z2¦22

!
j
1

2

exp[¡
1

2
tr(­¡1(

³
y1 Y2

´
¡
³
Z1 Z2

´Ã ¼11 ¦12

¦22¯ ¦22

!
)0

(
³
y1 Y2

´
¡
³
Z1 Z2

´Ã ¼11 ¦12

¦22¯ ¦22

!
)))]:

The posterior (20) does not belong to a known class of probability density func-
tions nor do any of the conditional posteriors, apart from the conditional posterior
of (¼11;¦12) given (¯;¦22;­); which is matrix-normal, belong to a known class of
probability density functions. So, we can only analytically integrate out (¼11;¦12)
to obtain the marginal posterior of (¯;¦22;­);

pinsem(¯;¦22;­jY; Z) / j­j¡
1

2
(T+m+1)jB?­B

0
?j

¡ 1

2
(k2¡m+1)

j

Ã
B­¡1B0 ­ Z 0

2MZ1Z2 B­¡1e1 ­ Z 0
2MZ1Z2¦22

e01­
¡1B0 ­ ¦0

22Z
0
2MZ1Z2 e01­

¡1e1 ­ ¦0
22Z

0
2MZ1Z2¦22

!
j
1

2

j¦0
22?(Z

0
2MZ1Z2)

¡1¦22?j
¡ 1

2 exp[¡
1

2
tr(­¡1(

³
y1 Y2

´
¡ Z2¦22

³
¯ Im¡1

´
)0

MZ1(
³
y1 Y2

´
¡ Z2¦22

³
¯ Im¡1

´
))]: (21)

which shows the functional form of the kernel of the density of a matrix normal
distributed random matrix with reduced rank, see Kleibergen (1997). The pos-
terior (21) is proportional to the product of the marginal posterior of (©;­) and
the jacobian of the transformation evaluated in ¸ = 0;

pinsem(¯;¦22;­jY; Z) / plin(©(¯; ¸;¦22);­jY; Z)j¸=0jJ(©; (¦22; ¯; ¸))j¸=0j:
(22)
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In section 5, we construct Importance and Metropolis-Hastings samplers for cal-
culating the marginal posteriors of (21) which use (22).

4.2 Posterior INSEM using Natural Conjugate Prior

Identical to the posterior of the parameters of the INSEM using a di®use prior
(20), we can construct the posterior of the parameters of the INSEM when we
use the natural conjugate prior (18),

pinsem(¯; ¼11;¦12;¦22;­jY; Z) (23)

/ j­j¡
1

2
(T+k1+m+1)j(A + Z 0Z)11j

1

2
mjB?­B

0
?j

¡ 1

2
(k2¡m+1)

j

Ã
B­¡1B0 ­ (A+ Z 0Z)22:1 B­¡1e1 ­ (A + Z 0Z)22:1¦22

e01­
¡1B0 ­¦0

22(A+ Z 0Z)22:1 e01­
¡1e1 ­ ¦0

22(A+ Z 0Z)22:1¦22

!
j
1

2

j¦0
22?(A + Z 0Z)¡122:1¦22?j

¡ 1

2 exp[¡
1

2
tr(­¡1( ~G+ (

Ã
¼11 ¦12

¦22¯ ¦22

!
¡ ~¦)0

(A+ Z 0Z)(

Ã
¼11 ¦12

¦22¯ ¦22

!
¡ ~¦)))]:

where ~¦ = (A + Z 0Z)¡1(Z 0Y + A0P ); ~G = G + Y 0Y ¡ ~¦0(A + Z 0Z)~¦; Y =³
y1 Y2

´
: Again similar to the posterior using a di®use prior (20), only the

conditional posterior of (¼11;¦12) given (¯;¦22;­) belongs to a known class of
probability density functions and (¼11;¦12) are the only parameters which can
be integrated out analytically to obtain the marginal posterior of (¯;¦22;­);

pinsem(¯;¦22;­jY;Z) / j­j¡
1

2
(T+m+1)jB?­B

0
?j

¡1

2
(k2¡m+1)

j

Ã
B­¡1B0 ­ (A + Z 0Z)22:1 B­¡1e1 ­ (A+ Z 0Z)22:1¦22

e01­
¡1B0 ­ ¦0

22(A+ Z 0Z)22:1 e01­
¡1e1 ­ ¦0

22(A + Z 0Z)22:1¦22

!
j
1

2

j¦0
22?(A + Z 0Z)¡122:1¦22?j

¡1

2 exp[¡
1

2
tr(­¡1( ~G+ (¦22

³
¯ Im¡1

´
¡ ~¦2)

0

(A+ Z 0Z)22:1(¦22

³
¯ Im¡1

´
¡ ~¦2)))]: (24)

where ~¦ =
³
~¦0
1

~¦0
2

´0
; ~¦1 : k1 £m; ~¦2 : k2 £m:

Again (22) applies to this posterior and we use it in the following section to
construct a posterior simulator.

5 Simulating Posteriors

As mentioned before the posteriors (21) and (24) do not belong to a standard
class of probability density functions nor do their conditional posteriors. We can
therefore not perform Gibbs sampling as the conditional posteriors are nonstan-
dard. The simulation algorithms constructed in this section therefore generate
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drawings from a probability density function which approximates the true pos-
terior. To correct for not drawing from the true posterior, weights are attached
to each drawing of the parameters proportional to the ratio of the posterior and
the approximating density in the generated parameter points. These weights can
be used both in Importance, see Kloek and van Dijk (1978) and Geweke (1989),
and Metropolis-Hastings, see Metropolis et. al. (1953) and Hastings (1970), al-
gorithms to draw from the posterior. We ¯rst discuss the construction of the
weights and the approximating density and hereafter we brie°y discuss the two
di®erent simulation algorithms.

We use the posterior of the unrestricted SEM, punsem(¯; ¸;¦22;­jY;Z); as
approximating density of the posterior of the INSEM, pinsem(¯;¦22;­jY; Z): The
posterior of the unrestricted SEM contains the parameter ¸; however, which is
not present in the posterior of the INSEM. In order to obtain a density which
both accords with the posterior of the INSEM and contains ¸; we assume that
¸ is generated given (¯;¦22;­) from a proper conditional density g(¸j¯;¦22;­);
which we specify ourselves, see Chen (1994), Verdinelli and Wasserman (1995),
Kleibergen (1997) and Kleibergen and Paap (1997). Furthermore, we assume that
¯; ¦22 and ­ are generated from pinsem(¯;¦22;­jY; Z): So, as density function
to be approximated by punsem(¯; ¸;¦22;­jY; Z) we have,

g(¸j¯;¦22;­)pinsem(¯;¦22;­jY;Z) / g(¸j¯;¦22;­)(punsem(¯; ¸;¦22;­jY; Z)j¸=0):
(25)

The weight function thus becomes,

w(¯; ¸;¦22;­) =
g(¸j¯;¦22;­)(punsem(¯; ¸;¦22;­jY; Z)j¸=0)

punsem(¯; ¸;¦22;­jY; Z)
: (26)

The quality of the approximating density punsem(¯; ¸;¦22;­jY; Z) crucially de-
pends on the chosen speci¯cation of g(¸j¯;¦22;­): In case we use the di®use
prior for the parameters of the INSEM (15), a natural choice of g(¸j¯;¦22;­) is,

g(¸j¯;¦22;­) = (2¼)¡
1

2
(k2¡m+1)jB?­

¡1B 0
?j

1

2
(k2¡m+1)j¦0

22?Z
0
2MZ1Z2¦22?j

1

2

exp[¡
1

2
tr(B?­

¡1B0
?(¸¡

^̧)0¦0
22?Z

0
2MZ1Z2¦22?(¸¡ ^̧))]; (27)

where ^̧ = (¦0
22?Z

0
2MZ1Z2¦22?)

¡1¦0
22?Z

0
2MZ1(Y ¡Z2¦22B)­

¡1B 0
?(B?­

¡1B 0
?)

¡1;

while

g(¸j¯;¦22;­) = (2¼)¡
1

2
(k2¡m+1)jB?­

¡1B0
?j

1

2
(k2¡m+1)j¦0

22?(A+ Z 0Z)22:1¦22?j
1

2

exp[¡
1

2
tr(B?­

¡1B0
?(¸¡

^̧)0¦0
22?(A+ Z 0Z)22:1¦22?(¸¡ ^̧))]; (28)

where ^̧ = (¦0
22?(A+Z

0Z)22:1¦22?)
¡1¦0

22?((AP+Z
0Y )2¡(A+Z

0Z)22:1¦22B)­
¡1B0

?

(B?­
¡1B0

?)
¡1; AP +Z 0Y = ((AP +Z 0Y )01 (AP +Z 0Y )02)

0; (AP +Z 0Y )1 : k1£m;
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(AP + Z 0Y )2 : k2 £ m; is a natural choice of g(¸j¯;¦22;­) when we use the
natural conjugate prior (16).

The weight function resulting from these choices of g read in both cases,

w(¯; ¸;¦22;­) =
jJ(©; (¯; ¸;¦22))j¸=0j

jJ(©; (¯; ¸;¦22))j
g(¸j¯;¦22;­)j¸=0; (29)

where g(¸j¯;¦22;­) should be chosen from (27) and (28) according to the in-
volved prior. In appendix A, we show that jJ(©; (¯; ¸;¦22))j ¸ jJ(©; (¯; ¸;¦22))j¸=0j
such that the ratio of the jacobians in (29) is always ¯nite. Furthermore as
g(¸j¯;¦22;­)j is a proper conditional density, it is also ¯nite and the weight
function is consequently always ¯nite.

When ¸ = 0; the ratio of jacobians in (29) is equal to one and the weight func-
tion then simpli¯es to the proposed conditional density of ¸ evaluated in ¸ = 0:
The weight function is therefore always ¯nite and nonzero when ¸ = 0. All draw-
ings of (¯; ¸;¦22) for which ¸ = 0 thus get a ¯nite nonzero weight. This has
consequences for the existence of moments of the posterior pinsem(¯;¦22;­jY; Z)
since it implies that the degree of ¯nite moments is determined by the transfor-
mation of © to (¯; ¸;¦22): According to (10), ¯ = V 0¡1

21 v011: As no restrictions are
imposed on the rank of V21; this implies that the posterior of ¯ has Cauchy type
tails and no ¯nite mean and variance, see Kleibergen and Zivot (1998). Note
also that the sampling distributions of limited information maximum likelihood
estimators have Cauchy type tails, see Anderson (1982) and Phillips (1983).

We summarize the di®erent steps involved in obtaining the weight function,
attached to the i¡th drawing, i = 1; :::; N; in a simulation algorithm as follows,
see also Kleibergen (1997) and Kleibergen and Paap (1997),

² Draw ­i from plin(­jY;Z)

Draw ©i from plin(©j­
i; Y; Z):

² Perform a singular value decomposition of ©i = U iSiV i0

² Compute ¯; ¸; ¦22 according to (9)-(10)

² Compute w(¯i; ¸i;¦i
22;­

i) according to (29)

² Draw ¼i11; ¦
i
12 from plin(¼11;¦12j©(¯

i; ¸;¦i
22);­

i; Y; Z)j¸=0

The posteriors of the linear model parameters, ­ and ©; used in the ¯rst
step, are standard density functions, i.e. inverted-Wishart and matrix normal
respectively, in case of di®use or natural conjugate priors. The exact functional
speci¯cation of these densities depends on the speci¯cation of the involved priors
and is straightforward to construct, i.e.,

plin(­jY;Z) / j­j¡
1

2
(T+l+m+1) exp[¡

1

2
tr(­¡1Q)]; (30)
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where l = 0; Q = Y 0MZY in case of the di®use prior, and l = h and Q = ~G in
case of the natural conjugate prior, and

plin(©j­; Y; Z) / j­j¡
1

2
k2 exp[¡

1

2
tr(­¡1(©¡ ©̂)0W (©¡ ©̂)]; (31)

where ©̂ = (Z 0
2MZ1Z2)

¡1Z 0
2MZ1Y; W = Z 0

2MZ1Z2; in case of the di®use prior, and
©̂ = ~¦2; W = (A+Z 0Z)22:1 in case of the natural conjugate prior. In Kleibergen
and Zivot (1998) another simulation algorithm to generate drawings from the
posterior pinsem(¯;¦22;­jY;Z) is constructed which is sometimes more e±cient
but is more di±cult to generalize to the full information case.

The weight function can either be used in an Importance or Metropolis-
Hastings Sampling algorithm to calculate the marginal posteriors or moments
of these. Using the Importance Sampling algorithm, see Kloek and van Dijk
(1978) and Geweke (1989), we approximate the moment E(f(¼11;¦12; ¯;¦22;­))
by

Ê(f(¼11;¦12; ¯;¦22;­)) =

PN
i=1w(¯

i; ¸i;¦i
22;­

i)f(¼i11;¦
i
12; ¯

i;¦i
22;­

i)PN
i=1w(¯

i; ¸i;¦i
22;­

i)
; (32)

where we use Ê to indicate that it is an estimator of the true expectation E:

In Geweke (1989), it is shown that under quite general conditions central limit
theorems can be used to prove the convergence of the approximation (32) to its
true value. As the weights are always ¯nite, they satisfy the conditions for the
central limit theorems to apply and statistics can be calculated which show the
numerical accuracy of the approximation (32).

The weights (26) can also be used in a Metropolis-Hastings (M-H) algorithm,
see Metropolis et. al. (1953) and Hastings (1970), known as the independence
sampler, see Tierney (1994). This algorithm constructs a Markov Chain from the
drawn (¼i11;¦

i
12; ¯

i;¦i
22;­

i)'s. The (¼i11;¦
i
12; ¯

i;¦i
22;­

i)'s in this Markov Chain
are accepted as drawings from the posterior. This is achieved using the following
steps,

0. i = 1

1. Draw (¼i+111 ;¦i+1
12 ; ¯i+1;¦i+1

22 ;­i+1) using the simulation scheme stated pre-
viously. Given that (¼i11;¦

i
12; ¯

i;¦i
22;­

i) is accepted as drawing from the
posterior, (¼i+111 ;¦i+1

12 ; ¯i+1;¦i+1
22 ;­i+1) is accepted as the (i+1)¡th drawing

from the posterior with probability, min(
w(¯i;¸i;¦i

22
;­i)

w(¯i+1;¸i+1;¦i+1
22

;­i+1)
; 1); otherwise

(¼i+111 ;¦i+1
12 ; ¯i+1;¦i+1

22 ;­i+1) = (¼i11;¦
i
12; ¯

i;¦i
22;­

i):

2. i = i + 1: Go to 1.

When the resulting Markov Chain, (¼i11;¦
i
12; ¯

i;¦i
22;­

i); i = 1; :::; has con-
verged to its equillibrium distribution, say after H drawings, we can record
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(¼i11;¦
i
12; ¯

i;¦i
22;­

i); i = H + 1; :::; as simulated values of the parameters from
the posterior.

The simulation algorithms can also be used to calculate other properties of
the posterior, like Bayes Factors and Bayesian Lagrange Multiplier Statistics, see
Kleibergen and Paap (1997), and to obtain drawings from the natural conjugate
prior (18). In that case, the natural choice of the involved g(¸j¯;¦22;­) reads,

g(¸j¯;¦22;­) = (2¼)¡
1

2
(k2¡m+1)jB?­

¡1B0
?j

1

2
(k2¡m+1)j¦0

22?A22:1¦22?j
1

2

exp[¡
1

2
tr(B?­

¡1B0
?(¸¡

^̧)0¦0
22?A22:1¦22?(¸¡ ^̧))]; (33)

where ^̧ = (¦0
22?A22:1¦22?)

¡1¦0
22?A22:1(P2 ¡ ¦22B)­

¡1B0
?(B?­

¡1B0
?)

¡1; P =
(P 0

1 P
0
2)
0; P1 : k1 £m; P2 : k2 £m; and plin(­jY; Z); plin(©j­; Y; Z); both result

from (16). This also shows the conjugateness of this prior as it equals the posterior
using a di®use prior of some arbitrary set of observations which doesnot hold for
the extended natural conjugate priors, which are also speci¯eds for SEMs, used
by Drµeze and Morales (1976) and Drµeze and Richard (1983). We note that
the simulation algorithms do not calculate °; as ° = ¼11 + ¦12¯; we can easily
incorporate ° into these algorithms.

6 Full System Analysis

The INSEM is a reduced rank restriction on a parameter matrix of a linear
model. A full system analysis of a SEM can also be speci¯ed as a linear model
with nonlinear restrictions on its parameters. Again these restrictions are reduced
rank restrictions but the di®erence with the INSEM is that they can depend on
one another in a recursive way. Theorem 1 states that the reduced form of a
SEM is a linear model with reduced rank restrictions on its parameter matrices.

Theorem 1 Assume that a SEM has the following speci¯cation,

³
Y ¹m Ym

´Ã B ¹m ¹m B ¹mm

Bm ¹m Bmm

!
(34)

=
³
Z ¹m Z ¹mm Zm

´0B@ ¡ ¹m ¹m 0
¡m ¹m ¡ ¹mm

0 ¡mm

1
CA+

³
" ¹m "m

´

where the number of variables contained in Ym is chosen such that ¡mm : im£ jm
(im ¸ jm) and ¡ ¹mm : lm £ jm are unrestricted, the parameter matrices, ¡ ¹m ¹m :
l ¹m £ j ¹m; ¡m ¹m : lm £ j ¹m; B ¹m ¹m : j ¹m £ j ¹m; B ¹mm : j ¹m £ jm; Bm ¹m : jm £ j ¹m;

B ¹m ¹m : j ¹m£ j ¹m; contain (some) parameters which are restricted to zero except for
B ¹m ¹m, which has all diagonal elements equal to one and some o®diagonal elements
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equal to zero, and Bmm = Ijm; then the reduced form of the SEM from equation
(34) is equal to a set of reduced rank restrictions on the standard linear model,

³
Y ¹m Ym

´
=
³
Z ¹m Z ¹mm Zm

´
©+ »;

where © : (l ¹m + lm + im)£ (j ¹m + j ¹m):

Proof: see appendix B.

Theorem 1 shows that we can use the framework for prior/posterior analysis
used in the previous sections, which results from Kleibergen (1997), in a Bayesian
full system analysis of a SEM. An important di®erence with the analysis from
the previous sections is, however, the dependence of the di®erent reduced rank
restrictions on one another. For the INSEM, we can either analyze © conditional
on (¼11;¦12) or vice versa. So, the conditionalization of these parameters on one
another does not matter. This does not hold for the full system analysis which we
can conclude from the proof of theorem 1. It results in a strict ordering in which
the reduced rank restrictions have to be imposed and hence how the parameters
have to be analyzed conditional on one another. The reduced form of the SEM
constructed in appendix B shows already some important conditionalization rules
for the parameters of the SEM. For example, the structural form parameter ¯m ¹m

is analyzed conditional on the structural form parameter ¯ ¹mm; which are both
de¯ned in appendix B. More of these conditionalization rules will appear when
the reduced form is constructed further.

The conditionalization rules also imply rank and order conditions which can
di®er from the INSEM based conditions used in general. This is part of the point
made in Maddala (1976). Regarding the conditionalization rules, the reduced
form, constructed in appendix B, shows that ¯ ¹mm is identi¯ed when ¦ ¹m ¹m has
full rank (or when that part of ¦ ¹m ¹m which is multiplied by the nonzero parts of
¯ ¹mm has full rank), where the elements of ¦ are de¯ned in appendix B. When
the INSEM based conditions are used, it is assumed that no restrictions are
imposed on ¦ ¹m ¹m: If restrictions are imposed, however, the resulting rank and
order conditions can become di®erent. In the following, an example of this will
be discussed. It can also be seen in ¯m ¹m; which is identi¯ed jointly by ¦ ¹mm;

¦ ¹m ¹m¯ ¹mm and ¦mm and its rank and order conditions therefore depend on the
speci¯cation of the SEM.

As mentioned before, the framework for prior and posterior analysis used in
the previous sections can also be used to construct the priors and posteriors of the
parameters in a full system analysis of a SEM. When we apply this framework we
have to give an exact speci¯cation of the reduced form and its (hyper) parameters
re°ecting the restrictions which obey the three conditions, that (i:) when these
(hyper) parameters are nonzero, the model is observationally equivalent with a
standard linear model and when these (hyper) parameters are zero, (ii:) both the
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reduced from of the SEM results and (iii:) these (hyper) parameters are locally
uncorrelated with speci¯c other parameters such that the resulting posterior is in-
variant with respect to the ordering of those variables for which also the likelihood
is invariant, see Kleibergen (1997) for an exact speci¯cation of the conditions the
restrictions have to satisfy. This enables us to construct the prior/posterior of the
parameters of the SEM as proportional to the prior/posterior of the parameters
of the linear model under the restriction that the (hyper) parameters re°ecting
the restrictions are zero which is identical to the construction of priors/posteriors
of the parameters of the INSEM. Since there are still some di®erences compared
to the analysis of the INSEM, because the reduced form has a more complicated
structure and the number of additional parameters we have to simulate in the
posterior simulator increases, see (25), we give two detailed examples, a two and
three (sets of) equation(s) model, to indicate all these di®erences. These exam-
ples jointly with theorem 1 show how a Bayesian full system analysis of any kind
of SEM is conducted.

6.1 Two (sets of) equations

We specify the structural form of the two (sets of) equation(s) model by,

Y1 = Y2¯1 + Z1¡11 + Z2¡21 + "1; (35)

Y2 = Y1¯2 + Z1¡12 + Z3¡32 + "2;

where Y1 : T £m1; Y2 : T £m2; contain the endogenous variables, Z1 : T £ k1;

Z2 : T £ k2; Z3 : T £ k3; contain (weakly) exogenous and lagged dependent
variables; k2 ¸ m1; k3 ¸ m2; m = m1+m2; ("1 "2) » n(0;§­ IT ); ¯1 : m2£m1;

¯2 : m1 £ m2; ¡11 : k1 £ m1; ¡12 : k1 £ m2; ¡21 : k2 £ m1; ¡32 : k3 £ m2: The
reduced form of (35), which can be constructed using the proof of theorem 1,
reads

Y1 = Z1¦11 + Z2¦21 + Z3¦32¯1 + »1; (36)

Y2 = Z1¦12 + Z2¦21¯2 + Z3¦32 + »2;

where ¦11 = (¡11+¡12¯1)(Im1
¡ ¯2¯1)

¡1; ¦21 = ¡21(Im1
¡ ¯2¯1)

¡1; ¦12 = (¡12+
¡11¯2)(Im2

¡¯1¯2)
¡1; ¦32 = ¡32(Im2

¡¯1¯2)
¡1; »1 = ("1+"2¯1)(Im1

¡¯2¯1)
¡1; »2 =

("2+"1¯2)(Im2
¡¯1¯2)

¡1; (»1 »2) » n(0;­­IT ); § = B0­B; B =

Ã
Im1

¡¯2
¡¯1 Im2

!
:

Similar to the reduced form of the INSEM (2) and as indicated in the proof of
theorem 1, we add parameters to the reduced form to obtain a model, which
we call unrestricted SEM (UNSEM), which is observationally equivalent with a
linear model and when these added parameters are zero both the reduced form
(36) results and the added parameters are locally uncorrelated with speci¯c other
parameters,³
Y1 Y2

´
= Z1

³
¦11 ¦12

´
+ Z2¦21

³
Im1

¯2
´
+ Z3¦32

³
¯1 Im2

´
(37)
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+Z2¦21?¸2
³
Im1

¯2
´
?
+ Z3¦32?¸1

³
¯1 Im2

´
?
+
³
»1 »2

´
;

where ¸2 : (k2¡m1)£m2; ¸3 : (k3¡m2)£m1; and the orthogonal complements

¦21?; ¦32?;
³
Im1

¯2
´
?
and

³
¯1 Im2

´
?
are de¯ned similar to the ones used

in (6), see appendix C. It is clear that when ¸2 = 0; ¸3 = 0; the reduced form (36)
results and that ¸2 and ¸3 are locally uncorrelated, when they are equal to zero,
with (¦21; ¯2) and (¦32; ¯1) respectively. When ¸2 6= 0; ¸3 6= 0; again similar to
(6), (37) is observationally equivalent with the linear model,

³
Y1 Y2

´
=
³
Z1 Z2 Z3

´0B@ ©1

©2

©3

1
CA+

³
»1 »2

´
; (38)

where ©1 =
³
¦11 ¦12

´
; ©2 : k2 £m; ©3 : k3 £m: Using a SVD, the equality

of (37) and (38) can be shown. SVDs are also used to obtain (¯2; ¸2;¦21) from
©2 and (¯1; ¸3;¦32) from ©3; see appendix C. The resulting relationships are
similar to (8)-(10) and straightforward to derive given (8)-(10). The SEM (35) is
consequently a linear model with nonlinear restrictions on its parameters, ¸2 = 0;
¸3 = 0: The framework for prior/posterior analysis of the INSEM used in sections
3-4 can, therefore, directly be extended to the two equation SEM (35). So, we
specify a prior for the parameters of the linear model (©1;©2;©3;­), for example
a di®use or natural conjugate prior, and this implies a prior for the parameters
of the SEM (36) as this SEM equals the linear model evaluated in ¸2 = 0;
¸3 = 0 (Note that we use the reduced form (36) but this model is observationally
equivalent with the SEM (35)),

psem(¦11;¦12; ¯1; ¯2;¦21;¦32;­) (39)

/ punsem(¦11;¦12; ¯1; ¯2; ¸2; ¸3;¦21;¦32;­)j¸2=0;¸3=0

/ plin(©1;©2(¯2; ¸2;¦21);©3(¯1; ¸3;¦32);­)j¸2=0;¸3=0

jJ(©2; (¯2; ¸2;¦21))j¸2=0jjJ(©3; (¯1; ¸3;¦32))j¸3=0j

where sem stands for SEM, unsem for UNSEM, and lin for linear model and
the jacobians J(©2; (¯2; ¸2;¦21)); J(©3; (¯1; ¸3;¦32)) are straightforward to de-
rive given the derivation of the jacobian of the transformation in case of the
INSEM and are stated in appendix C. Using (39) and the expressions of di®use
and natural conjugate priors for the linear model, (14) and (16), we can again
construct the functional expressions of di®use and natural conjugate priors for
SEMs like (36). For reasons of compactness and similarity with section 3 we do
not give the exact functional expressions.

For the posterior exactly the same reasoning as for the prior applies, i.e.
the posterior of the parameters of the SEM (36) is proportional to the posterior
of the parameters of the linear model under the imposed restriction. We can
decompose the posterior of the linear model into a product of marginal and
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conditional posteriors which belong to a standard class of density functions, i.e.
normal or inverted-Wishart, see a.o. Zellner (1971). This property can directly
be used to decompose the posterior of the SEM,

psem(¦11;¦12; ¯1; ¯2;¦21;¦32;­jY; Z) (40)

/ punsem(¦11;¦12; ¯1; ¯2; ¸2; ¸3;¦21;¦32;­jY; Z)j¸2=0;¸3=0

/ plin(©1;©2(¯2; ¸2;¦21);©3(¯1; ¸3;¦32);­jY; Z)j¸2=0;¸3=0

jJ(©2; (¯2; ¸2;¦21))j¸2=0jjJ(©3; (¯1; ¸3;¦32))j¸3=0j

/ plin(©1j©2(¯2; ¸2;¦21);©3(¯1; ¸3;¦32);­; Y; Z)j¸2=0;¸3=0

plin(©2(¯2; ¸2;¦21)j©3(¯1; ¸3;¦32);­; Y; Z)j¸2=0;¸3=0

jJ(©2; (¯2; ¸2;¦21))j¸2=0j

plin(©3(¯1; ¸3;¦32)j­; Y; Z)j¸3=0jJ(©3; (¯1; ¸3;¦32))j¸3=0j

plin(­jY; Z):

Note that we can also use other orderings in this decomposition. To simulate
parameters from the posterior of the SEM (36), we use the decomposition of
the posterior of the SEM (40). This allows us to perform the simulation in
two di®erent steps. Furthermore, we add, in each of the two di®erent steps,
parameters to the model which we, similar to section 5, assume to be generated
from some conditional density g; which we specify ourselves. In case of di®use
priors, the following choices of these functions are natural,

g1(¸3j¯1;¦32;­) = (2¼)¡
1

2
l3jB1?­

¡1B0
1?j

1

2
l3j¦0

32?Z
0
3M(Z1 Z2)Z3¦32?j

1

2
m1

exp[¡
1

2
tr(B1?­

¡1B 0
1?(¸3 ¡

^̧
3)
0¦0

32?Z
0
3M(Z1 Z2)Z3¦32?(¸3 ¡ ^̧

3))]; (41)

g2(¸2j¯2;¦21;©3;­) = (2¼)¡
1

2
l2jB2?­

¡1B0
2?j

1

2
l2j¦0

21?Z
0
2MZ1Z2¦21?j

1

2
m2

exp[¡
1

2
tr(B2?­

¡1B0
2?(¸2 ¡

^̧
2)
0¦0

32?Z
0
2MZ1Z3¦32?(¸2 ¡ ^̧

2))]; (42)

where l2 = k2 ¡m1; l3 = k3 ¡m2; B1 =
³
¯1 Im2

´
; B2 =

³
Im1

¯2
´
;

^̧
3 = (¦0

32?Z
0
3M(Z1 Z2)Z3¦32?)

¡1¦0
32?Z

0
3M(Z1 Z2)

(Y ¡ Z3¦32B1)­
¡1B0

1?(B1?­
¡1B0

1?)
¡1;

^̧
2 = (¦0

21?Z
0
2MZ1Z2¦21?)

¡1¦0
21?Z

0
2MZ1

(Y ¡ Z3©3 ¡ Z2¦21B2)­
¡1B0

2?(B2?­
¡1B0

2?)
¡1:

The weight functions of the two di®erent steps of the simulation algorithm, in-
volving both (41) and (42), then become,

w1(¯1; ¸3;¦32;­) =
jJ(©3; (¯1; ¸3;¦32))j¸3=0j

jJ(©3; (¯1; ¸3;¦32)j
g1(¸3j¯1;¦32;­)j¸3=0; (43)

w2(¯2; ¸2;¦21;­j©3) =
jJ(©2; (¯2; ¸2;¦21))j¸2=0j

jJ(©2; (¯2; ¸2;¦21)j
g2(¸2j¯2;¦21;©3;­)j¸2=0:(44)
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Again these weights functions are always ¯nite. The di®erent steps involved
in obtaining the weight attached to a certain drawing i; i = 1; :::; N; of the
parameters of the SEM, can then be summarized as follows,

1. Draw ­i from plin(­jY;Z)

Draw ©i
3 from plin(©3j­

i; Y; Z):

2. Compute ¯i1; ¸
i
3; ¦

i
32 from ©i

3 using a SVD

3. Compute w1(¯
i
1; ¸

i
3;¦

i
32;­

i) according to (43)

4. Draw ©i
2 from plin(©2j©3(¯

i
1; ¸3;¦

i
32);­

i; Y; Z)j¸3=0

5. Compute ¯i2; ¸
i
2; ¦

i
21 from ©i

2 using a SVD

6. Compute w2(¯
i
2; ¸

i
2;¦

i
21;­

ij©3(¯
i
1; ¸3;¦

i
32))j¸3=0 according to (44)

7. Compute total weight i¡th drawing :

w(¯i1; ¸
i
3;¦

i
32; ¯

i
2; ¸

i
2;¦

i
21;­

i) = w1 £ w2

8. Draw ©i
1 from plin(©1j©2(¯

i
2; ¸2;¦

i
21);©3(¯

i
1; ¸3;¦

i
32);­

i; Y; Z)j¸2=0;¸3=0

The posteriors from which we simulate are all standard, in case of di®use
or natural conjugate priors, and are similar to the ones used in the algorithm
in section 5. The values of other structural form parameters can directly be
calculated using the equations used in (36) and the drawings from the above
algorithm. The resulting total weights, w; can be used in an Importance or M-H
sampler as discussed in section 5 to obtain a posterior simulator of the posterior
of the parameters of the SEM (36).

6.2 Three (sets of) Equations

As an example of a three (sets of) equation(s) model, we use (Note that con-
trary to the two equation model, the speci¯cation of a three equation model is
not unique since the model is not invariant with respect to the ordering of the
variables),

Y1 = Y2¯21 + Z1¡11 + "1; (45)

Y2 = Y3¯32 + Z1¡12 + Z2¡22 + "2;

Y3 = Y1¯13 + Y2¯23 + Z2¡23 + Z3¡33 + "3;

where Y1 : T £ m1; Y2 : T £ m2; and Y3 : T £ m3; contain the endogenous
variables and Z1 : T £k1; Z2 : T £k2; and Z3 : T £k3, contain lagged endogenous
and weakly exogenous variables, ¯21 : m2 £ m1; ¯32 : m3 £ m2; ¯13 : m1 £m3;

¯23 : m2 £ m3; ¡11 : k1 £ m1; ¡12 : k1 £ m2; ¡22 : k2 £ m2; ¡23 : k2 £ m3;
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¡33 : k3£m3; m = m1 +m2 +m3: ("1 "2 "3) » n(0;§­ IT ): Since the SEM (45)
has to be properly identi¯ed, the following (INSEM) order conditions need to be
ful¯lled, k2 + k3 ¸ m2; k3 ¸ m3; k1 ¸ m1 + m2: Using the proof of theorem 1,
the reduced form of the model in equation (45) is constructed and reads,

Y1 = Z1¦11 +
³
Z1 Z2¦33

´Ã ¦22

¯32

!
¯21 + »1; (46)

Y2 = Z1¦12 + Z2¦22 + Z3¦33¯32 + »2;

Y3 = Z1(¦11 ¦12)

Ã
¯13
¯23

!
+ Z2¦23 + Z3¦33 + »3;

where (¡11 ¡12) = (¦11 ¦12)

Ã
Im1

¡¯13¯23
¡¯21 Im2

¡ ¯23¯13

!
; ¡33 = ¦33(Im3

¡¯2(¯1¯3¡

¯4)); (¡22 ¡23) = (¦22 ¦23)

Ã
Im2

¡(¯23 + ¯21¯13)
¡¯32 Im3

!
; (»1 »2 »3)B; = ("1 "2

"3); § = B0­B; B =

0
B@ Im1

0 ¡¯13
¡¯21 Im2

¡¯23
0 ¡¯32 Im3

1
CA : The reduced form (46) is again

a system of reduced rank matrices like the reduced forms of the one equation
(2) and two equation (36) models. An important di®erence with these models is
that its reduced rank matrices depend on another which is a.o. re°ected in the
identi¯cation of ¯21 which depends on one of the other structural form parameters,
¯32: This di®erence also leads to a change in the order condition compared to the
INSEM. According to the INSEM order condition, ¯21 is identi¯ed when k2+k3 ¸
m2; i.e. the number of excluded exogenous variables is at least equal to the
number of included endogenous variables, see Hausman (1983). The model (45)

shows, however, that ¯21 is identi¯ed when

Ã
¦22

¦33¯32

!
has full rank. Allthough

this matrix has k2 + k3 rows, which accords with the standard order condition,
it's row rank can never exceed k2 + m3 (· k2 + k3) as it can be speci¯ed asÃ
Ik2 0
0 ¦33

!Ã
¦22

¯32

!
and the last matrix in this product has k2+m3 rows. It is

therefore important that the identi¯cation of the di®erent parameters of a SEM
in a full system analysis is conducted using the restricted reduced form parameter
matrix instead of the unrestricted one as this can lead to di®erent rank and order
conditions, see also Maddala (1976). This di®erent order condition results from
the dependence of the, by the SEM (46) imposed, reduced rank structures on one
another, see also proof of theorem 1. The reduced rank structures appearing in
the two equation model do not depend on one another, as can be concluded from
(37), and therefore the INSEM order conditions still apply there.

As a consequence of the sequential dependence between the reduced rank
structures, not only the order conditions of the INSEM and the SEM (45) di®er,
as indicated above, but also the parameters which we add to the model (46),
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to make it observationally equivalent to a linear model, are di®erent from the
ones we used before, see also the proof of theorem 1. In the cases of the INSEM
(6) and the two equation SEM (37), the parameters added to the reduced form,
to make it observationally equivalent to a linear model, do not depend on one
another in a sequential way. The parameters added to (46) do, however, depend
on each other sequentially. To show this, consider the linear model,

³
Y1 Y2 Y3

´
=
³
Z1 Z2 Z3

´0B@ ©1

©2

©3

1
CA+

³
»1 »2 »3

´
: (47)

The reduced form model (46) can be obtained by using a, what we call, unre-
stricted SEM speci¯cation of the parameters of (47),

©1 =
³
¦11 ¦12

´Ã Im1
0 ¯13

0 Im2
¯23

!
(48)

+
³
¦11 ¦12

´
?
¸1

Ã
Im1

0 ¯13
0 Im2

¯23

!
?

;

Ã
©2

©3

!
= £

Ã
¯21 Im2

0
0 0 Im3

!
+£?¸2

Ã
¯21 Im2

0
0 0 Im3

!
?

; (49)

£ =

Ã
¦22 ¦23

£2

!
; (50)

£2 = ¦33

³
¯32 Im3

´
+¦33?¸3

³
¯32 Im3

´
?

(51)

where the orthogonal complements are de¯ned similar to the ones used in (6),
see also appendix D, ¸1 : (k1 ¡m1 ¡m2)£m3; ¸2 : (k2 + k3 ¡m2 ¡m3)£m1;

¸3 : (k3 ¡ m3) £m2: To analyze the implications of the di®erent orthogonality
conditions in (48)-(51), we substitute the expression of £ in (©0

2 ©
0
3)
0,

Ã
©2

©3

!
=

Ã
¦22 ¦23

¦33

³
¯32 Im3

´
+¦33?¸3

³
¯32 Im3

´
?

!Ã
¯21 Im2

0
0 0 Im3

!

+

Ã
¦22 ¦23

¦33

³
¯32 Im3

´
+¦33?¸3

³
¯32 Im3

´
?

!
?

¸2

Ã
¯21 Im2

0
0 0 Im3

!
?

:(52)

It is clear from (48)-(51) that when ¸1 = 0; ¸2 = 0; ¸3 = 0; the model (46)
results. Furthermore, when ¸1 = 0; ¸2 = 0; ¸3 = 0; ¸1 is locally uncorre-
lated with (¦11;¦12; ¯13; ¯23); ¸3 with (¦33; ¯32); and ¸2 with ¯21 and all pa-
rameters contained in £, i.e. ¦22;¦23;¦33; ¸3; ¯32: SVDs are needed to obtain
(¦11;¦12; ¸1; ¯13; ¯23) from ©1; (£; ¸2; ¯21) from (©2;©3) and (¦22;¦23;¦33; ¸3; ¯32)
from £; and to show the observational equivalence between the model imposed
by (48)-(51) and (47) when ¸1 6= 0; ¸2 6= 0; ¸3 6= 0. These SVDs are stated in
appendix D. The sequential dependence between the structural form parameters
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now re°ects itselves in SVDs which have to be applied recursively, a.o. of £ which
already results from a SVD as it is the reduced form of an INSEM,

~Y1 = ~Y2¯32 + ~Z1¢11 + À1; (53)
~Y2 = ~Z1¢21 + ~Z2¢22 + À2;

where ~Y1; ~Y2; ~Z1 and ~Z2 are datamatrices, ¢21 = ¦23; ¢22 = ¦33; ¢11 = ¦22 ¡
¢21¯32: £ is therefore similar to the (¦0

¹m ¹m ¦0
m ¹m)

0 parameter matrix used in the
proof of theorem 1.

So, the SEM (46) is again a linear model with restrictions on its parameters.
We can, therefore, again apply the framework for prior/posterior analysis used
in the previous sections, i.e. we specify the prior/posterior of the parameters of
(46) as proportional to the prior/posterior of the parameters of the linear model
under the condition that the restrictions hold,

psem(¯21; ¯32; ¯13; ¯23;¦11;¦12;¦22;¦23;¦33;­) (54)

/ punsem(¯21; ¯32; ¯13; ¯23; ¸1; ¸2; ¸3;¦11;¦12;¦22;¦23;¦33;­)j(¸1;¸2;¸3)=0

/ plin(©1(¯13; ¯23; ¸1;¦11;¦12);

(©2;©3)(¯21; ¸2;£(¦22;¦23;¦33; ¸3; ¯32);­)j(¸1;¸2;¸3)=0

jJ(©1; (¯13; ¯23; ¸1;¦11;¦12))j¸1=0jjJ(£; (¦22;¦23;¦33; ¸3; ¯32))j¸3=0j

jJ((©2;©3); (¯21; ¸2;£(¦22;¦23;¦33; ¸3; ¯32)j¸3=0))j¸2=0j;

where J(©1; (¯13; ¯23; ¸1;¦11;¦12)); J(£; (¦22;¦23;¦33; ¸3; ¯32)); J((©2;©3); (¯21; ¸2;£))
are the jacobians of the transformation from ©1 to (¯13; ¯23; ¸1;¦11;¦12); (©2;©3)
to (¯21; ¸2;£) and £ to (¦22;¦23;¦33; ¸3; ¯32) and these jacobians are stated in
appendix D. When we specify a di®use (14) or natural conjugate prior (16) for
the parameters of the linear model, (54) shows the implied prior for the parame-
ters of the SEM. We do not give the exact functional expressions as they can be
constructed along the lines of section 3.

Also for the posterior, we use the framework from Kleibergen (1997). Fur-
thermore, we use the decomposition of the posterior of the linear model into a
product of conditional and marginal densities,

psem(¯21; ¯32; ¯13; ¯23;¦11;¦12;¦22;¦23;¦33;­jY;Z) (55)

/ punsem(¯21; ¯32; ¯13; ¯23; ¸1; ¸2; ¸3;¦11;¦12;¦22;¦23;¦33;­jY;Z)j(¸1;¸2;¸3)=0

/ plin(©1(¯13; ¯23; ¸1;¦11;¦12);

(©2;©3)(¯21; ¸2;£(¦22;¦23;¦33; ¸3; ¯32);­jY; Z)j(¸1;¸2;¸3)=0

jJ(©1; (¯13; ¯23; ¸1;¦11;¦12))j¸1=0jjJ(£; (¦22;¦23;¦33; ¸3; ¯32))j¸3=0j

jJ((©2;©3); (¯21; ¸2;£(¦22;¦23;¦33; ¸3; ¯32)j¸3=0))j¸2=0j;

/ plin(©1(¯13; ¯23; ¸1;¦11;¦12)j(©2;©3)(¯21; ¸2;£);­jY; Z)j(¸1;¸2;¸3)=0

jJ(©1; (¯13; ¯23; ¸1;¦11;¦12))j¸1=0j
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plin((©2;©3)(¯21; ¸2;£(¦22;¦23;¦33; ¸3; ¯32)j­; Y; Z)j(¸2;¸3)=0

jJ((©2;©3); (¯21; ¸2;£(¦22;¦23;¦33; ¸3; ¯32)j¸3=0))j¸2=0j

jJ(£; (¦22;¦23;¦33; ¸3; ¯32))j¸3=0jplin(­jY; Z):

We note that for this model only a few decompositions of the posterior into
conditional and marginal posteriors are allowed for, i.e. (©2;©3) given ©1 and
vice versa, because of the reduced rank structure imposed by the SEM. We cannot
for example analyze ©2 given ©3 or vice versa. We use the decomposition of the
posterior (55) to construct a posterior simulator. Again, similar to previous
sections, to simulate from the posterior of (46) we add parameters to the model,
i.e. ¸1; ¸2; ¸3; which we assume to be drawn from a speci¯c conditional density,
which we specify ourselves, see (25). In case of a di®use prior for the linear model
(14), natural choices for these conditional densities are,

g1(¸1j¯13; ¯23;¦11;¦12;©2;©3;­) (56)

= (2¼)¡
1

2
l1jB1?­

¡1B0
1?j

1

2
l1j(¦11 ¦12)

0
?Z

0
1Z1(¦11 ¦12)?j

1

2
m3

exp[¡
1

2
tr(B1?­

¡1B0
1?(¸1 ¡

^̧
1)
0(¦11 ¦12)

0
?Z

0
1Z1(¦11 ¦12)?(¸1 ¡ ^̧

1))];

g2(¸2j¯21;£;­) (57)

= (2¼)¡
1

2
l2jB2?­

¡1B0
2?j

1

2
l2j£0

?(Z2 Z3)
0MZ1(Z2 Z3)£?j

1

2
m1

exp[¡
1

2
tr(B2?­

¡1B0
2?(¸2 ¡

^̧
2)
0£0

?(Z2 Z3)
0MZ1(Z2 Z3)£?(¸¡ ^̧

2))];

g3(¸3j¯32; ¯21;¦33;­) (58)

= (2¼)¡
1

2
l3jB3?B2­

¡1B0
2B

0
3?j

1

2
l3j¦0

33?Z
0
3M(Z1 Z2)Z3)¦33?j

1

2
m2

exp[¡
1

2
tr(B3?B2­

¡1B 0
2B

0
3?(¸3 ¡ ^̧

3)
0¦0

33?Z
0
3M(Z1 Z2)Z3)¦33?(¸3 ¡ ^̧

3))];

where l1 = k1 ¡ m1 ¡ m2; l2 = k2 + k3 ¡ m2 ¡ m3; l3 = k3 ¡ m3; B1 =Ã
Im1+m2

Ã
¯13
¯23

! !
; B2 =

Ã Ã
¯21
0

!
Im2+m3

!
; B3 =

³
¯32 Im3

´
;

^̧
1 = ((¦11 ¦12)

0
?Z

0
1Z1(¦11 ¦12)?)

¡1(¦11 ¦12)
0
?Z

0
1

(Y ¡ Z2©2 ¡ Z3©3 ¡ Z1(¦11 ¦12)B1)­
¡1B0

1?(B1?­
¡1B0

1?)
¡1;

^̧
2 = (£0

?(Z2 Z3)
0MZ1(Z2 Z3)£?)

¡1£0
?(Z2 Z3)

0MZ1

(Y ¡ (Z2 Z3)£B2)­
¡1B0

2?(B2?­
¡1B 0

2?)
¡1;

^̧
3 = (¦0

33?Z
0
3M(Z1 Z2)Z3)¦33?)

¡1¦0
33?Z

0
3M(Z1 Z2)

(Y ¡ Z3¦33B3B2)­
¡1B0

2B
0
3?(B3?B2­

¡1B0
2B

0
3?)

¡1:

Since we simulate from a density which approximates the posterior of (46), weight
functions are involved in the di®erent steps of the posterior simulator. As we
simulate three di®erent parameters, i.e. ¸1; ¸2; ¸3; which are not present in the
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original posterior we want to simulate from, three weight functions are involved,

w1(¯13; ¯23; ¸1;¦11;¦12;­j©2;©3) (59)

=
jJ(©1; (¯13; ¯23; ¸1;¦11;¦12))j¸1=0j

jJ(©1; (¯13; ¯23; ¸1;¦11;¦12))j
g1(¸1j¯13; ¯23;¦11;¦12;©2;©3;­)j¸1=0

w2(¯21; ¸2;£;­) (60)

=
jJ((©2;©3); (¯21; ¸2;£))j¸2=0;¸3=0j

jJ((©2;©3); (¯21; ¸2;£))j¸3 6=0j
g2(¸2j¯21;£;­)j¸2=0;¸3=0

w3(¯32; ¯21; ¸3;¦33;­) (61)

=
jJ(£2; (¯32; ¸3;¦33))j¸2=0j

jJ(£2; (¯32; ¸3;¦33))j
g3(¸3j¯32; ¯21;¦33;­)j¸3=0;

where J(©1; (¯13; ¯23; ¸1;¦11;¦12)); J((©2;©3); (¯21; ¸2;£)) and J(£2; (¯32; ¸3;¦33))
are the jacobians of the di®erent parameter transformations and each of the
weight functions is always ¯nite, see appendix D.

The di®erent steps involved in obtaining the weight attached to a certain
drawing i; i = 1; :::; N; of the parameters of the SEM (46), can then be summa-
rized as follows,

1. Draw ­i from plin(­jY;Z)

Draw (©i
2;©

i
3) from plin(©2;©3j­

i; Y; Z)

2. Compute ¯i21; ¸
i
2;£

i from (©i
2;©

i
3) using SVD

3. Compute ¯i32; ¸
i
3;¦

i
33 from £i

2 using SVD

4. Compute w3(¯
i
32; ¯

i
21; ¸

i
3;¦

i
33;­

i)

5. Compute w2(¯
i
21; ¸

i
2;£

i;­i)

6. Draw ©i
1 from plin(©1j©

i
2;©

i
3;­

i; Y; Z)j¸2=0;¸3=0

7. Compute ¯i13; ¯
i
23; ¸

i
1;¦

i
11;¦

i
12 from ©i

1

8. Compute w1(¯
i
13; ¯

i
23; ¸

i
1;¦

i
11;¦

i
12;­

ij©i
2;©

i
3)j¸2=0;¸3=0

9. Compute total weight i-th drawing: w = w1 £ w2 £ w3

The total weights can be used in an Importance or M-H sampler, as indicated
in section 5, to obtain a posterior simulator of the posterior of the parameters of
(46).

The means of the conditional posteriors of ©1 given (©2;©3) and (©2;©3)
given ©1 can also be used in an iterative scheme to obtain the full informa-
tion maximum likelihood estimator of (¯21; ¯32; ¯13; ¯23;¦11;¦12;¦22;¦23;¦33);
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see Hausman (1983). This is similar to the INSEM where evaluating the poste-
rior of © at its posterior mean using a di®use prior gives the analytical expression
of the limited information maximum likelihood estimator of ¯ and ¦22 using the
involved SVD. The iterative scheme for obtaining the full information maximum
likelihood estimator proceeds as follows,

(0:) Initialize ©1 = ©̂1;

(i:) Construct (¯21; ¯32;¦22;¦23;¦33) from (~©2; ~©3) using SVDs from steps 2
and 3 from the simulation scheme,

(ii:) Compute value of (©2;©3) implied by (¯21; ¯32;¦22;¦23;¦33);

(iii:) Construct (¯13; ¯23;¦11;¦12) from ~©1 using SVD from step 7,

(iv:) Compute value of ©1 implied by (¯13; ¯23;¦11;¦12);

(v:) Unless (©1;©2;©3) have converged goto (i:):

where (~©0
2
~©0
3)
0 = ((Z2 Z3)

0(Z2 Z3))
¡1(Z2 Z3)

0(Y¡Z1©1); ~©1 = (Z 0
1Z1)

¡1Z 0
1(Y¡

(Z2 Z3)(©
0
2 ©

0
3)
0: Using theorem 1, iterative schemes similar to the one above can

be constructed to obtain the full information maximum likelihood estimators of
the parameters of generally speci¯ed SEMs. Jointly with the examples of the two
and three structural equations SEMs, theorem 1 shows how Bayesian analyses of
generally speci¯ed SEMs are conducted.

7 Conclusions

The traditional Bayesian analyses of SEMs using di®use priors, as proposed by
e.g. Drµeze (1976), Drµeze and Morales (1976) and Drµeze and Richard (1983), suf-
fer from local nonidenti¯cation problems which lead to an a posteriori favor for
certain parameter values while it is not the result of information in the prior or
data. We therefore use a framework constructed in Kleibergen (1997) in which
the priors/posteriors of the parameters of the SEM are proportional to the pri-
ors/posteriors of the parameters of a linear model under the condition that the
restrictions, imposed by the SEM on the parameters of the linear model, hold.
We applied this framework to examples of one, two and three structural equation
SEMs, for which expressions of the priors and posteriors are derived jointly with
posterior simulators. Using a theorem, which states that the reduced form of any
kind of SEM accords with a linear model with reduced rank restrictions of its pa-
rameters, the analysis of the examples can be generalized to other speci¯cations
of SEMs in a straightforward way. This theorem also shows how full information
maximum likelihood estimators can be constructed.
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Using results from Kleibergen and Paap (1997), we can also construct tools
for model comparison like Bayes Factors, Posterior Odds Ratios and Bayesian
Lagrange Multiplier statistics. In future work we will construct and apply these
procedures to analyze the support for (multiple structural equations) SEMs in
practice. It is also interesting to analyze the theoretical properties of the derived
posteriors, as for example in Chao and Phillips (1996) where functional expres-
sions are constructed for the marginal posterior of the structural form parameters
of the INSEM using a Je®reys' prior, to investigate the similarities/di®erences
between small sample distributions of classical statistical estimators and the mar-
ginal posteriors of the structural form parameters, see Kleibergen and Zivot
(1998). Both limited information maximum likelihood (LIML) estimators, see
Anderson and Rubin (1949), and the posteriors of the parameters of the INSEM
are namely constructed using SVDs, see Kleibergen and Zivot (1998), which cor-
respond with canonical correlations in case of the LIML estimator. So, it is
interesting to investigate to what extent these similarities hold further.
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Appendix

A. Jacobian of transformation from linear model to INSEM

For the derivation of the Jacobian of the transformation from the linear model
parameters to the parameters of the INSEM, it is notationally convenient to
conduct this transformation in two steps, (i:) from © to (¦221; µ2; ¯; ¸) where
µ2 = ¦222¦

¡1
221; and (ii:) from (¦221; µ2; ¯; ¸) to (¦221;¦222; ¯; ¸): In the following

we construct the jacobians of the two transformations.
We can denote © as,

© =
³
µ µ?

´Ã ¦221 0
0 ¸

!Ã
B

B?

!

= µ¦221B + µ?¸B?;

where µ = (Im¡1 µ02)
0; µ? = (¡µ2 Ik2¡m+1)

0(Ik2¡m+1 + µ2µ
0
2)
¡1

2 ; B = (¯ Im¡1);

B? = (1 + ¯0¯)¡
1

2 (1 ¡¯ 0): The jacobians of © with respect to ¦221; µ2; ¯ and ¸

then read,

J1 =
@vec(©)

@vec(¦221)0
= (B0 ­ µ)

J2 =
@vec(©)

@vec(µ2)0
= (B0¦0

221 ­ Ik2)
@vec(µ)

@vec(µ2)0
+ (B0

?¸
0 ­ Ik2)

@vec(µ?)

@vec(µ2)0

J3 =
@vec(©)

@vec(¯)0
= (Im ­ µ¦221)

@vec(B)

@vec(¯)0
+ (Im ­ µ?¸)

@vec(B?)

@vec(¯)0

J4 =
@vec(©)

@vec(¸)0
= (B0

? ­ µ?)

where

@vec(µ)

@vec(µ2)0
=

Ã
Im¡1 ­

Ã
0
Ik2¡m+1

!!
;

@vec(µ?)

@vec(µ2)0
= ¡(H¡ 1

2
0 ­

Ã
Im¡1
0

!
)Kk2¡m+1;m¡1 +

(Ik2¡m+1 ­

Ã
¡µ02
Ik2¡m+1

!
)
@vec((H

1

2 )¡1)

@vec(H
1

2 )0
@vec(H

1

2 )

@vec(H)0
@vec(H)

@vec(µ2)0
;

@vec((H
1

2 )¡1)

@vec(H
1

2 )0
= ¡(H¡ 1

2
0 ­H¡1

2 );

@vec(H
1

2 )

@vec(H)0
= ((Ik2¡m+1 ­H

1

2 ) + (H
1

2
0 ­ Ik2¡m+1))

¡1;

@vec(H)

@vec(µ2)0
= (µ2 ­ Ik2¡m+1) + (Ik2¡m+1 ­ µ2)Kk2¡m+1;m¡1;
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@vec(B)

@vec(¯)0
= (e1 ­ Im¡1);

@vec(B?)

@vec(¯)0
= ¡(

Ã
0
Im¡1

!
­B¡

1

2 )Km¡1;1 +

(
³
1 ¡¯ 0

´0
­ 1)

@vec(B¡
1

2 )

@vec(B
1

2 )0
@vec(B

1

2 )

@vec(B)0
@vec(B)

@vec(¯)0
;

@vec(B¡
1

2 )

@vec(B
1

2 )0
= ¡(B¡

1

2
0 ­ B¡

1

2 ) = ¡B¡1;

@vec(B
1

2 )

@vec(B)0
= ((1­B

1

2 ) + (B
1

2
0 ­ 1))¡1 =

1

2
B¡

1

2 ;

@vec(B
1

2 )

@vec(¯)0
= (¯0 ­ 1)Km¡1;1 + (1­ ¯ 0) = 2¯ 0;

and H = Ik2¡m+1+ µ2µ
0
2; H

1

2H
1

2 = H; B = (1+¯ 0¯); B
1

2B
1

2 = B; e1 is the ¯rst m
dimensional unity vector, Ki;j : ij £ ij; are socalled commutation matrices such
that for anyW : i£j; vec(W 0) = Ki;jvec(W ); vec(W ) = Kj;ivec(W

0); Kj;i = K 0
i;j ;

see Magnus and Neudecker (1988). Note that when Q is symmetric, Q = P¤P 0;

where P are orthogonal eigenvectors and ¤ is a diagonal matrix containing the
eigenvalues, then Q

1

2 = P¤
1

2P 0 is also symmetric.
The jacobian of the transformation from © to (¦221; µ2; ¯; ¸) then reads,

@vec(©)

@(vec(¦221)0 vec(µ2)0 vec(¯)0 vec(¸)0)
=
³
J1 J2 J3 J4

´
:

Since µ2 = ¦222¦
¡1
221; the jacobians of the transformations from (¦221; µ2; ¯; ¸) to

¦221; ¦222; ¯; and ¸ read,

G1 =
@(vec(¦221)

0 vec(µ2)
0 vec(¯)0 vec(¸)0)0

@vec(¦221)0
=

0
BBB@

Im¡1 ­ Im¡1
¡¦¡10

221 ­ ¦222¦
¡1
221

0
0

1
CCCA

G2 =
@(vec(¦221)

0 vec(µ2)
0 vec(¯)0 vec(¸)0)0

@vec(¦222)0
=

0
BBB@

0
¦¡10
221 ­ Ik2¡m+1

0
0

1
CCCA

G3 =
@(vec(¦221)

0 vec(µ2)
0 vec(¯)0 vec(¸)0)0

@vec(¯)0
=

0
BBB@

0
0

1­ Im¡1
0

1
CCCA
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G3 =
@(vec(¦221)

0 vec(µ2)
0 vec(¯)0 vec(¸)0)0

@vec(¸)0
=

0
BBB@

0
0
0

1­ Ik2¡m+1

1
CCCA

The jacobian of the transformation from © to (¦22; ¯; ¸) then becomes,

jJ(©; (¦22; ¯; ¸))j

= j
@vec(©)

@(vec(¦22)0 vec(¯)0 vec(¸)0)
j

= j
@vec(©)

@(vec(¦221)0 vec(µ2)0 vec(¯)0 vec(¸)0)
j

j
@(vec(¦221)

0 vec(µ2)
0 vec(¯)0 vec(¸)0)0

@(vec(¦22)0 vec(¯)0 vec(¸)0)
j

= j
³
J1 J2 J3 J4

´
jj
³
G1 G2 G3 G4

´
j:

So,

J(©; (¦22; ¯; ¸))j¸=0 =
³
B0 ­ Ik2 e1 ­ ¦22 B0

? ­ ¦22?

´
:

To prove that j(J(©; (¦221; µ2; ¸; ¯))j ¸ j(J(©; (¦221; µ2; ¸; ¯))j¸=0)j, we use
that

J(©; (¦22; ¸; ¯))

= J(©; (¦221; µ2; ¸; ¯))J((¦221; µ2; ¸; ¯); (¦22; ¸; ¯)):

As shown previously

J((¦221; µ2; ¸; ¯); (¦22; ¸; ¯))j¸=0 = J((¦221; µ2; ¸; ¯); (¦22; ¸; ¯)):

It also holds that

J(©; (¦221; µ2; ¸; ¯)) = J(©; (¦221; µ2; ¸; ¯))j¸=0 +W;

where
W =

³
0 (B0

?¸
0 ­ Ik2)

@vec(µ?)
@vec(µ2)0

(Im ­ µ?¸)
@vec(B?)
@vec(¯)0

0
´

such that
(J(©; (¦221; µ2; ¸; ¯))j¸=0)W

0 = 0:

This implies that

jJ(©; (¦221; µ2; ¸; ¯))j

= jJ(©; (¦221; µ2; ¸; ¯))J(©; (¦221; µ2; ¸; ¯))
0j
1

2

= j(J(©; (¦221; µ2; ¸; ¯))j¸=0)(J(©; (¦221; µ2; ¸; ¯))j¸=0)
0 +WW 0j

1

2

¸ j(J(©; (¦221; µ2; ¸; ¯))j¸=0)(J(©; (¦221; µ2; ¸; ¯))j¸=0)
0j
1

2

¸ j(J(©; (¦221; µ2; ¸; ¯))j¸=0)j
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and consequently

jJ(©; (¦22; ¸; ¯))j ¸ j(J(©; (¦22; ¸; ¯))j¸=0)j:

B. Proof of theorem 1.

Assume that the reduced form of the SEM,

Y ¹mB ¹m ¹m = Z ¹m¡ ¹m ¹m + Z ¹mm¡m ¹m + " ¹m;

reads,
Y ¹m = Z ¹m¦ ¹m ¹m + Z ¹mm¦m ¹m + » ¹m;

where ¦ ¹m ¹m = ¡ ¹m ¹mB
¡1
¹m ¹m; ¦m ¹m = ¡m ¹mB

¡1
¹m ¹m; and this reduced form is equivalent to

a set of nonlinear (reduced rank) restrictions on the parameters of a linear model
and the (hyper) parameters of this linear model, which are restricted to zero to
obtain the reduced form, are locally uncorrelated with speci¯c other parameters.

The parameter matrix of the reduced form of the SEM from theorem 1 reads,

0
B@ ¡ ¹m ¹m 0

¡m ¹m ¡ ¹mm

0 ¡mm

1
CA
Ã
B ¹m ¹m B ¹mm

Bm ¹m Bmm

!¡1

=

0
B@ ¡ ¹m ¹m 0

¡m ¹m ¡ ¹mm

0 ¡mm

1
CA
Ã
B¡1

¹m ¹m +B¡1
¹m ¹mB ¹mmB

¡1
mm: ¹mBm ¹mB

¡1
¹m ¹m ¡B¡1

¹m ¹mB ¹mmB
¡1
mm: ¹m

¡B¡1
mm: ¹mBm ¹mB

¡1
¹m ¹m B¡1

mm: ¹m

!

=

0
B@ ¦ ¹m ¹m(Ij ¹m + ¯ ¹mm¯m ¹m) ¡¦ ¹m ¹m¯ ¹mm

¦m ¹m(Ij ¹m + ¯ ¹mm¯m ¹m)¡¦ ¹mm¯m ¹m ¦ ¹mm ¡ ¦m ¹m¯ ¹mm

¡¦mm¯m ¹m ¦mm

1
CA ;

where ¦ ¹m ¹m = ¡ ¹m ¹mB
¡1
¹m ¹m; ¦m ¹m = ¡m ¹mB

¡1
¹m ¹m;¦mm = ¡mmB

¡1
mm: ¹m;¦ ¹mm = ¡ ¹mmB

¡1
mm: ¹m;

B ¹m ¹m:m = B ¹m ¹m¡B ¹mmB
¡1
mmBm ¹m = B ¹m ¹m¡B ¹mmBm ¹m; Bmm: ¹m = Bmm¡Bm ¹mB

¡1
¹m ¹mB ¹mm;

¯m ¹m = Bm ¹mB
¡1
¹m ¹m; ¯ ¹mm = B ¹mmB

¡1
mm: ¹m: This implies, as both ¡mm and ¡ ¹mm are

unrestricted, that no restrictions are imposed on ¦mm and ¦ ¹mm: The linear model
of which the reduced form is a nonlinear restriction reads,³

Y ¹m Ym
´
=
³
Z ¹m Z ¹mm Zm

´
©+ »;

where © : (l ¹m + lm + im)£ (j ¹m + j ¹m) and can be speci¯ed as,

© =

0
B@ ©11 ©12

©21 ©22

©31 ©23

1
CA ;
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©11 : l ¹m £ j ¹m; ©21 : lm £ j ¹m; ©31 : im £ j ¹m; ©12 : l ¹m £ jm; ©22 : lm £ jm;

©23 : im £ jm: To obtain the restrictions on the linear model parameters which
result in the reduced form, we specify © as,0

B@ ©11 ©12

©21 ©22

©31 ©23

1
CA =

0
B@ £11

£21

0

1
CA³ Ij ¹m 0

´
+

0
B@ £12

£22

¦mm

1
CA³ ¡¯m ¹m Ijm

´

+

0
BB@

0
0

¦mm?¸mm

³
¡¯m ¹m Ijm

´
?

1
CCA ;

Ã
£11 £12

£21 £22

!
=

Ã
¦ ¹m ¹m

¦m ¹m

!³
Ij ¹m ¡¯ ¹mm

´
+

Ã
0
Ijm

!
¦ ¹mm

³
0 Ijm

´

+

Ã
¦ ¹m ¹m?¸ ¹m ¹m

³
Ij ¹m ¡¯ ¹mm

´
?

0

!
;

where £11 : l ¹m £ j ¹m; £21 : lm £ j ¹m; £12 : l ¹m £ jm; £22 : lm £ jm: It is clear
from the chosen speci¯cation that when ¸mm = 0; ¸ ¹m ¹m = 0; the reduced form
results and that ¸mm is locally uncorrelated (when it is zero) with the parameters
contained in ¦mm and ¯m ¹m; and ¸ ¹m ¹m is locally uncorrelated (when it is zero) with
the parameters contained in ¦ ¹m ¹m and ¯ ¹mm: As we can apply the same kind of
decomposition on ¦mm and ¦m ¹m; which we assumed to be possible, and since ¦ ¹mm

and ¦mm are unrestricted, such that there is no need to decompose them further,
we can recursively apply the above decomposition and thereby the theorem is
proved.

C. Singular Value Decomposition and Jacobians two equation model

For the two equation model, reduced rank restrictions are imposed on the
parameter matrices ©2 and ©3: In the following we state the SVDs and the
jacobians involved with these two parameter matrices. We start with ©2:

©2 =
³
Ã Ã?

´Ã ¦211 0
0 ¸2

!Ã
B2

B2?

!

= Ã¦211B2 + Ã?¸2B2?;

where ¦21 = (¦0
211 ¦

0
212)

0; ¦211 : m1 £m1; ¦212 : (k2 ¡m1)£m1; Ã2 = ¦212¦
¡1
211;

Ã = (Im1
Ã02)

0; Ã? = (¡Ã2 Ik2¡m1
)0(Ik2¡m1

+ Ã2Ã
0
2)
¡ 1

2 ; B2 = (Im1
¯2); B2? =

(Im2
+ ¯02¯2)

¡1

2 (¡¯ 02 Im2
): A SVD can be used to obtain these parameters from

©2;

©2 =

Ã
U11 U12

U21 U22

!Ã
S1 0
0 S2

!Ã
V11 V12
V21 V22

!0
;

where U 0U = Ik2; V
0V = Im; U11; S1; V11 : m1 £ m1; S2 : (k2 ¡ m1) £ m2;

V22 : m2£m2; U21 : (k2¡m1)£m1; U12 : m1£(k2¡m1); U22 : (k2¡m1)£(k2¡m1);
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V21; V
0
12 : m2 £m1; and S2 contains the smallest m2 singular values of ©2: This

leads to the relations,

¦211 = U11S1V
0
11; Ã2 = U21U

¡1
11 ;

¯2 = (V21V
¡1
11 )0; ¸2 = (U22U

0
22)

¡ 1

2U22S2V
0
22(V22V

0
22)

¡ 1

2 :

The jacobians of ©2 with respect to ¦211; Ã2; ¯2 and ¸2 read,

J1 =
@vec(©2)

@vec(¦221)0
= (B0

2 ­ Ã)

J2 =
@vec(©2)

@vec(Ã2)0
= (B0

2¦
0
211 ­ Ik2)

@vec(Ã)

@vec(Ã2)0
+ (B0

2?¸
0
2 ­ Ik2)

@vec(Ã?)

@vec(Ã2)0

J3 =
@vec(©2)

@vec(¯2)0
= (Im ­ Ã¦211)

@vec(B2)

@vec(¯2)0
+ (Im ­ Ã?¸2)

@vec(B2?)

@vec(¯2)0

J4 =
@vec(©2)

@vec(¸2)0
= (B0

2? ­ Ã?)

where

@vec(Ã)

@vec(Ã2)0
=

Ã
Im1

­

Ã
0
Ik2¡m1

!!
;

@vec(Ã?)

@vec(Ã2)0
= ¡

Ã
H¡ 1

2
0 ­

Ã
Im1

0

!!
Kk2¡m1;m1

+

(Ik2¡m1
­

Ã
¡Ã02
Ik2¡m1

!
)
@vec(H¡1

2 )

@vec(H
1

2 )0
@vec(H

1

2 )

@vec(H)0
@vec(H)

@vec(Ã2)0
;

@vec(H¡ 1

2 )

@vec(H
1

2 )0
= ¡(H¡ 1

2
0 ­H¡ 1

2 );

@vec(H
1

2 )

@vec(H)0
= ((Ik2¡m1

­H
1

2 ) + (H
1

2
0 ­ Ik2¡m1

))¡1;

@vec(H)

@vec(Ã2)0
= (Ã2 ­ Ik2¡m1

) + (Ik2¡m1
­ Ã2)Kk2¡m1;m1

;

@vec(B2)

@vec(¯2)0
= (

Ã
0
Im2

!
­ Im1

);

@vec(B2?)

@vec(¯2)0
= ¡(

Ã
Im1

0

!
­B¡

1

2 )Km1;m2
+

(
³
¡¯ 02 Im2

´0
­ Im2

)
@vec(B¡

1

2 )

@vec(B
1

2 )0
@vec(B

1

2 )

@vec(B)0
@vec(B)

@vec(¯)0
;

@vec(B¡
1

2 )

@vec(B
1

2 )0
= ¡(B¡

1

2
0 ­ B¡

1

2 );
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@vec(B
1

2 )

@vec(B)0
= ((Im2

­B
1

2 ) + (B
1

2
0 ­ Im2

))¡1;

@vec(B
1

2 )

@vec(¯2)0
= (¯ 02 ­ Im2

)Km1;m2
+ (Im2

­ ¯02);

and H = Ik2¡m1
+Ã2Ã

0
2; H

1

2H
1

2 = H; B = (Im2
+¯ 02¯2); B

1

2B
1

2 = B: The jacobian
of the transformation from ©2 to (¦211; Ã2; ¯2; ¸2) then reads,

@vec(©2)

@(vec(¦211)0 vec(Ã2)0 vec(¯2)0 vec(¸2)0)
=
³
J1 J2 J3 J4

´
:

Since Ã2 = ¦212¦
¡1
211; the jacobians of the transformations from (¦211; Ã2; ¯2; ¸2)

to ¦211; ¦212; ¯2; and ¸2 read,

G1 =
@(vec(¦211)

0 vec(Ã2)
0 vec(¯2)

0 vec(¸2)
0)0

@vec(¦211)0
=

0
BBB@

Im1
­ Im1

¡¦¡10
211 ­ ¦212¦

¡1
211

0
0

1
CCCA

G2 =
@(vec(¦211)

0 vec(Ã2)
0 vec(¯2)

0 vec(¸2)
0)0

@vec(¦212)0
=

0
BBB@

0
¦¡10
211 ­ Ik2¡m1

0
0

1
CCCA

G3 =
@(vec(¦211)

0 vec(Ã2)
0 vec(¯2)

0 vec(¸2)
0)0

@vec(¯2)0
=

0
BBB@

0
0

Im2
­ Im1

0

1
CCCA

G3 =
@(vec(¦211)

0 vec(Ã2)
0 vec(¯2)

0 vec(¸2)
0)0

@vec(¸2)0
=

0
BBB@

0
0
0

Im2
­ Ik2¡m1

1
CCCA

The jacobian of the transformation from ©2 to (¦21; ¯2; ¸2) then becomes,

jJ(©2; (¦21; ¯2; ¸2))j

= j
@vec(©2)

@(vec(¦21)0 vec(¯2)0 vec(¸2)0)
j

= j
@vec(©2)

@(vec(¦211)0 vec(Ã2)0 vec(¯2)0 vec(¸2)0)
j

j
@(vec(¦211)

0 vec(Ã2)
0 vec(¯2)

0 vec(¸2)
0)0

@(vec(¦21)0 vec(¯2)0 vec(¸2)0)
j

= j
³
J1 J2 J3 J4

´
jj
³
G1 G2 G3 G4

´
j:

38



The speci¯cation of ©3 reads,

©3 =
³
µ µ?

´Ã ¦321 0
0 ¸3

!Ã
B1

B1?

!
;

where µ = (Im2
µ02)

0; B1 = (¯1 Im2
); ¦32 = (¦0

321 ¦
0
322)

0; ¦321 : m2 £m2; ¦322 :
(k3 ¡ m2) £ m2; µ2 = ¦322¦

¡1
321: So, the speci¯cation of ©3 is identical to the

speci¯cation of © for the INSEM. The parameters (¦32; ¯1; ¸3) can therefore be
obtained using the SVDs (8)-(10) and changing the sizes of the involved matrices,
i.e. k2 to k3; m¡ 1 to m2; 1 to m1: Also the jacobian involved in the parameter
transformation of the INSEM is identical to the jacobian in case of ©3 when we
change the sizes of the involved matrices in the outlined manner.

D. Singular Value Decomposition and Jacobians three equation

model

For the three equation model, reduced rank restrictions are imposed on the
parameter matrices (©0

2 ©
0
3)
0;£ and ©1: The important di®erence with the INSEM

and the two equation model lies in £ which itself already results from a reduced
rank restriction. As we have to analyze £ given (©0

2 ©
0
3)
0; we start with the SVD

and jacobian involved with (©0
2 ©

0
3)
0: The speci¯cation of (©0

2 ©
0
3)
0 reads,Ã

©2

©3

!
= £

Ã
¯21 Im2

0
0 0 Im3

!
+£?¸2

Ã
¯21 Im2

0
0 0 Im3

!
?

:

This implies that when ©2 = (©21 ©22); ©21 : k2 £ (m1 + m2); ©22 : k2 £ m3;

©3 = (©31 ©32); ©31 : k3 £ (m1 + m2); ©32 : k3 £ m3; £ =

Ã
£11 £12

£21 £22

!
;

£11 : k2 £ (m1 +m2); £12 : k2 £m3; £21 : k3 £ (m1 +m2); £22 : k3 £m3; that
the following equality holds, Ã

£12

£22

!
=

Ã
©22

©32

!
:

and we are left with,Ã
©21

©31

!
=

Ã
£11

£21

!³
¯21 Im2

´
+

Ã
£11

£21

!
?

¸2
³
¯21 Im2

´
?
;

which is again identical to the speci¯cation of © for the INSEM such that when
we change the sizes of the matrices in the appropriate manner, i.e. k2 to k2+ k3;

m¡ 1 to m2 and 1 to m3; we can directly use the SVDs and jacobians for © of
the INSEM.

The SVDs and jacobians for £2 are constructed using (50) and (51),³
£21 £22

´
= ¦33

³
¯32 Im3

´
+¦33?¸3

³
¯32 Im3

´
?
:
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Again this speci¯cation is identical to the speci¯cation of © for the INSEM such
that we can use the SVD and jacobians speci¯ed for the INSEM when we change
the sizes of the matrices in the appropriate manner, i.e. k2 to k3; m ¡ 1 to m3

and 1 to m2:

The speci¯cation of ©1 reads,

©1 =
³
¦11 ¦12

´Ã
Im1+m2

Ã
¯13
¯23

! !
+

³
¦11 ¦12

´
?
¸1

Ã
Im1+m2

Ã
¯13
¯23

! !
?

:

This speci¯cation is identical to the speci¯cation of ©2 in the two equation model
such that we can use the jacobians and the SVD listed there when we change the
sizes of the matrices in the appropriate manner, i.e. k2 to k1; m1 to m1+m2 and
m2 to m3:

E. Obtaining SEMs from Linear Models using SVDs

The speci¯cation of © reads,

© =

Ã
U11 U12

U21 U22

!Ã
S1 0
0 s2

!Ã
v011 V 0

21

v012 v022

!

= ¦22

³
¯ Im¡1

´
+¦22?¸

³
¯ Im¡1

´
?
;

such that

¦22

³
¯ Im¡1

´
=

Ã
U11

U21

!
S1
³
v011 V 0

21

´

and

¦22?¸
³
¯ Im¡1

´
?
=

Ã
U12

U22

!
s2
³
v012 v022

´
:

Consequently,

¦22 =

Ã
U11

U21

!
S1V

0
21 and ¯ = V 0¡1

21 v011:

Substituting these expressions in the speci¯cation of ¦22? and
³
¯ Im¡1

´
?

gives,

¦22? =

Ã
¡¦¡10

221¦
0
222

Ik2¡m+1

!
(Ik2¡m+1 +¦222¦

¡1
221¦

¡10
221¦

0
222)

¡ 1

2

=

Ã
¡U 0¡1

11 S¡11 V ¡1
21 V21S1U

0
21

Ik2¡m+1

!
(Ik2¡m+1 + U21U

¡1
11 U

0¡1
11 U 0

21)
¡1

2

=

Ã
¡U 0¡1

11 U 0
21

Ik2¡m+1

!
(Ik2¡m+1 + U21U

¡1
11 U

0¡1
11 U 0

21)
¡1

2 ;
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as U 0
11U12+U 0

21U22 = 0 (because of the orthogonality of U), U12U
¡1
22 = ¡U 0¡1

11 U 0
21;

and U 0
12U12 + U 0

22U22 = Ik2¡m+1; such that

¦22? =

Ã
U12U

¡1
22

Ik2¡m+1

!
(Ik2¡m+1 + U¡10

22 U 0
12U12U

¡1
22 )

¡ 1

2

=

Ã
U12

U22

!
U¡1
22 (U

0¡1
22 (U 0

22U22 + U 0
12U12)U

¡1
22 )

¡ 1

2

=

Ã
U12

U22

!
U¡1
22 ((U

0¡1
22 U¡1

22 )
¡1)

1

2

=

Ã
U12

U22

!
U¡1
22 (U22U

0
22)

1

2 :

Similarly for
³
¯ Im¡1

´
?
,

³
¯ Im¡1

´
?
= (1 + ¯ 0¯)¡

1

2

³
1 ¡¯ 0

´
= (1 + v11V

¡1
21 V

0¡1
21 v011)

¡ 1

2

³
1 ¡v11V

¡1
21

´
= (1 + v¡1012 v022v22v

¡1
12 )

¡1

2

³
1 v¡1012 v022

´
= (v¡1012 (v012v12 + v022v22)v

¡1
12 )

¡ 1

2v0¡112

³
v012 v022

´
= (v¡1012 v¡112 )

¡ 1

2v0¡112

³
v012 v022

´
= (v12v

0
12)

1

2v0¡112

³
v012 v022

´
;

since v011v12 + V 0
21v22 = 0; such that ¡V 0¡1

21 v011 = v22v
¡1
12 ; and v012v12 + v022v22 = 1:

Consequently in order to have equivalence,

¸ = (U22U
0
22)

¡ 1

2U22s2v
0
12(v12v

0
12)

¡ 1

2

= bs2a;

where b = (U22U
0
22)

¡ 1

2U22; and a = v012(v12v
0
12)

¡1

2 : Both b and a are orthogonal
matrices (scalars) which results from the singular value decomposition because
when X = USV 0; where both U and V are orthogonal then

(XX 0)
1

2 = (USV 0V SU 0)
1

2 = (US2U 0)
1

2 = USU 0;

such that
(XX 0)¡

1

2X = US¡1U 0USV 0 = UV 0;

which is an orthogonal matrix, such that ¸ equals the smallest singular value
pre and postmultipied by orthogonal vectors/matrices or stated di®erently, ¸ is
a rotation of the singular values.
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