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Abstract

A necessary condition - the Principle of Fermat-Lagrange - is of-
fered for mixed smooth-convex optimization problems. This general-
izes and uni�es most of the known necessary conditions for concrete
�nite and in�nite dimensional optimization problems of interest. The
new idea in comparison with the uni�ed version of Tikhomirov and
others ([I-T], [A-T-F] and [T]) is that a geometrical construction of the
principle is given. In the present set-up constraints are not mentioned
explicitly, the feasibility set is allowed to vary in a non-standard way
and the objective function is also allowed to vary. An equivalent an-
alytical formulation is given as well; we propose a new standard form
for optimization problems which allows greater exibility.

KeyWords. Optimization, Lagrange multiplier, principle of Lagrange, Pon-
trijagin's maximum principle, smooth-convex problems, perturbation func-
tion, Banach space, tangent space.
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1 Introduction

The initial development of the theory of extremal problems is due to Fermat,
Euler and Lagrange. The latter was the �rst to propose a general princi-
ple to analyse extremal problems, a far reaching extension of the method
of Fermat. All the necessary conditions for concrete �nite and in�nite di-
mensional problems of interest which have appeared in the literature up to
the present date are versions of this principle. Sometimes these versions
are quite complicated. For example for problems of optimal control one has
Pontrijagin's maximum principle. Even the form of this result is not very
straightforward. What makes these results possible is the mixed smooth-
convex structure of the problems. Tikhomirov and others have given strong
unifying versions of these necessary conditions for optimization problems of
mixed smooth-convex type ([I-T], [A-T-F] and [T]). We also refer to the work
on non-smooth optimization by Clarke, Io�e, Mordukhovich and Rockafellar
([C], [I], [M], [R]). However the theory of necessary conditions for optimiza-
tion problems of mixed smooth-convex type is not yet in a satisfactory state.
One open problem is how to unify this theory with the theory of su�cient
conditions (including the Hamilton-Jacobi-Bellman theory). Another one is
how to �nd satisfactory necessary and su�cient conditions for multidimen-
sional variational problems. Therefore and because of the important role
of necessary conditions in the theory and practice of optimization it is of
considerable interest to give an exhaustive development of the principle of
Lagrange. In the present paper I give a relatively straightforward geometrical
realization of the idea of Lagrange, or rather the even older idea of Fermat,
to be called the principle of Fermat-Lagrange. Also a new general standard
form for optimization problems is proposed which allows greater exibility
than the usual one. For problems in this new standard form an analytical
formulation of the principle is given.

Now we sketch the new, geometrical result given in the present paper. It
turns out that almost all concrete �nite and in�nite dimensional extremal
problems of interest �t essentially into the following framework. For suitable
vector spaces X;U and Y and a suitable map F from X�U�Y to R[f1g,
the problem to minimize F (x; u; 0) is the given problem. Moreover there is
a meaningful way to introduce a parameter from Y into the problem such
that for each choice of parameter y 2 Y one gets the problem to minimize
F (x; u; y). Furthermore certain conditions on F are usually satis�ed.The
principle of Lagrange can be realized as follows. For each solution (x̂; û) of
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the given problem there exists an a�ne function A on X � U � Y such that
A(x; û; y) is a linearization in (x̂; 0) of F (x; û; y) in the spirit of smooth anal-
ysis, A(x̂; u; y) is a linearization in (û; 0) of F (x̂; u; y) in the spirit of convex
analysis and (x̂; û) is a solution of the problem to minimize A(x; u; 0). Of
course then A(x; u; 0) is constant. Thus the principle is presented as the
result that the property of (x̂; û) to minimize F (x; u; 0) is preserved under
linearization. This way of stating the principle is clearly a straightforward
generalization of the theorem of Fermat that the derivative of a smooth
function in an optimum is zero. The slope of A in the Y -direction is a gen-
eralization of the usual Lagrange multiplier, also called shadow price or dual
variable. The result generalizes and simpli�es the results on mixed prob-
lems mentioned above. The special cases of purely convex (resp. smooth)
linearization were dealt with in [B1] and [B2] (resp. in [B3]).

Finally we mention the following additional novel features of the present
realization of Lagrange's principle: constraints are not mentioned explicitly,
the feasibility set is allowed to vary in a non-standard way and the objec-
tive function is also allowed to vary. In all existing realizations the only
perturbation allowed is a standard perturbation of equality constraints.

For some concrete problems the principle of Lagrange has been used as
a heuristic principle: in cases where it is not known whether the condition
provided by the principle of Lagrange is necessary for optimality. In com-
bination with other methods this has led to a complete, rigorous solution.
Therefore it is of interest to emphasize that the condition of Fermat-Lagrange
is de�ned in the present paper in great generality compared with previous
versions of the principle of Lagrange.

I would like to acknowledge an inspiring tutorial on extremal problems by
Professor Vladimir Tikhomirov at the foot of the Euromast. I thank him also
for suggesting an improvement of the analytical formulation of the Principle
of Fermat-Lagrange.

2 Statement of the results.

In this section we give a precise formulation of the results of this paper. For
each function h from a set S to R [ f1g we let �h be the �nite part of the
graph of h, that is �h = f(s; r) 2 S � R j r = h(s)g. We let epi(h) be the
epigraph of h, that is epi(h) = f(s; r) 2 S � R j r � h(s)g. A vector x from
a normed space X is said to be a tangent vector to a subset M of X in a
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point m of M if there is a map r from the interval [�1; 1] to X such that
m+ �x+ r(�) 2M for all � 2 [�1; 1] and jr(�)j = o(j�j) for �! 0. The set
TmM of all tangent vectors to the set M in the point m is called the tangent
space to M in m.

The set-up is as follows. X and Y are Banach spaces, U is a set provided
with the trivial topology, F is a function from the cartesian productX�U�Y
to R[f1g, called a perturbation function, and (x̂; û) is an element of X�U
with F (x̂; û; 0) 2 R. We write r̂ = F (x̂; û; 0).

Let F (û) be the function from X�Y to R[f1g de�ned by F (û)(x; y) =
F (x; û; y) for all (x; y) in X � Y . For all x 2 X let F (x) be the function
from U � Y to R [ f1g de�ned by F (x)(u; y) = F (x; u; y)� r̂ for all (u; y)
in U � Y . Let � (resp. �) be the natural projection from X � Y � R (resp.
U � Y � R) onto Y � R. Let S and C be the subsets of Y � R de�ned by
S = �(T(x̂;0;r̂)�F (û)) and C = �(epiF (x̂)).

Let � be a non-trivial element of the dual space (Y � R)� . We say that
the condition of Fermat-Lagrange holds for F and (x̂; û) with multiplier � if
�(S) = 0 and �(C) � R+ . We write � = (�; �0) with � 2 Y � and �0 2 R. It
follows readily from �(C) � R+ that �0 � 0. Let � be the projection from
Y � R onto Y . We shall say that the regularity condition holds if the origin
0Y lies in the interior of the subset �(S + C) of Y .

Let k be a map from an open subset W of a Banach space A to another
Banach space B and let v 2 W . Then k is said to be strictly di�erentiable in
v if there is a continuous linear map L from A to B such that jk(s)� k(t)�
L(s� t)j = o(js� tj) for s ! v and t ! v. Then L is uniquely determined.
It is called the strict derivative of k in v and it is denoted by k0(v).

Now we formulate a list of assumptions on F and (x̂; û).

Assumptions 2.1. There is a Banach space Z, a neighbourhood V of x̂ in
X and a map g from V �U � Y �R to Z such that the following conditions
hold:

i �F \ (V � U � Y � R) = zero (g), the zero-set of g.

ii g(x; u; y; r) depends strictly di�erentiable on (x; y; r).

iii g0(y;r) (x̂; u; y; r) is surjective for all (x̂; u; y; r) 2 zero g

Remark: By the tangent space theorem (3.1) these conditions imply
that S is a closed linear subspace of Y � R.
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iv dim(Y � R=S) <1.

v � (epi F (x)) is a convex subset of Y � R for all x 2 V .

Now we come to the main result.

Theorem 2.2. Principle of Fermat-Lagrange for mixed smooth-convex ex-
tremal problems (geometrical formulation). Let F and (x̂; û) be as above.
Make the assumptions from (2.1). Assume that (x̂; û) is a local minimum of
the function F (x; u; 0). Then there is a non-trivial element � = (�; �0) in
(Y � R)� such that the condition of Fermat-Lagrange holds for F and (x̂; û)
with multiplier �. One has �0 > 0 for each such � if and only if the regularity
condition holds.

Remark 2.3. Now we show what is the relation between this result and the
preliminary description of it given in section 1. Assume U is equipped with
a vector space structure and let an a�ne function A on X � U � Y which
depends continuously on Y be given. A is called a mixed smooth-convex
linearization of F in (x̂; û; 0) if

F (x̂; û; 0) = A(x̂; û; 0);

T(x̂;0;r̂)�F (û) � T(x̂;0;r̂)�A(û)

and

epi F (x̂) � epi A(x̂):

Here A(û) (resp. A(x̂)) is de�ned in the same way as F (û) (resp. F (x̂)). Let
� 2 (Y � R)� be de�ned by

�(y; r) = r + r̂ � A(x̂; û; y) 8y 2 Y 8r 2 R:

Then the condition of Fermat-Lagrange holds for F and (x̂; û) with multiplier
� if and only if A is a mixed smooth-convex linearization of F in (x̂; û; 0)
and if moreover A(x; u; 0) is minimal in (x̂; û).

For use in the analysis of concrete extremal problems we give also an
analytical formulation of theorem 2.2. If A and B are normed vectorspaces
and � : A ! B is a continuous linear operator, then the adjoint operator
�� : B� ! A� is de�ned by < ��b�; a >=< b�;�a > for all b� 2 B� and
a 2 A. We will write ĝ0x for g0x(x̂; û; 0; r̂); in the same way we will use the
notation ĝ0y;r and ĝ0r.
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Proposition 2.4. Principle of Fermat-Lagrange (analytical formulation). Let
F and (x̂; û) be as above. Make the assumptions from (2.1). Assume that
(x̂; û) is a local minimum of the problem to minimize r 2 R under the con-
straint that g(x; u; 0; r) = 0 for suitable x 2 X and u 2 U . Then there is a
non-trivial element � 2 Z� such that

ĝ
0
�

x � = 0 and min
c2C

(ĝ
0
�

y;r�)(c) = 0:

Moreover ĝ
0
�

r � > 0 for each such that � if and only if the interior of the
following subset of the image ĝ0x;y;r contains the origin

fĝ0x;y;r(0; y; 0) j9u 2 U9r 2 R such that g(x̂; u; y; r) = 0g:

By a straightforward specialization of this result one obtains the following
consequence. This is essentially theorem (P ) from [T] (see p.48). In [T] it is
made clear that theorem (P ) uni�es most of the known necessary conditions
for concrete extremal problems.

Corollary 2.5. Let X; Y be Banach spaces, V an open subset of X;U a set,
f (resp.h) a map from V �U to R (resp. to Y ). Let (x̂; û) be a local minimum
of the problem to minimize f(x; u) under the restriction h(x; u) = 0. Let the
Lagrange function be de�ned by L(x; u; �; �0) = �0f(x; u) + �(h(x; u)) for all
x 2 V; u 2 U; � 2 Y � and �0 2 R. We make the following assumptions:

1. f(x; u) and h(x; u) are strictly di�erentiable in the variable x.

2. the image of the derivative h0x(x̂; û) is a closed subspace of Y of �nite
codimension.

3. the subset f(h(x; u); f(x; u) + t) j u 2 U; t � 0g of Y � R is convex for
all x 2 V .

Then there exist �̂ 2 Y � and �̂0 2 R+ , not both zero, such that the following
two conditions hold:

(i) Stationarity condition. The vector x̂ is stationary for the problem to
minimize L(x; û; �̂; �̂0). This is equivalent to

�̂0f
0

x(x̂; û) + �̂ � h0x(x̂; û) = 0:

(ii) Minimum principle. The element û is a solution of the problem to
minimize L(x̂; u; �̂; �̂0).

Moreover each such �̂0 is nonzero if and only if the interior of h(x̂; U) as
a subset of Y contains the origin.
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3 Proof of the results

In this section we prove theorem (2.2). The proposition, the corollary and
the statement in remark (2.3) are straightforward consequences taking into
account the theorem on the tangent space, which we recall below. This is
also the main tool in the proof of theorem (2.2). Proposition 2.4 follows from
theorem 2.2 by virtue of theorem 3.1 and the lemma on the annihilator of
the kernel of a regular operator (see p.81 in [A-T-F]).

Theorem 3.1. ([A-T-F] p. 109). Let X and Y be Banach spaces, let x0 2
X, let U be a neighbourhood of x0 in X and let F be a map from U to Y with
F (x0) = 0. Assume that F is strictly di�erentiable in the point x0 and that
the linear map F 0(x0) is surjective. Then the zero set of F has as tangent
space in the point x0 the kernel of F 0(x0).

Proof of Theorem (2.2). Let F and (x̂; û) be as in section 2, assume that
(x̂; û) is a local minimum of the function F (x; u; 0) and let Z; V and g be
given such that the assumptions from (2.1) hold.

We carry out the proof of the theorem in three steps.

Step 1. The theorem holds if the regularity condition is not satis�ed.

Proof of step 1. We use the standard separation result that in a �nite di-
mensional real vector space any convex set can be separated from any point
which does not lie in its interior. Then, by virtue of assumptions (2.1)(iv)
and (2.1)(v), it follows that there exists a non-trivial linear function � on
Y �R=(S +0�R) with �(t) � 0 for all t in the image of C under the natural
projection from Y �R to Y �R=(S +0�R). By composition of � with this
projection one gets a non-trivial continuous linear function � on Y � R with
�(S) = 0; �(0 � R) = 0 and �(C) � R+ . This proves the theorem in the
present case. 2

From now on we assume, as we may, that the regularity condition holds.

Step 2: if (y; r) 2 S and (y;
=
r) 2 C, then

=
r� r.
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Proof of step 2. Let (y; r) 2 S and (y;
=
r) 2 C be given. Choose x 2 X

with (x; y; r) 2 T(x̂;0;r̂)�F (û) and u 2 U with (u; y;
=
r) 2 epiF (x̂). We assume,

as we may for the proof, that (u; y;
=
r) 2 �F (x̂), that is, r̂+

=
r= F (x̂; u; y), or

equivalently g(x̂; u; y; r̂+
=
r) = 0. Letm be the dimension of Y�R=(S+0�R).

Identify Y � R=(S + 0 � R) with R
m . Let z1; : : : ; z2m be the corners of a

nontrivial cube T in R
m with centre at the origin which is entirely located

in the image of C in Y � R=(S + 0 � R). This is possible by the regularity
condition.

These vectors have the following properties, clearly.

(�)
2mX

i=1

zi = 0

(�) fzig
2m

i=1 generates the whole vector space R
m .

() For each i 2 f1; : : : ; 2mg there exist ~ui 2 U; ~yi 2 Y; ~ri 2 R such that
F (x̂; ~ui; ~yi) = ~ri - that is, g(x̂; ~ui; ~yi; ~ri) = 0 - and such that the image
of (~yi; ~ri) in Y � R=(S + 0� R) equals zi.

Choose such elements ~ui; ~yi; ~ri for all i 2 f1; : : : ; 2mg. We de�ne a func-

tion � on R
2m+2 by �(�0; �

0

0; �1; : : : ; �2m) = �0 + 2m�0

0 +
2mX

i=1

�i for all

(�0; �
0

0; �1; : : : ; �2m) 2 R
2m+2. We de�ne a map 	 = (	i)i=0;:::;2m+2 from

the cartesian product R2m+2 � V � (Y � R)2
m+2 to Y � Z2m+2

by
�
	(�; x; (yj; rj)

2m+2
j=1 )

�
i
=

= (1� �(�))y2m+1 +
P2m

j=1(�
0

0 + �j)yj + �0y2m+2 if i = 0

= g(x; ~ui; yi; ri) if 1 � i � 2m

= g(x; û; y2m+1; r2m+1) if i = 2m + 1
= g(x; u; y2m+2; r2m+2) if i = 2m + 2

for all � = (�0; �
0

0; �1; : : : ; �2m) 2 R
2m+2; x 2 V and (yj; rj) 2 Y � R 8j 2

f1; : : : ; 2m + 2g.

We observe that the vector w = (0; x̂; (~yi; ~ri)
2m

i=1; (0; r̂); (y; r̂+
=
r)) lies in

the zero-set of 	.
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Claim: Tw zero(	) = Ker 	0(w).

Proof of the claim: by theorem (3.1) it su�ces to show that 	0(w) is surjec-

tive. We choose (�y; �r) 2 S with
2mX

i=1

~yi = �y, as we may by (�) and (). From

the de�nition of 	 one gets immediately that
	0(w)(�; x; (yi; ri)

2m+2
i=1 ) is the vector v which is given componentwise as fol-

lows: vi =

= y2m+1 + �0

0�y +
P2m

j=1�j~yj + �0y if i = 0

= g0(x̂; ~ui; ~yi; ~ri)(x; yi; ri) if 1 � i � 2m

= g0(x̂; û; 0; r̂)(x; y2m+1; r2m+1) if i = 2m + 1

= g0(x̂; u; y; r̂+
=
r)(x; y2m+2; r2m+2) if i = 2m + 2:

Here g0 stands for g0x;y;r. Now choose arbitrarily y(0) 2 Y; r(1) 2 Z2m ; r(2) 2

Z and r(3) 2 Z. We are going to show that by an appropriate choice of
(�; x; (yi; ri)

2m+2
i=1 ) one can ensure that v equals (y(0); r(1); r(2); r(3)).

To begin with we start with the choice (�; x; (yi; ri)
2m+2
i=1 ) = 0; we are going to

change this choice step by step until we achieve our goal. We use assumption
(2.1)(iii) to change the choices of y2m+1 and r2m+1 in such a way that the
'third coordinate' equals r(2). Then we use (�) and () to change the choices
of the �i (1 � i � 2m) in such a way that the �rst coordinate equals y(0) up
to an element from the image of S under the natural projections from Y �R
to Y . This image equals the image of Ker g0(x̂; û; 0; r̂) under the natural
projections from X � Y � R to Y as a consequence of theorem 3.1. So by
changing (x; y2m+1; r2m+1) suitably we can achieve that the �rst coordinate
equals y(0) and the third one remains r(2). Finally, by assumption (2.1)(iii),
we can change the (yi; ri) for 1 � i � 2m and i = 2m + 2 in such a way that
the second coordinate becomes r(1) and the last one r(3). This �nishes the
proof of the claim. 2

Now we continue the proof of step 2. As (�y; �r) 2 S there exists �x 2 X with
g0(x̂; û; 0; r̂)(�x; �y; �r) = 0. We choose an arbitrary element (�0

0; �0) 2 R
2 . We

de�ne the element (x; y2m+1; r2m+1) inX�Y �R to be the linear combination
� �0

0(�x; �y; �r) � �0(x; y; r). We choose �i = 0 8i = 1; : : : ; 2m. We choose
(yi; ri) such that g0(x̂; ~ui; ~yi; ~ri)(x; yi; ri) = 0 for all i 2 f1; : : : ; 2mg. We

choose (y2m+2; r2m+2) such that g0(x̂; u; y; r̂+
=
r)(x; y2m+2; r2m+2) = 0. These
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choices can be made by assumption (2.1)(iii). Set � = (�0; �
0

0; �1; : : : ; �2m).
One readily veri�es, using also the claim, that (�; x; (yi; ri)

2m+2
i=1 ) lies in the

tangent space in w to the zero set of 	.
Therefore, by the de�nition of the tangent space, there exist o-functions

�0(�); �
0

0(�); �i(�) 1 � i � 2m from [�1; 1] to R,
(we write � = (�0; �

0

0; �1; : : : ; �2m)); r(�) from [�1; 1] to V , �i(�) 1 � i �
2m + 2 from [�1; 1] to Y , �i(�) 1 � i � 2m + 2 from [�1; 1] to R such that

0 = 	[w + �(�; x; (yi; ri)
2m+2
i=1 ) + (�(�); r(�); (�i(�); �i(�))

2m+2
i=1 )];

8� 2 [�1; 1]: (1)

Then for all � 2 [�1; 1] the following elements all lie in �(epi F (x̂+�x+r(�))):

ti = (~yi + �yi + �i(�); ~ri � r̂ + �ri + �i(�)) 8i 2 f1; : : : ; 2mg;

t2m+1 = (�y2m+1 + �2m+1(�); �r2m+1 + �2m+1(�))

and

t2m+2 = (y + �y2m+2 + �2m+2(�);
=
r +�r2m+2 + �2m+2(�)):

Now choose " > 0 such that F (x; u; 0) � F (x̂; û; 0) for all (x; u) 2 X � U
with jx� x̂j < ".
Choose �0 = 1 and choose an arbitrary �0

0 > 0. Then there exists a �(1) =
�1(�

0

0) 2< 0; 1 > such that for all � 2< 0; �(1) > :

(i) j(x̂+ �x+ r(�))� x̂j < "

(ii) 2m+1 = 1� �(�0+2m�0

0)� �0(�)� 2m�00(�)�
P2m

i=1 �i(�) 2 < 0; 1 >

(iii) i = ��0

0 + �00(�) + �i(�) 2< 0; 1 > 8i 2 f1; : : : ; 2mg

(iv) 2m+2 = ��0 + �0(�) 2< 0; 1 >

By assumption (2.1)(v) it follows that for all � 2< 0; �(1) > the following
element lies in �(epi F (x̂+ �x + r(�))):

P2m+2
i=1 iti

It is readily veri�ed that its Y -coordinate is 0: this is essentially the �rst
component of the vector equation (1).
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Using the local minimality of (x̂; û) it follows that the second coordinate of
this element is � 0. Now divide this second coordinate by � and take the
limit � # 0:

r2m+1 + �0

0

2mX

i=1

(~ri � r̂)+
=
r� 0:

We recall that r2m+1 = ��0

0�r � r and that �0

0 > 0 is arbitrary.

Taking the limit �0

0 # 0 one gets
=
r� r. This concludes the proof of step 2. 2

Step 3. The theorem holds under the regularity condition.

Proof of step 3. Let i be the natural projection from Y �R to Y �R=S. We
begin by proving that i(C) and i(0� < �1; 0 >) are disjoint convex subsets
of Y � R=S. The convexity statement follows from assumption (2.1)(v).
To prove disjointness, we argue by contradiction. Assume i(C) and i(0� <

�1; 0 >) are not disjoint. Then there exist (y;
=
r) 2 C; r < 0; (y; r) 2 S with

(y;
=
r) = (0; r) + (y; r). Therefore

=
r< r. On the other hand, by step 2,

=
r� r.

This is the required contradiction. We apply to i(C) and i(0� < �1; 0 >)
the well-known fact that in a �nite dimensional vectorspace two disjoint
convex sets can be separated by a hyperplane. It follows that there is a
nontrivial linear function � on Y � R=S such that �(i(c)) � �(i(0; r)) for
all c 2 C and all r < 0. Taking the limit r " 0 we get �(i(c)) � 0 for
all c 2 C. Now we consider the nontrivial continuous linear function � on
Y � R de�ned by � = �oi. For each s 2 S one has �(s) = �(i(s)) =
�(0) = 0. Moreover for each c 2 C one has �(c) = �(i(c)) � 0. Therefore
the condition of Fermat-Lagrange holds for F and (x̂; û) with multiplier �.
We write � = (�; �0) with � 2 Y � and �0 2 R. To prove �0 > 0 we argue
by contradiction. Assume �0 = 0. Take any y 2 Y . By the regularity
condition there exist " > 0; (c1; c2) 2 C; (s1; s2) 2 S and t 2 R such that
("y; 0) + (s1; s2) + (0; t) = (c1; c2). Applying � we get - using �(s) = 0 - that
"�(y) = �(c1) � 0, so �(y) � 0. As y 2 Y is arbitrary and � 6= 0 we get a
contradiction. 2
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