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ABSTRACT

In this paper we consider properties of the central path and the analytic center of the optimal face

in the context of parametric linear programming. We �rst show that if the right-hand side vector

of a standard linear program is perturbed, then the analytic center of the optimal face is one-side

di�erentiable with respect to the perturbation parameter. In that case we also show that the whole

analytic central path shifts in a uniform fashion. When the objective vector is perturbed, we show

that the last part of the analytic central path is tangent to a central path de�ned on the optimal

face of the original problem.
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1 Introduction

Sensitivity analysis and parametric programming play a very important role in linear programming.

In some cases, it is even more important to know how the optimal value or an optimal solution

changes as a function of the input data rather than simply computing one of the optimal solutions.

Indeed, the data of a given problem can never be absolutely accurate in real applications. Hence, it

is crucial to keep track of how optimal solutions, or the optimal value, change if a part of the data

changes. A recent book edited by Gal and Greenberg [10] is exclusively devoted to recent advances

in sensitivity analysis and parametric programming. Several software packages exist, many of

them developed in-house by large companies, to help understand a solutions characteristics. As

an example we mention ANALYZE [7], which is currently being used by the Energy Information

Administration, British Telecommunications, and Amoco Oil.

We make the distinction between the following two questions:

� How does an optimal solution behave with respect to data perturbations?

� How does the optimal objective value behave with respect to data perturbations?

The �rst question is usually asked when trying to understand an optimal solution. The second

question is only concerned with how the optimal value relies on the data. Both questions are

completely addressed from the classical basic solution perspective. The second question has been

addressed from the vantage of a strictly complementary solution yielded by many interior point

algorithms, known as the analytic center optimal solution, or simply the central optimal solution.

Greenberg [8], Jansen, Roos and Terlaky [13] and Zhang [25] give reasons and examples why the

central optimal solution is more desirable over a basic solution. The parametric analysis of the

optimal value is developed from the central optimal solution perspective in [19]. Monteiro and

Mehrotra [16] and Roos and Terlaky [20] independently developed an algorithm, using the central

optimal solution, that completely describes the objective function along any single direction of

change in either the cost coe�cients or the right hand side vector. This algorithm also produces

the unique optimal partition as the data is changed. Greenberg [9] shows that the question of how

the objective function responds to simultaneous changes in cost coe�cients and right hand side

levels may be answered using the central optimal solution. All of the above analysis deals with

information that is attainable from asking the second question.

Questions concerning how the central optimal solution relies on its data are addressed by Nunez

and Freund [18] using a concept proposed by Renegar called the distance to ill-posedness. However,

the bounds given by Nunez and Freund become arbitrarily bad as the central optimal solution is

approached. The reason for this is that they do not distinguish which data elements are being

perturbed.
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In this paper we consider the perturbation in the objective coe�cients and in the right hand side

vector separately. In the case where the right hand side vector is perturbed, we show that the central

optimal solution is in�nitely di�erentiable with respect to the perturbation parameter. Moreover,

the derivatives in the perturbation parameter are uniformly bounded along the central path. If

the objective is perturbed, then the central optimal solution may change completely. But, it will

be shown in this case that the central path will be tangential to the central path de�ned on the

optimal face of the original problem.

The organization of this paper is as follows. In the next section we will discuss some basic properties

related to the central path in the context of parametric linear programming. In Section 3 we discuss

the properties of the central path when the right hand side is perturbed. In Section 4 we continue

the discussion when the objective is perturbed. Finally we conclude the paper in Section 5.

2 Analytic central path and optimal solutions

Consider the following standard linear program:

(LP ) minimize cTx

subject to Ax = b

x � 0

and its dual problem

(LD) maximize bTy

subject to AT y + s = c

s � 0

where A 2 IRm�n, b 2 IRm and c 2 IRn. The primal feasible polyhedron is denoted P and the dual

feasible region is denoted D. The relative interiors of these sets are denoted Po and Do and are

fx : x 2 P ; x > 0g and f(y; s) : (y; s) 2 D; s > 0g, respectively. Furthermore, the primal and dual

optimality sets are P� and D�. Elements of D are referred to as (y; s), y, or s.

Assume that both (LP ) and (LD) satisfy the Slater condition, i.e. Po 6= ; and Do 6= ;. It is well

known that under the Slater condition there exists the analytic central path for (LP ) and (LD).

This means that for all � > 0 there exist a unique x(�) 2 Po and s(�) 2 Do, such that

xi(�)si(�) = � for all i = 1; 2; :::; n:

We call (b; c) 2 IRm� IRn rim data. For any A 2 IRm�n, (b; c) is admissible if (LP ) and (LD) de�ned

by A and (b; c) are both feasible. We say that (�b; �c) is an admissible direction of change if there
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exists �� > 0 such that (b; c) + �(�b; �c) is admissible for all � 2 [0; ��). De�ne

H � f(�b; �c) : (�b; �c) is an admissible direction of changeg

Hb � f�b : (�b; 0) is an admissible direction of changeg and

Hc � f�c : (0; �c) is an admissible direction of changeg.

It is worth noting that if the rank(A) = m, then Slater's condition implies Hb = IRm. In general,

when rank(A) < m this may not be true. For example, take a standard transportation problem

with equality constraints. A direction that implies an increase in demand without a corresponding

increase in supply is not an admissible direction of change. In this paper however, we assume that

rank(A) = m. Hence, Hb = IRm and, due to Slater's condition, we also have Hc = IRn. When the

perturbation direction is understood, the primal polyhedron for b + �b�b is denoted P�b , and the

dual polyhedron for c+ �c�c is denoted D�c .

Each of the admissible sets has a subset of interest which relies on the concept of the optimal

partition. De�ne

B = fi : there exists x 2 P� such that xi > 0g

N = f1; 2; 3; : : : ; ngnB.

B and N form the optimal partition and

P� = fx 2 P : xN = 0g

D� = f(y; s) 2 D : sB = 0g,

where a set subscript is used to denote the sub-vector corresponding to indices contained in the

set. Let H1, H1
b , and H

1
c be respective subsets of H, Hb, and Hc, where if a direction of change is

contained in one of these subsets, then the optimal partition remains intact for su�ciently small

amounts of change. In other words, H1, H1
b , and H1

c are the admissible directions of change for

which the optimal sets are invariant. It is easy to see that

H1
b = coll(AB); H1

c = row(

"
AB; AN

0; I

#
); H1 = H1

b �H1
c :

The perturbed problems of interest, where �b and �c are admissible directions and �c and �b are

su�ciently small positive numbers, are

(LP )0 minimize (c+ �c�c)
Tx

subject to Ax = b+ �b�b

x � 0,
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and
(LD)0 maximize (b+ �b�b)

Ty

subject to AT y + s = c+ �c�c

s � 0.

The �rst question we are interested in is:

If �c and �b are admissible and Slater's condition holds when �c = �b = 0, then does

Slater's condition hold for su�ciently small �c and �b?

The answer is positive. We state this fact in the following proposition.

Proposition 2.1 If (LP ) and (LD) satisfy the Slater condition and �c and �b are admissible, then

there exist �0c > 0 and �0b > 0 such that for all 0 � �c � �0c and 0 � �b � �0b the problems (LP )0 and

(LD)0 also satisfy the Slater condition.

The proof of this proposition is quite straightforward, and is omitted here.

A next natural question is:

As �c and �b approach 0, can we conclude that the central path of (LP )0 and (LD)0

continuously approaches the central path of (LP ) and (LD)?

This, however, is not true in general since the optimal face can change drastically with the slightest

perturbation. This can be seen in Figure 2.

This rules out the possibility that the analytic central paths change smoothly in the limit. However,

if the optimal solution sets of (LP ) and (LD) are viewed as a point-to-set mapping, operating on

f(b; c) : (b; c) is admissibleg, then we �nd that this map is closed.

Proposition 2.2 Let

OPT (b; c) = f(x; s) : x optimal to (LP ) and s optimal to (LD)g:

If (xk; sk) 2 OPT (bk; ck) and xk ! x; sk ! s; bk ! b and ck ! c; then

(x; s) 2 OPT (b; c):

Proof.
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xx- -x*

Feasible Region

-c

Original Optimal Face

Analytic Central Paths

Cone for small changes
in c

Figure 1: The vector in the center of the cone is �c. If the perturbed vector lies in the cut through the

cone, then the central optimal solution remains intact. Hence, �c 2 H1

c . Otherwise, the new central optimal

solution is located at one of the �x's, and �c 2 HcnH
1

c
.

By de�nition, if (xk; sk) 2 OPT (bk; ck), then the following KKT conditions are satis�ed:

2
66666664

Axk = bk

xk � 0

AT yk + sk = ck

sk � 0

(sk)Txk = 0:

Letting k! 1 we obtain 2
66666664

Ax = b

x � 0

AT y + s = c

s � 0

sTx = 0,

which shows that (x; s) 2 OPT (b; c).

Q.E.D.
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Although there is in general no \smooth shifting" of the analytic central path with respect to the

perturbation parameters, we will see in Theorem 2.1 that if the perturbation parameters goes to

zero faster than �, then the central path still terminates at the analytic center of the optimal face

of the original problem.

Without loss of generality, assume that �b and �c are chosen such that (LP )0 and (LD)0 satisfy

Slater's condition for �c = 1 and �b = 1. Let x1 and (y1; s1) be interior solutions to (LP )0 and

(LD)0.

For 0 < �c < 1 and 0 < �b < 1, de�ne

x(�c; �b; �) and (y(�c; �c; �); s(�c; �b; �))

to be solutions of the following system, which de�nes the analytic central paths for (LP )0 and (LD)0,2
664
Ax = b+ �b�b

ATy + s = c+ �c�c

XSe = �e.

(2.1)

Since its introduction into mathematical programming the path of analytic centers has been known

to be analytic not only in �, � > 0, but also in �c and �b, see [22]. Hence, x(�c; �b; �) and s(�c; �b; �)

are completely analytic functions when � > 0.

The next lemma shows that the union of all level sets of the perturbed problems is bounded. Let

f(�kc ; �
k
b ; �

k)g be a sequence such that (�kc ; �
k
b ; �

k) # (0; 0; 0) as k " 1. The tacit assumption that

(�kc ; �
k
b ; �

k) < (1; 1; 1) is made to assure that Slater's condition holds. For each M � 0, de�ne

LkM � f(x; s) 2 P�k
b
�D�kc

: xT s �Mg.

Lemma 2.1 is an extension of the boundedness result found in [19].

Lemma 2.1 For all M � 0, [
k

LkM

is bounded.

Proof. Fix k and (xk; sk) 2 Po
�k
b

� Do
�kc
. Choose (x; s) 2 LkM . Then sk � s 2 row(A) and

xk � x 2 null(A). So

0 = (x� xk)T (s� sk) = xTs � xT sk � (xk)Ts + (xk)Tsk .

Non-negativity yields

xis
k
i � xT sk � xT s+ (xk)T sk �M + (xk)T sk.
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Hence,

xi �
M + (xk)Tsk

ski
.

Similarly,

si �
M + (xk)Tsk

xki
.

So for any �xed k and M � 0, LkM is bounded.

Let �� > 0 and de�ne,

sk = s(0; 0; ��) + �kc �c and xk = x(0; 0; ��) + �kbA
T (AAT )�1�b.

For positive �� > 0, x(0; 0; ��) and s(0; 0; ��) are positive and hence there exists a natural number K1

such that for all k � K1, sk > 0 and xk > 0. Since AT y(��; 0; 0)+ sk = c+ �kc �c and Ax
k = b+ �kb �b,

it follows that (xk; sk) 2 Po
�k
b

� Do
�kc
, for all k � K1. Furthermore, since (�kc ; �

k
b ) # (0; 0) as k " 1,

we know that f(xk; sk) : k � K1g is bounded away from zero. Hence both

M + (xk)T sk

ski
and

M + (xk)T sk

xki

are bounded for all k � K1. This implies that

[
k�K1

LkM

is bounded. Since [
1�k<K1

LkM

is a �nite union of bounded sets, the result follows.

Q.E.D.

Lemma 2.1 has the consequence that for any sequence f(�kc ; �
k
b ; �

k)g decreasing to zero, the se-

quences fx(�kc ; �
k
b ; �

k)g and fs(�kc ; �
k
b ; �

k)g have at least one cluster point.

The next lemma guarantees that if the perturbation parameters decrease to zero at the same rate

as � decreases to zero, then fx(�c; �b; �)g and f(y(�c; �b; �); s(�c; �b; �))g terminate in the relative

interior of the original optimal sets. We remark that this result also follows from Theorem 4 in

[15].

Lemma 2.2 If �c = O(�) and �b = O(�) and � # 0, then any cluster point of x(�c; �b; �)

will be contained in the relative interior of the optimal face of (LP ), and any cluster point of

(y(�c; �b; �); s(�c; �b; �)) will be contained in the relative interior of the optimal face of (LD).
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Proof.

Denote x = x(�c; �b; �) and s = s(�c; �b; �). Let x� and s� be two optimal solutions of (LP ) and

(LD) that are strictly complementary, i.e. x� + s� > 0. Observe that

[�bx
1 + (1� �b)x

� � x]T [�cs
1 + (1� �c)s

� � s] = 0.

Using that xT s = n� we have,

(1� �b)(x
�)Ts + (1� �c)x

Ts� = �c�b(x
1)Ts1 + �b(1� �c)(x

1)Ts� + �c(1� �b)(x
�)Ts1

+n� � �b(x
1)Ts � �cx

Ts1

� �c�b(x
1)Ts1 + �b(1� �c)(x

1)Ts� + �c(1� �b)(x
�)Ts1 + n�.

Using that �c = O(�) and �b = O(�) it follows that

(x�)Ts = O(�) and xT s� = O(�):

As � = xisi, the above relation implies that there exists a constant, say � > 0, independent of �,

such that

x�i � �xi and s�i � �si

for all i and all � > 0. Since x� and s� are strictly complementary, it follows that any cluster point

of the sequence f(x(�c; �b; �); s(�c; �b; �))g will be strictly strictly complementary as well.

Q.E.D.

The next result shows that if �c and �b go to zero faster than �, then x(�c; �b; �) and s(�c; �b; �)

still converges to the analytic center of the optimal faces of the original problem.

Theorem 2.1 Let x̂ be the analytic center of the optimal face for (LP ) and (ŷ; ŝ) be the analytic

center of the optimal face for (LD). If �c = o(�) and (�b; �) # (0; 0), then

lim
�#0

x(�c; �b; �) = x̂.

If �b = o(�) and (�c; �) # (0; 0), then

lim
�#0

(y(�c; �b; �); s(�c; �b; �)) = (ŷ; ŝ).

Proof.
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Consider a sequence f(�kc ; �
k
b ; �

k) : k = 1; 2; :::g with

lim
k"1

�kb = lim
k"1

�k = 0; and lim
k"1

�kc =�
k = 0:

Denote xk = x(�kc ; �
k
b ; �

k) and sk = s(�kc ; �
k
b ; �

k).

To prove limk"1 xk = x̂, we consider the sequence x̂k, with x̂k being optimal to

minimize (cTx=�k)�
Pn

i=1 log xi

subject to Ax = b+ �kb �b:

The boundedness shown in Lemma 2.1 implies that we may assume without loss of generality the

existence of

lim
k"1

xk and lim
k"1

x̂k.

It is clear that both of these limits are feasible to (LP ). Assume for the sake of attaining a

contradiction that

lim
k"1

(x̂k � xk) 6= 0.

Let Fk(x) = (cTx=�k)�
Pn

i=1 log xi. It follows by the optimality of xk and x̂k respectively that

Fk(x̂
k) � Fk(x

k) � Fk(x̂
k)�

�kc
�k

(�c)Txk +
�kc
�k

(�c)T x̂k . (2.2)

Observe now that xk and x̂k are bounded by Lemma 2.1, and that Fk(x) is strongly convex.

Moreover, the eigenvalues of the Hessian matrix of Fk are uniformly bounded from zero. Hence, if

limk"1(x̂
k � xk) 6= 0 then for all natural numbers, N , there exists k � N , such that

Fk(x
k) � Fk(x̂

k) + �.

This contradicts (2.2) since �kc =�
k # 0. So we must have

lim
k"1

(x̂k � xk) = 0:

In other words, we have shown

lim
k"1

(x(�kc ; �
k
b ; �

k)� x(0; �kb ; �
k)) = 0: (2.3)

One can also show that

lim
k"1

(x(0; �kb ; �
k)� x(0; 0; �k)) = 0: (2.4)

(See e.g. Theorem 3.3 in Section 3.)
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Because,

lim
k"1

x(0; 0; �k) = x̂,

and (2.3) and (2.4) imply that

lim
k"1

(x(�kc ; �
k
b ; �

k)� x(0; 0; �k)) = 0,

we have,

lim
k"1

xk = x̂:

Similarly, on the dual side we can show that

lim
k"1

(yk; sk) = (ŷ; ŝ)

if �kb = o(�k) and (�kc ; �
k) # (0; 0).

Q.E.D.

3 Central path under perturbation: Change the right hand side

In this and the next section we consider the situation in which perturbation occurs exclusively

in b or c. These cases allow a certain type of continuity of either the primal or the dual central

path. The fact that the optimal partition is monotone if either the b or c vector is perturbed

was proven by Adler and Monteiro [1] and is also found in [2] by Berkelaar, Roos and Terlaky.

For completeness, we present this result below in Propositions 3.1 and 3.2, which will be used in

later analysis. Before mentioning this result, we note that the optimal partition changes only in a

�nite number of break points (see, e.g., [1]). Hence, the existence of an open interval for which the

optimal partition remains constant is guaranteed.

Proposition 3.1 Let (B;N) be the optimal partition of (LP ) and (LD). Let (B0; N 0) be the optimal

partition of (LP )0 and (LD)0 with the perturbation parameter �c (assuming that �b = 0). Then, for

su�ciently small �c we have

N � N 0 and B0 � B.

Similarly, we have:

Proposition 3.2 Let (B;N) be the optimal partition of (LP ) and (LD). Let (B0; N 0) be the optimal

partition of (LP )0 and (LD)0 with the perturbation parameter �b (assuming that �c = 0). Then, for

su�ciently small �b we have

N 0 � N and B � B0.
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It turns out that the perturbation on the right-hand side vector b has a di�erent e�ect from

perturbing the objective vector c. This section considers only the perturbation of b.

3.1 The central optimal solution

In order to understand how the analytic central path is a�ected by perturbing b, the focus of this

subsection is on how the limit point of the analytic central path | the analytic center of the optimal

face | reacts to such perturbation. This makes sense because in general there can be multiple

optimal solutions, but the analytic center of the optimal face is unique and representable in term

of the problem data. As it is shown in [13], [21], and [25], optimal solutions in the relative interior

of the optimal face carry more information than an arbitrary vertex optimal solution.

According to Proposition 2.1, the existence of the analytic central path is guaranteed if the pertur-

bation is within a certain region. This means that the analytic center of the optimal face (we shall

call it the central optimal solution hereafter) is a well de�ned function in terms of the perturbation

parameters.

As in the previous section, consider

(LP )�b minimize cTx

subject to Ax = b+ �b�b

x � 0

and the corresponding dual,

(LD)�b maximize (b+ �b�b)Ty

subject to AT y + s = c

s � 0:

Due to Proposition 2.1 we know that there exists �0b > 0 such that for all 0 � �b � �0b , (LP )�b and

(LD)�b have a primal-dual analytic central path. Dropping the dependence on �c in this subsection,

for each such �b let the analytic central path be

f(x(�b; �); (y(�b; �); s(�b; �)) : � > 0g.

Hence, the analytic centers of the primal-dual optimal faces are

x�(�b) = lim
�!0

x(�b; �)

and

s�(�b) = lim
�!0

s(�b; �):
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In Nunez and Freund [18] a bound is given for the quantity

k(x(�b; �); y(�b; �); s(�b; �))� (x(0; �); y(0; �); s(0; �))k

using a condition number of (LP ) and (LD). Unfortunately, their bound tends to in�nity as � goes

to zero. Later in the paper we shall derive a bound on this quantity by a di�erent approach.

Before continuing, we make a few notational conventions concerning di�erentials. If f : IRn ! IRm

is di�erentiable, then

Dk
xi
f(x)

is the vector whose jth component is,
@kfj

@xki
, where fj is the j

th component function. Of particular

interest in this section is Dk
�b
x�(�b). This notation is extended as follows,

Dk
�b
x�(0+) = lim

�b#0
Dk
�b
x�(�b), and

Dk

�
+

b

x�(0) = lim
�b#0

Dk�1
�b

x�(�b)�Dk�1
�b

x�(0)

�b
.

Otherwise, if a real valued single variable function is of concern, say g, the derivatives are denoted

by g0, g00, : : :, g(k). The right sided derivatives and limiting derivatives are written, g0+, g
00
+, : : :, g

(k)
+

and g0(x+0 ), g
00(x+0 ), : : :, g

(k)(x+0 ), respectively.

Our attention now turns back to di�erentiating the central optimal solution. Let the optimal

partition for (LP ) and (LD) be B and N and the optimal partition for (LP )�b and (LD)�b be B0

and N 0. By Proposition 3.2 we know that

B � B0:

Denote

I = B0 nB:

It is clear that for i 2 N n I = N 0 that

x�N 0(�b) = 0

for su�ciently small �b. This shows that

Dk

�
+

b

x�N 0(0) = 0, (3.1)

for all k. Furthermore, if �b 2 H1
b , then x�N 0(�b) = 0 for �b in a neighborhood of zero, so that

Dk
�b
x�N 0(0) = 0,

for all k.

The di�erentiability of x�B0(�b) is considered in two cases, depending on whether or not �b 2 H1
b . If

�b 2 H1
b then the complete analyticity of x�(�b) is established in the next theorem. The result is a

direct consequence of the general implicit function theorem, see [5].
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Theorem 3.1 If �b 2 H1
b then x� is locally analytic along �b.

Proof. As previously mentioned, �b 2 H1
b implies �b 2 coll(AB). So there exists a full row-rank

matrix �AB such that fx : ABx = b+ ��bg = fx : �ABx = �b+ � ��bg. Then the analytic center solution

of the unperturbed problem is the unique solution to

�ABxB = �b+ � ��b (3.2)

�AT
By + sB = 0 (3.3)

XBsB = e, (3.4)

when � = 0. Denote this solution by (x�B; �sB; �y). De�ne � : IR2jBj+m0+1 ! IR2jBj+m0

as

�(xB; y; sB; �) =

2
664

�ABxB � � ��b � �b
�AT
By + sB

XBsB � e

3
775 .

Then � is analytic in an open neighborhood of (x�B; �y; �s; 0) and �((x�B; �y; �s; 0)) = 0. Since the

Jacobian of �((x�B; �y; �s; 0)) with respect to (xB; y; s) is non-singular, the implicit function theorem

implies that xB is an analytic function of � in some su�ciently small neighborhood of zero.

Q.E.D.

Notice that in the proof, if �b had not been in the coll(AB), then the implicit function theorem is

not valid since the needed row reduction would not have been possible. Furthermore, Theorem 3.1

implies that if we are concerned with a direction of change that does not immediately alter the

partition, then not only is x�(�b) of class C
1, but x�(�b) has a power series expansion. Di�erentiating

(3.2), (3.3) and (3.4) with respect to �b we have,8>><
>>:

�AB(D
1
�b
x�B) = ��b

�AT
B(D

1
�b
y) +D1

�b
sB = 0

SB(D1
�b
x�B) +XB(D1

�b
sB) = 0.

(3.5)

Noticing that this is a non-singular system of linear equations in D1
�b
x�B, D

1
�b
sB , and D1

�b
yB, we

have the following, 8>><
>>:

D1
�b
x�B(�b) = X2

B
�AT
B(

�ABX
2
B
�AT
B)

�1 ��b,

D1
�b
sB(�b) = �AT

B(
�ABX

2
B
�AT
B)

�1 ��b, and

D1
�b
y(�b) = ( �ABX

2
B
�AT
B)

�1 ��b.

(3.6)

Using (3.5), we are able to recursively establish the higher order derivatives. De�ne


k �
k�1X
i=1

 
k

i

!
(Di

�b
SB)(D

k�i
�b

xB).

13



Then for k � 2 we have, 8>><
>>:

�AB(D
k
�b
x�B) = 0

�AT
B(D

k
�b
y) +Dk

�b
sB = 0

SB(D
k
�b
x�B) +XB(D

k
�b
sB) = 
k,

which implies 8>><
>>:

Dk
�b
x�B(�b) = XB


k �XB
�AT
B(

�ABX
2
B
�AT
B)

�1 �ABXB

k

Dk
�b
sB(�b) = �AT

B(
�ABX

2
B
�AT
B)

�1 �ABXB

k

Dk
�b
y(�b) = �( �ABX

2
B
�AT
B)

�1 �ABXB

k.

(3.7)

Hence,

x�(�b) =
1X
k=0

(Dk
�b
x�(0))

k!
(�b)

k, (3.8)

for �b su�ciently close to zero, where Dk
�b
x�N (0) = 0. Notice that this power series expansion is

easy to calculate since it requires only one matrix factorization. Hence, a quick attempt at inferring

where the new central optimal solution can be done with high order extrapolation methods.

We now consider the case when �b 2 HbnH
1
b . The next lemma, due to G�uler [12], concerning the

limiting derivatives along the central path is needed.

Lemma 3.1 Let B and N be the optimal partition for (LP ) and (LD). Let x(�) and s(�) be the

primal-dual central path. Then both Dk
�x(0

+) and Dk
�s(0

+) exist and the following equalities hold,

Dk
�x(0

+) = Dk
�+x(0)

and

Dk
�s(0

+) = Dk
�+s(0).

Moreover,

D1
�+xN(0) > 0 and D1

�+sB(0) > 0.

Proof.

See G�uler [12].

Q.E.D.

The formula for the kth derivative of a composition function is integral in completing our analysis;

see [6]. Let h(x) = f(g(x)), where both f and g are C1 on some suitable neighborhoods. Then

h(k)(x) is

kX
m=1

X k!

j1!j2! : : : jk!
�

2
4�g0(x)

1!

�j1 �g00(x)
2!

�j2
: : :

 
g(k)(x)

k!

!jk35 � dmf
dym

(g(x)), (3.9)

14



where the second sum is taken over all non-negative integer solutions of
kP
i=1

iji = k and
kP
i=1

ji = m.

The following lemma provides some di�erential properties used to complete the desired results

pertaining to xB(�c; �b; 0).

Lemma 3.2 Let f : [0; ��)! [0; ��) be an increasing, C1, function on (0; ��), such that, f (k)(0+)

exists for all k � 1, and f 0(0+) > 0. Then g = f�1 exists and has the property that g(k)(0+) exists

for all k � 1. Furthermore, if f is continuous at zero, then f is C1 on [0; ��) and g is C1 on

[0; ��).

Proof. Let f be as above. The general inverse function theorem, see [17], establishes that g = f�1

exists and is C1 on (0; ��). Since

g0(�) =
1

f 0(g(�))
(3.10)

for all � 2 (0; ��), we immediately have

g0(0+) =
1

f 0(g(0+))

which completes the �rst statement when k = 1.

By de�nition of the inverse function we have

� = f(g(�)) (3.11)

for � 2 (0; ��) and so we can apply (3.9) on (3.11) for all k > 1. Observe that by this formula we

can express g(k)(�) in terms of g0(�), g00(�), g000(�), ..., g(k�1)(�), and f 0(g(�)), f 00(g(�)), f 000(g(�)),

..., f (k)(g(�)). So by a simply induction argument we conclude that g(k)(0+) exists for all k.

Now, suppose that f is continuous at zero, and let t(�) be from the mean value theorem. Then

f(�)� f(0)

�
= f 0(t(�)) for all � 2 (0; ��).

Then using the assumption that f 0(0+) exists implies

lim
�!0+

j
f(�)� f(0)

�
� f 0(�)j = lim

�!0+
jf 0(t(�))� f 0(�)j = 0.

So f 0+(0) = f 0(0+) and we have that f 0 is continuous at zero. Repeated applications of the mean

value theorem give that f is C1 on [0; ��). Since f continuous at zero implies g is continuous at

zero, a similar argument shows g is C1 on [0; ��). Q.E.D.

We now prove that if �b 2 HbnH
1
b , then the primal central optimal solution is in�nitely, continuously,

one-sided di�erentiable with respect to the perturbation parameter �b.
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Theorem 3.2 Dk
�b
x�(0+) exists for all natural numbers k and Dk

�b
x�(0+) = Dk

�
+

b

x�(0)

Proof. The case when i 2 N 0 has already been considered (see (3.1)). Let i 2 B[I, and consider

the following linear program which has an optimal value of zero:

minf�b : ABzB +AIzI � �b�b = b; zB � 0; zI � 0; �b � 0g.

Let f(zB(�); zI(�); �b(�)) : � � 0g be the central path. Then

zB(�) = xB(�b(�)) , zI(�) = xI(�b(�))

and continuity implies

zB(�)! xB(0) > 0 , zI(�)! xI(0) = 0 , �b(�)! 0,

as � # 0. Hence, the optimal partition is B and I [ f�bg.

Lemma 3.1 implies that �0
b+
(0) > 0, and hence there exists some interval, say [0; ��), where �b(�)

is invertible. Denote the inverse by �(�b) and let the corresponding interval be [0; ��b). Then for all

�b 2 (0; ��b) we have

zB(�(�b)) = xB(�b) , zI(�(�b)) = xI(�b)

Applying (3.9) we have

Dk
�b
xi(�b) =

kX
m=1

X k!

j1!j2! : : : jk!
�

2
4��0(�b)

1!

�j1 ��00(�b)
2!

�j2
: : :

 
�(k)(�b)

k!

!jk35 � z(m)
i (�(�b))

for i 2 B [I. Lemmas 3.1 and 3.2 imply that the right hand side converges as �b # 0. So D
k
�b
x�(0+)

exists. Since z and � are continuous functions, x�(�b) is continuous, and the mean value theorem

is used as in the proof of Lemma 3.2 to conclude the result.

Q.E.D.

Two immediate corollaries are in order. We use an extension of the big{O notation, viz. u(t) =

�(w(t)) if u(t) and w(t) are positive seqeunces, and the ratios u(t)=w(t) and w(t)=u(t) are both

bounded.

Corollary 3.1 There hold

x�B(�b)� x�B(0) = O(�b); x�I(�b) = �(�b) and x
�
N 0(�b) = 0

for su�ciently small �b > 0.
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Corollary 3.2 There hold

xN 0(�b; �) = �(�) and sB(�b; �) = �(�)

for su�ciently small �b > 0.

Proof.

Due to xN 0(�b; �)� x�N 0(�b) = �(�) and x�N 0(�b) = 0 for small �b > 0, it follows that

xN 0(�b; �) = �(�):

By Corollary 3.1 we know that

xB(�b; �) = �(1)

and so

sB(�b; �) = �(�):

Q.E.D.

3.2 Bounds along the analytic central path

Bounds are now developed for the �rst derivatives of x(�b; �), � > 0, and x�(�b). Bounding

D1
�b
x(�b; �), � > 0, is considered �rst. Similar to (3.5) we have

A(D1
�b
x(�b; �)) = �b

AT (D1
�b
y) +D1

�b
s = 0

S(D1
�b
x(�b; �)) +X(D1

�b
s) = 0,

which implies

D1
�b
x(�b; �) = X2AT (AX2AT )�1�b. (3.12)

For a given full row-rank matrix A, Dikin [4] showed that the following condition number �A is

�nite (also independently rediscovered by Stewart [23] and Todd [24]):

�A := supfk(ADAT )�1ADk : D is positive diagonalg:

Applying this result to (3.6) and (3.12), we have the following result:
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Theorem 3.3 For any positive � it follows that

kD1
�b
x(�b; �)k � �Ak�bk. (3.13)

Furthermore, if �b 2 H1
b , then

kD1
�b
x�(0)k � � �Ak

��bk. (3.14)

Otherwise �b 2 HbnH
1
b and

kD1
�
+

b

x�(0)k � � �Ak
��bk. (3.15)

Proof.

Both (3.13) and (3.14) follow immediately from the de�nition of �A. The bound in (3.15) follows

since Theorem 3.2 implies D1
�
+

b

x�(0) = D1
�b
x�(0+), and the right side of this equality is bounded by

� �Ak��bk because of (3.14).

Q.E.D.

4 Central path under perturbation: Change the objective

Let us review Figure 1. One may observe that if the perturbation on the objective function is small,

then the analytic central path can be misled by the di�erence, in the sense that the central path

x(�c; �) �rst approaches the analytic center x
� in the optimal face of (LP ) ignoring the di�erence

between c and c + �c�c. Then, it realizes that the direction is wrong and makes a sharp turn and

moves further towards �x. The last movement is nearly parallel to the analytic central path de�ned

on the optimal face of (LP ), leading from x� to �x.

The purpose of this section is to show that this indeed happens. Throughout this section it is

assumed that �b = 0, and we eliminate the argument of �b. Hence, x(�c; �b; �) is referred to by

x(�c; �).

Consider the following system: 2
666664
ABx

�
B = b

AT
By

� + s�B = (�c)B

X�
Bs

�
B = �eB

x�B � 0; s�B � 0,

(4.1)

where the � notation is used because x�B is contained in the optimal set of (LP ). This system has

unique solutions x�B(�) and s�B(�) for every given positive �. In particular, if �c = 0 and � = 1,

then (x�B(1); 0) is the central optimal solution for (LP ). In general, (x�B(�); 0) corresponds to the
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Figure 2: The vertical line is the central path for minfz : 0 � x � 1; 0 � y � 1; 0 � z � 1g. The path

contained in the x-y plane is the central path for minf1
4
x + 5

10000
y : 0 � x � 1; 0 � y � 1g. The remaining

paths correspond to minfz + �c

4
x+ 5�c

10000
y : 0 � x � 1; 0 � y � 1; 0 � z � 1g, where �c = 1; 0:8; 0:6;0:4;0:2.

central path de�ned on the optimal face of the original problem. As � ! 0, this central path will

lead us to the central optimal solution of the perturbed problem. In the case that B0 = B, the

path reduces to a single point.

Now consider the primal-dual central path for (LP )0 and (LD)0 (assuming �b = 0). The following

equation must be satis�ed: 2
664
Ax(�c; �) = b

AT y(�c; �) + s(�c; �) = c+ �c�c

X(�c; �)s(�c; �) = �e:

If we let (ŷ; ŝ) denote the central optimal solution for (LD), then it follows that AT ŷ+ ŝ = c, ŝ � 0

and ŝB = 0. Let

�y = (y(�c; �)� ŷ)=�c and �s = (s(�c; �)� ŝ)=�c.

It is clear that (�y; �s) satis�es AT �y + �s = �c and XB(�c; �)�sB = �
�c
eB .
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Let � be a �xed positive constant and � = �c�. We have2
664
ABxB(�c; �c�) = b� ANxN(�c; �c�)

(AB)
T �y + �sB = (�c)B

XB(�c; �c�)�sB = �eB :

Due to Proposition 3.1 we know that

lim
�c!0

xN(�c; �c�) = 0:

Because the equations (4.1) have a unique solution xB(�) it follows that

lim
�c!0

xB(�c; �c�) = x�B(�):

This proves the following result:

Theorem 4.1 For any given parameter � > 0, it holds that

lim
�c!0

x(�c; �c�) = (x�B(�); 0) .

Loosely speaking, the above theorem states that as the perturbation parameter �c tends to zero,

the last part of the central path of the perturbed problem gets arbitrarily close to the \central

path" directly de�ned on the optimal face of the original problem.

There are connections between Theorem 4.1 above and Theorem 4.13 in Bonnans and Potra [3].

However, Bonnans and Potra considered a single shifted analytic center in a speci�c algorithmic

framework, whereas our result is algorithm independent and concerns the \central path" de�ned

on the optimal face of the original problem.

The situation described by Theorem 4.1 is depicted in Figure 2.

5 Concluding remarks

In this paper we carried out an investigation on how the analytic central path and the central

optimal solution (analytic center of the optimal set) react to the changes in the right-hand side

vector b and the objective vector c. These issues are important in the context of sensitivity analysis

and parametric programming.

It turned out that the change caused by b can be quite di�erent from that caused by c. In the

former case, we proved that the central optimal solution has one-sided di�erentiability with respect

to the perturbation parameter. The whole central path also has a smooth and uniformly bounded
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shift in terms of the perturbation parameter. Perturbation in the objective vector, however, can

cause a drastic change in the central path. However, in this case we showed that every element

of the central path de�ned directly on the optimal face is a cluster point of the (perturbed) whole

central path, when the perturbation and centrality parameters tend to zero.
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