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Abstract

Stylized facts show that the average growth rates of US per capita consumption

and income di�er in recession and expansion periods. Since a linear combination

of such series does not have to be a constant mean process, standard cointegration

analysis between the variables, to examine the permanent income hypothesis, may

not be valid. To model the changing growth rates in both series, we introduce a

multivariate Markov trend model, which allows for di�erent growth rates in con-

sumption and income during expansions and recessions. The deviations from the

multivariate Markov trend are modelled by a vector autoregressive model. Bayes

estimates of this model are obtained using Markov chain Monte Carlo methods.

The empirical results suggest that there exist a cointegration relation between US

per capita disposable income and consumption, after correction for a multivariate

Markov trend.
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1 Introduction

The permanent income hypothesis implies that there exists a long run relation between

consumption and disposable income, see e.g. Hall (1978). If we translate this theoreti-

cal result to time series properties, it implies that a linear combination of consumption

and disposable income series has to be a stationary process. Since most studies on the

univariate properties of consumption and income series suggest that they are integrated

processes, see for instance Dickey and Fuller (1979), both series have to be cointegrated

for the permanent income hypothesis to hold. As a result, recent empirical research on

the permanent income hypothesis focuses on cointegration analysis between consumption

and income, see Campbell (1987) and Jin (1995) among others.

In these studies it is usually assumed that the logarithm of real income is a linear

process. However, Goodwin (1993), Potter (1995) and Peel and Speight (1998) among

others argue that the log of many real income series contain a nonlinear cycle. This

nonlinear cycle is often interpreted as the business cycle in real income. A popular model

to describe the business cycle in time series is the Markov switching model of Hamilton

(1989). This model allows for di�erent average growth rates in income during expansion

and recession periods, where the transitions between expansions and recessions and vice

versa are modeled by an unobserved �rst-order Markov process. We will refer to the

trend that models this speci�c behavior as a Markov trend. Hall et al. (1997) consider

the permanent income hypothesis, while they assume that real income contains a Markov

trend. They show that in that case the di�erence between log consumption and log real

income is a�ected by changes in the mean, caused by the changes in the growth rate of the

real income series. The di�erence between the log consumption and income series is not a

constant mean process and standard cointegration analysis in linear vector autoregressive

models may indicate incorrectly the absence of cointegration.

In this paper, we analyze the long run relationship between quarterly seasonally ad-

justed aggregate consumption and disposable income for the United States, where we

allow for the possibility of a Markov trend in the income series. Our paper di�ers from

previous studies in several ways. We consider a full system cointegration analysis. Coin-

tegration is tested in a vector autoregression, which models the deviation of log per capita
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consumption and income from a multivariate Markov trend. This di�ers from Hall et al.

(1997), who consider a single equation analysis and use an ad hoc procedure for cointegra-

tion analysis. Our model is a multivariate generalization of Hamilton's (1989) model and

nests the theoretical results in Hall et al. (1997). Furthermore, the model allows that the

growth rate of consumption may be di�erent than the growth rate in income in each stage

of the business cycle as suggested by a simple stylized facts analysis. Hence, the analysis

for the presence of a cointegration relation between the consumption and income series

is done, while we allow for di�erent growth rates in expansions and recession periods via

the multivariate Markov trend. Finally, we use a Bayesian point of view to analyze the

presence of a stable long run relation between per capita consumption and income. We

use Markov chain Monte Carlo methods to evaluate posterior distributions and construct

Bayes factors to determine the cointegration rank. This Bayesian cointegration analysis

is based on Kleibergen and Paap (1998).

The outline of this paper is as follows. In Section 2 we give a short review of the

permanent income hypothesis in case income contains a Markov trend. In Section 3 we

discuss some stylized facts of US per capita income and consumption series. In Section 4

we propose the multivariate Markov trend model and discuss its interpretation. Section 5

deals with prior speci�cation. To obtain posterior results, we propose in Section 6 a

Markov chain Monte Carlo algorithm to sample from the posterior distribution. Section 7

deals with Bayes factors to determine the cointegration rank. In Section 8 we apply our

multivariate Markov model on the US series and relate the posterior results to suggestions

made by economic theory and the stylized facts analysis. We conclude in Section 9.

2 Permanent Income Hypothesis and a Markov Trend

The permanent income hypothesis states that current aggregate consumption ct can be

written as

ct =
r

1 + r

1X
j=0

1

(1 + r)j
E[yt+jj
t]; (1)

where yt is real disposable income, r is the interest rate and 
t denotes the information

set that is available to economic agents at time t. Straightforward algebra shows that (1)
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is the forward solution of the following expectational di�erence equation

ct =
r

1 + r
E[ytj
t] +

1

1 + r
E[ct+1j
t]: (2)

In most cases one assumes that the logarithm of real income is a random walk process.

This assumption and (2) imply the existence of a stationary relation between current log

consumption and income, see for instance Campbell (1987). We will however proceed

in a similar way as Hall et al. (1997), who assume that the log of real income contains

a Markov trend as suggested by Hamilton (1989). The Markov trend is a stochastic

segmented trend with two slopes, which model the di�erent growth rates in the stages of

the business cycle. The direction of the slope in every period depends on the value of an

unobserved �rst-order two-state Markov process. In other words, the logarithm of real

income is written as

ln(yt) = nt + zt; (3)

where nt is a so-called univariate Markov trend and zt models the deviation from the

trend. The Markov trend nt is de�ned as

nt = nt�1 + 0 + 1st; (4)

where 0 and 1 are parameters and st is a binary random variable, which follows an

unobserved �rst-order Markov process with transition probabilities

Pr[st = 0jst�1 = 0] = p; Pr[st = 1jst�1 = 0] = 1� p;
Pr[st = 1jst�1 = 1] = q; Pr[st = 0jst�1 = 1] = 1� q:

(5)

The deviations from the trend are usually assumed to be an integrated autoregressive

[AR] model, see Hamilton (1989). Here we assume for simplicity that zt is a random walk

process

zt = zt�1 + �t; (6)

where �t � NID(0; �2) such that the growth rate in real income at time t equals 0 +

1st + �t.
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As Hall et al. (1997) show equations (2) and (3) with (4) imply that for st = 0,

ct = e�0yt and that for st = 1 we have the relation ct = e�0+�1yt with

�0 = ln

�
r + qe�0E0 + (1� q)e�0+�1E1

1 + r

�

�0 + �1 = ln

�
r + (1� p)e�0E0 + pe�0+�1E1

1 + r

�
;

(7)

and where E0 = e0+
1

2
� and E1 = e0+1+

1

2
�. As st is an unobserved process, we have the

following relation between log consumption and log income

ln(ct) = �0 + �1st + ln(yt); (8)

where �0 and �1 follow from the solution of (7)

�0 = ln

�
r(1 + (1� p� q)(1 + r)�1E1)

(1 + r � qE0 � pE1)� (1 + r)�1(1� p� q)E0E1

�

�1 = ln

�
(1 + r) + (1� p� q)E0

(1 + r) + (1� p� q)E1

�
:

(9)

The consumption-income relation (8) implies that the log of consumption can be

written as

ln(ct) = nt + �0 + �1st + zt; (10)

where nt and zt are de�ned in (4) and (6), respectively. Equation (10) shows that log

consumption has the same Markov trend as log income and hence the growth rates of

consumption and income are the same during expansions and recessions. However, the

di�erence between log consumption and income, given by �0 + �1st, is di�erent during

expansions and recessions, see also (8).

In Section 4 we propose a multivariate Markov trend model, which allows us to test

the validity of the permanent income hypothesis, when the log of real income contains

a Markov trend. Since the economic theory in this section may be too simplistic in

describing reality, we allow for a more exible structure than the theory suggests. This

exible structure will be based on a simple stylized facts analysis of the US per capita

income and consumption series in the next section.
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Figure 1: The logarithm of US per capita consumption
and income, 1957.1{1992.4.

3 Stylized Facts

Figure 1 shows a plot of the logarithm of quarterly observed seasonally adjusted per capita

real disposable income and private consumption of the United States, 1957.1{1992.4. The

series are obtained from Citibase. Both series are increasing over the sample period with

short periods of decline, for instance in the middle and the end of the 1970s. These periods

of decline are more pronounced in the income series than in the consumption series but

seem to occur roughly simultaneously. The average quarterly growth rate of the income

series is 0.38% per quarter. For the consumption series the average quarterly growth rates

equals 0.41%. A naive likelihood ratio [LR] test statistic for equal average growth rates is

not signi�cant at the 5% level1, which indicates that the growth rates in both series are

roughly the same.

To analyze the e�ect of the business cycle on real per capita income and consumption

we split the sample in two parts. The �rst part corresponds to quarters which are labelled

as a recession according to the NBER peaks and troughs, see the �nal two columns of

1The LR test for equal growth rates is based on the assumption that the growth rates of per capita
income and consumption are bivariate normally distributed with non-zero mean and a general covariance
matrix. The test is naive since we do not correct for serial correlation in the growth rates.
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Figure 2: Di�erence between log US per capita income
and consumption, 1957.I{1992.IV.

Table 1. The average quarterly growth rates of per capita income during recessions

equals �1:25%, while for consumption the average growth rate equals �0:34%. The naive
classical LR test statistic for equal quarterly growth rates in per capita income during

recessions is signi�cant at the 5% level and hence it suggest di�erent growth rates in per

capita consumption and income during recessions. The second part contains quarters,

which corresponds to expansions. During expansions, the average quarterly growth rate

in per capita income is 0.71%, while the average quarterly growth rate in per capita

consumption is 0.56%. Again, the naive LR classical test statistic for equal quarterly

growth rates is signi�cant at the 5% level and hence the growth rates during expansion

periods seem to be di�erent.

The di�erences in the average growth rates in the consumption and income series in

recessions and expansions may have consequences for analyzing the permanent income

hypothesis. A simple cointegration analysis in a linear (vector) autoregressive model

as for instance in Jin (1995) may lead to the wrong conclusion. If the growth rates in

both series are di�erent in both stages of the business cycle it is unlikely that a linear

combination of the two series has a constant mean. To make this more clear we consider

in Figure 2 the di�erence between the logarithm of per capita consumption and income.

The graph shows that the mean of this di�erence is not constant over time but displays a
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more or less changing regime pattern. This switching patterns seems to coincide with the

business cycle. The mean of the di�erence between per capita consumption and income

during expansions equals �0:22. During recessions it is 0:006 larger. A naive classical

F -test statistic for equal means during recessions and expansions equals turns out to be

1.60, which is not signi�cant at the 5% level2.

This result suggests that a switch in the constant of the consumption-income relation

(8) may not be relevant. Furthermore, relation (8) also implies that the growth rate in per

capita consumption and income during recessions and expansions have to be the same,

which contradicts our earlier test results. A consumption-income relation, which allows

for di�erent growth rates in consumption and income during expansions and recessions is

given by

ln(ct) = �0 + �1st + �2 ln(yt): (11)

This implies that the trend in consumption equals �2nt, where nt is the trend in log

income de�ned in (4). If �2 < 0 the growth rate in consumption during expansions is

smaller than in income, while during recessions it is larger, which corresponds to our

earlier �ndings. Note that (11) corresponds to a nonlinear relation between consumption

and income ct = e�0+�1sty�2t .

To analyze the permanent income hypothesis for the US consumption and income se-

ries, we propose in the next section a multivariate Markov trend model. This multivariate

model is an extension of Hamilton's univariate model, see also Paap (1997, Chapters 5

and 7). The models contains a multivariate Markov trend, which allows for di�erent

growth rates in the consumption and income series during recessions and expansions.

The deviations from the Markov trend are modelled by a vector autoregressive model.

To analyze the presence of a consumption-income relation, we perform a cointegration

analysis on these deviations from the multivariate Markov trend. Additionally, we check

whether the mean of the possible cointegration relation is a�ected by changes in the

business cycle as suggested by the economic theory in Section 2.

2Note that this test is only valid if the di�erence between the logarithm of per capita consumption
and income is stationary.
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4 The Multivariate Markov Trend Model

In this section we propose the multivariate Markov trend model. In Section 4.1 we discuss

representation, while in Section 4.2 we deal with model interpretation. In Section 4.3 we

derive the likelihood function of the model.

4.1 Representation

Let fYtgTt=1 denote a 2-dimensional time series containing the log of the per capita con-

sumption and income series. Assume that Yt = (ln(ct) ln(yt))
0 can be decomposed as

Yt = Nt +Rt + Zt; (12)

where Nt represents a trend component, Rt allows for possible level shifts and Zt represents

the deviations from the trend component Nt, and Rt. The 2-dimensional trend component

Nt is a multivariate generalization of the univariate Markov trend (4)

Nt = Nt�1 + �0 + �1st; (13)

where �0 and �1 are (2 � 1) parameter vectors, st is an unobserved �rst-order Markov

process with transition probabilities given in (5). The value of the unobserved state

variable st determines the stage of the business cycle. If st = 0 the slope of the Markov

trend is �0, while for st = 1 the slope equals �0 + �1, see also Hamilton (1989). In this

paper we choose st = 1 to correspond to a recession and st = 0 to an expansion. The

values of the slopes of the trends in the individual series in Yt do not have to be the same

although the changes in the value of the slope occur at the same time. Note that di�erent

slope values for each series do not have to lead to divergent Markov trends in the long

run. The expected slope value of the Markov trend equals �0 +�1(1� p)=(2� p� q), see

e.g. Hamilton (1989). Hence, two series can have di�erent slopes values in each regimes

but with the same expected slope value. The backward solution of (13) equals

Nt = �0 (t� 1) + �1

tX
i=2

si +N1; (14)

where N1 denotes the initial value of the Markov trend, which is independent of t. Hence,

the Markov trend consists of a deterministic trend with slope �0 and a stochastic trendPt

i=2 si with impact vector �1.
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The component Rt models possible level shifts in the �rst element of Yt during reces-

sions

Rt =

�
�1
0

�
st = �st; (15)

such that � = (�1 0)
0. This term takes care of level shifts in the consumptions series during

recessions as suggested by the theory in Section 2, see also Krolzig (1997, Chapter 13) for

a similar discussion about the role of this term. At the end of this section we show how

�1 is related to the �1 parameter in (8).

The deviations from the Markov trend and Rt, i.e. Zt are assumed to be an vector

autoregressive process of order k [VAR(k)]

Zt =
kX

i=1

�iZt�i + "t; (16)

or using the lag polynomial �(L) = (I� �1L� � � � � �kL
k)

(I� �1L� � � � � �kL
k)Zt = "t; (17)

where "t is a 2-dimensional vector normally distributed process with zero mean and (2� 2)

positive de�nite symmetric covariance matrix �, and �i, i = 1; : : : ; k, are (2�2) parameter
matrices.

4.2 Model Interpretation

For our analysis it is convenient to write (16) in error correction form

�Zt = �Zt�1 +
k�1X
j=1

��j�Zt�j + "t; (18)

where � =
Pk

j=1�j � I2 and ��i = �Pk

j=i+1�j, i = 1; : : : ; k � 1. The characteristic

equation of the Zt process is given by

jI� �1z � � � � � �kz
kj = 0: (19)

If the roots of (19) are outside the unit circle the process Zt is stationary and hence
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Yt is a stationary process around a multivariate Markov trend. We can write

(�Yt � �0 � �1st � ��st) = �(Yt�1 � �0(t� 2)� �1

t�1X
i=2

si �N1 � �st�1) +

k�1X
i=1

��i(�Yt�i � �0 � �1st�i � ��st�i) + "t; (20)

with � a full rank matrix. The vectors �0 and �0 + �1 contain the slopes of the trend in

Yt during expansions and recessions, respectively. The initial value of the Markov trend

N1 is unknown and plays the role of an intercept parameter vector. The �1 parameter

models a level shift in the intercept of the Markov trend during recessions for the log

consumption series. If st = 0 the initial value of the Markov trend equals N1, while for

st = 1 this value equals N1 + �st.

Stochastic trends enter Zt and therefore Yt if at least one of the roots of (19) is on

the unit circle. Since �(1) = �� by de�nition, unit roots and therefore the presence of

stochastic trends imply rank reduction in �, see Johansen (1995) for an introduction into

cointegration.

We �rst consider the case of two unit roots in (19) with the remaining roots outside

the unit circle. In that case � = 0 and (20) becomes

(�Yt � �0 � �1st � ��st) =
k�1X
i=1

��i(�Yt�i � �0 � �1st�i � ��st�i) + "t: (21)

The �rst di�erence of Yt is a stationary VAR process with a stochastically changing mean

(= �0 + �1st). Note that the initial value of the Markov trend N1 drops out of the

model. If st = st�1, �Yt is not a�ected by Rt. However if st 6= st�1 the growth rate in

consumption is �1 larger or smaller than the growth rate in income, so a change in the

stage of the business cycle leads to a one time extra adjustment in the growth rate of per

capita consumption. Of course this adjustment is absent if �1 = 0.

If the series in Zt are cointegrated, only one of the roots equals unity. The series in Zt

contain a common stochastic trend. Since in that case the rank of � is one, we can write

� as �� 0, where � and � are (2 � 1) vectors. The vector � represents the cointegration

relation between the elements of Zt and hence � 0Zt is a stationary process. The � vector

contains the adjustment parameters. Since the number of free parameters in � and � is
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larger than in � under rank reduction, the parameters in � or � have to be restricted to

become estimable. We choose here for the following restriction: � = (1 ��2)
0. Under the

cointegration speci�cation the model becomes

(�Yt � �0 � �1st � ��st) = �� 0(Yt�1 � �0(t� 2)� �1

t�1X
i=2

si �N1 � �st) +

k�1X
i=1

��i(�Yt�i � �0 � �1st�i � ��st�i) + "t: (22)

Under certain parameter restrictions the cointegration relation � 0Yt = � 0(Nt + Rt + Zt)

corresponds to the consumption-income relations given in (8) and (11). For � 0�0 = � 0�1 =

0, �0 = � 0N1 and �1 = � 0� we obtain the relation (11). The extra condition �2 = 1 leads

to relation (8). Finally note that the restriction � 0�1 = 0 removes the Markov trend from

the cointegration relation. Dwyer and Potter (1996) refer to this phenomenon as reduced

rank Markov trend cointegration. Note that in their model �1 = 0.

4.3 The Likelihood Function

To analyze the multivariate Markov trend model we derive the likelihood function. First,

we consider the likelihood function least restricted Markov trend stationary model (20)

conditional on the states st. The conditional density of Yt for this model given the past

and current states st = fs1; : : : ; stg and given the past observations Y t�1 = fY1; : : : ; Yt�1g
is given by

f(YtjY t�1; st;�0;�1; N1; �1;�;�; ��) =
1

(
p
2�)2

j�j� 1

2 exp(�1

2
"0t�

�1"t); (23)

where "t is given in (20) and �� = f��1; : : : ; ��k�1g. Hence the likelihood function for model
(20) conditional on the states sT and the �rst k initial observations Y k equals

L2(Y
T jY k; sT ;�2) = pN0;0 (1� p)N0;1 qN1;1 (1� q)N1;0

TY
t=k+1

f(YtjY t�1; st;�0;�1; N1;�;�; ��); (24)

where �2 = f�0;�1; N1; �1;�;�; ��; p; qg and where Ni;j denotes the number of transitions

from state i to state j. The unconditional likelihood function L2(Y
T jY k;�2) can be
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obtained by summing over all possible realizations of sT

L2(Y
T jY k;�2) =

X
s1

X
s2

� � �
X
sT

L2(Y
T jY k; sT ;�2): (25)

The unconditional likelihood function for the Markov trend model with one cointegration

relation (22) denoted by L1 and without cointegration (21) denoted by L2 follow directly

from (25)

L1(Y
T jY k;�1) = L2(Y

T jY k;�2)j�=��0

L0(Y
T jY k;�0) = L2(Y

T jY k;�2)j�=0
(26)

with �1 = f�0;�1; N1; �1;�; �; �2; ��; p; qg and �0 = f�0;�1; N1; �1;�; ��; p; qg. Note that
the subscript r on �r and Lr refer to the number of cointegration relations in Zt.

In the next section we discuss the prior distributions for the model parameters of the

multivariate Markov trend model presented in this section.

5 Prior Speci�cation

The multivariate Markov trend is non-linear in certain parameters. This phenomenon

often leads to local non-identi�cation for certain parameters in the model. For instance,

under rank reduction in �, the parameter N1 is not fully identi�ed. Specifying a di�use

prior on N1 implies that the conditional posterior of N1 given � is constant and non-

zero in the point of rank reduction. The integral over this conditional posterior in the

point of rank reduction is therefore in�nity, favoring rank reduction. To circumvent this

identi�cation problem we follow the prior speci�cation of Zivot (1994), see also Hoek

(1997). The prior distribution for N1 conditional on the �rst observation Y1 and � is

normal with mean Y1 and covariance �

N1jY1;� � N(Y1;�): (27)

For � we take a standard di�use prior

p(�) / j�j� 1

2 : (28)
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The prior distributions for the transition probabilities p and q are independent and uniform

on the unit interval (0; 1)

p(p) = I(0;1)

p(q) = I(0;1);
(29)

where I(0;1) represents an indicator function which is one on the interval (0,1) and zero

elsewhere. Under at priors for p and q special attention must be payed to the priors for �0

and �1. It is easy to show that under � = 0 the likelihood has the same value if we switch

the role of the states and change the values of �0, �1, �, p and q into �0 +�1, ��1, ��, q
and p respectively. This complicates proper posterior analysis if we specify uninformative

priors on �0 and �1. To circumvent this problem we have to de�ne priors for �0 and �1

on subspaces G0 and G1 which uniquely identify the regimes for all speci�cations of the

model,

p(�0) /
�

1 if �0 2 G0
0 elsewhere,

p(�1j�0) /
�

1 if �1 2 G1
0 elsewhere,

(30)

where G0 = f�0 2 R
2 j�0 > 0g and G1 = f�1 2 R

2 j�0 + �1 � 0g. Another option

to circumvent the identi�cation problem is to specify appropriate matrix normal prior

distributions for �0 and �1. Since we identify the two regimes by a prior on �0 and �1 we

may use an improper prior for �1

p(�1) / 1: (31)

For the autoregressive parameters of the model we also use at priors

p(��i) / 1; i = 1; : : : ; k � 1;

p(�) / 1:
(32)

The priors for � and �2 parameters follow directly from the prior for � and the following

decomposition

� = �� 0 + �?��
0
?; (33)

where � = (1 � �2)
0 and �? and �? are speci�ed such that �0?� = 0 with �0?�? = 1

and � 0?� = 0 with � 0?�? = 1, see Kleibergen and Paap (1998) for details. The scalar �
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models the deviation from the cointegration speci�cation and hence it can be used to test

for cointegration. If � = 0, cointegration occurs. Note that the row- and columnspace

of the matrix (�?��
0
?), which models the deviation from the cointegration speci�cation

�� 0, are spanned by the orthogonal complements of the vector of adjustment parameters

� and the cointegrating vector �, respectively.

Decomposition (33) is equal to a singular value decomposition on �,

� = USV 0 (34)

where U and V are (2�2) orthonormal matrices, S is an (2�2) diagonal matrix containing
the positive singular values of � (in decreasing order), see e.g. Magnus and Neudecker

(1988). If we write

U =

�
u11 v12
u21 u22

�
; S =

�
s11 0
0 s22

�
and V =

�
v11 v12
v21 v22

�
(35)

with uij; sij, vij, i = 1; 2, j = 1; 2 scalars, we obtain the following expressions for �, �

and �2

� = u11 s11 (v11 v21)
0

� = sign(u22v22)s22

�2 = �u21 u�111 ;
(36)

where sign(�) denotes the sign of the argument. The number of non-zero eigenvalues of

a matrix determines the rank of a matrix. The singular value decomposition (35) shows

that � is identi�ed through the smallest singular value of �, which ends up in s22. The

scalar � can be positive and negative in contrast to the singular value s22 which is always

positive.

Using the decomposition (33), the prior for � in (32) implies a joint prior for �, � and

�2 in the following way

p(�; �; �2) / p(�)j�=��0+�?��
0

?
jJ(�; �; �2)j; (37)

where jJ(�; �; �2)j is the Jacobian of the transformation from � to (�; �; �2). The deriva-

tion and expression of this Jacobian is given in Appendix A. Now, the joint prior for �

and �2 in case of cointegration (� = 0) is simply the prior (37) evaluated in � = 0 or

p(�; �2) / p(�; �; �2)j�=0
/ p(�)j�=��0jJ(�; �; �2)j�=0:

(38)
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The joint priors for the Markov trend models with di�erent number of unit roots

follows from the marginal priors in this section. The joint prior for the Markov trend

stationary model (20) p2(�2) is given by the product of (27){(32). The prior for the

Markov trend model with one cointegration relation (22) p1(�1) is the product of (27){

(31) and (38), while the prior for the model without cointegration (21) p0(�0) is simply

the product of (27){(31).

6 Posterior Distributions

The posterior distributions for the model parameters of the multivariate Markov trend

models is proportional to the product of the priors pr(�r) and the unconditional likelihood

functions Lr(Y
T jY k;�r), r = 0; 1; 2. These posterior distributions are too complicated to

derive analytical posterior results. As Albert and Chib (1993), McCulloch and Tsay (1994)

and Chib (1996) demonstrate, the Gibbs sampling algorithm of Geman and Geman (1984)

is very useful tool for the computation of posterior results for models with unobserved

states. The state variables fstgTt=1 can be treated as unknown parameters and simulated

alongside the model parameters. This technique is known as data augmentation, see

Tanner and Wong (1987).

The Gibbs sampler is an iterative algorithm, where one consecutively samples from the

full conditional posterior distribution of the model parameters. This produces a Markov

chain, which converges under mild conditions. The in this way obtained draws can be

seen as a sample from the posterior distribution. For an introduction and details about

the Gibbs sampling algorithm we refer to Smith and Roberts (1993) and Tierney (1994).

In Appendix B we derive the full conditional posterior distributions which are necessary

in the Gibbs sampler. We focus on the most general Markov trend stationary model (20).

The full conditional posterior distributions of the other models can be derived in a similar

way. Unfortunately, the full conditional distributions of the � and the �2 parameters

are not of a known type. To sample these parameters we need to build in a Metropolis-

Hasting step in the Gibbs sampler, see also Chib and Greenberg (1995) for a discussion

about introducing a Metropolis-Hasting step in a Gibbs sampler.
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7 Determining the Cointegration Rank

The analysis of the determination of the cointegration rank starts with assigning prior

probabilities to every possible rank of �

Pr[rank = r]; r = 0; 1; 2; (39)

which de�nes prior probabilities to the number of cointegration relations r. These prior

probabilities imply the following prior odds ratios [PROR]

PROR(rj2) = Pr[rank = r]

Pr[rank = 2]
; r = 0; 1; 2: (40)

The Bayes factor to compare rank r with rank 2 equals

BF(rj2) =
R Lr(Y

T jY k;�r) pr(�r) d�rR L2(Y T jY k;�2) p2(�2) d�2

; r = 0; 1 (41)

where Lr(Y
T jY k;�r) and pr(�r) denote the unconditional likelihood function and the

joint prior of the model with rank r. The posterior odds ratios to compare rank r with

rank 2 equals prior odds ratio times the Bayes factor, POR(rj2) = PROR(rj2)�BF(rj2),
and the posterior probabilities for every rank are simply

Pr[rank = rjY T ] =
POR(rjn)P2
i=0 POR(ij2)

; r = 0; 1; 2: (42)

The Bayes factors (41) are in fact Bayes factors for � = 0 and � = 0. They can be

computed using the Savage-Dickey density ratio of Dickey (1971), which states that the

Bayes factor for � = 0 (or � = 0) equals the ratio of the marginal posterior density and

the marginal prior density of � (�), both evaluated in � = 0 (� = 0)

BF(1j2) = p(�jY T )j�=0
p(�)j�=0

BF(0j2) = p(�jY T )j�=0
p(�)j�=0 :

(43)

This means that we need the marginal posterior densities of � and � to compute this

Savage-Dickey density ratio. The marginal posterior density of � can be computed di-

rectly from the Gibbs output by averaging the full conditional posterior distribution of �

in the point 0 over the sampled model parameters, see Gelfand and Smith (1990). This
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trick cannot be used for �, since the full conditional distribution of � is of an unknown

type. To compute the height of the marginal posterior of � we may use a kernel esti-

mator on simulated � values, see e.g. Silverman (1986). Another possibility is to use

an approximation of the full conditional posterior of � in combination with importance

weights, see Chen (1994). Kleibergen and Paap (1998) argue that the density function

g(�j�2nf�g; Y T ) de�ned in (64) is a good approximation. This results in the following

expression to compute the marginal posterior height in � = 0

p(�jY T )j�=0 � 1

N

NX
i=1

jJ(�i; �; �i
2)j�=0j

jJ(�i; �i; �i
2)j

g(�j�i
2nf�g; Y T )j�=0 (44)

where N denotes the number of simulations and � in �2 is written as �� 0 + �?��
0
?.

As we have speci�ed di�use priors for � and � the height of the marginal prior in

� = 0 and � = 0 is not de�ned. The Bayes factor is therefore not de�ned in case of

di�use priors. The experiments in Kleibergen and Paap (1998) however show, that a

Bayesian cointegration analysis with a di�use prior speci�cation on � works �ne if one

replaces the marginal prior height by a penalty function. They suggest to replace the

prior height by the factor (2�)�
1

2
(2�r)2 , which leads to a Bayes factor that corresponds to

the posterior information criterion [PIC] of Phillips and Ploberger (1994). We will opt

for the same solution in this paper.

8 US Consumption and Income

In this section we analyze the presence of a long run relation between the US per capita

consumption and income series considered in Section 3. We �rst start in Section 8.1 with

a simple analysis of cointegration between the two series in a vector autoregression with

a linear deterministic trend to illustrate the e�ects of neglecting a Markov trend in the

series. In Section 8.2 we analyze the presence of a long run relation between consumption

and income using the multivariate Markov trend model speci�cation of Section 4.

8.1 A VAR model without Markov Trend

If we restrict �1 and �1 in the Markov trend model (20) to zero, we end up with a vector

autoregression for Yt with only a linear deterministic trend. In this subsection we analyze
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the presence of a cointegration relation between US per capita consumption and income

in this vector autoregression for Yt = 100 � (ln(ct); ln(yt))
0. The priors for the model

parameters of the linear VAR are given by (27), (28) and (32). For �0 we take a at prior:

p(�0) / 1. Under this prior speci�cation the posterior means of the model parameters

with no cointegration imposed are given by

Yt = Nt + Zt;

Nt = �

0
B@

462:3
(0.7)

438:7
(1.1)

1
CA+

0
B@

0:43
(0.07)

0:40
(0.09)

1
CA (t� 1)

�Zt =

0
B@

0:07 �0:06
(0.04) (0.03)

0:20 �0:16
(0.07) (0.05)

1
CAZt�1 + "t; with � =

0
B@

0:50 0:53
(0.06) (0.08)

0:53 1:34
(0.08) (0.16)

1
CA :

(45)

where posterior standard deviations appear in parentheses. The posterior means of the

slopes of the deterministic trends in the consumption and income series are 0.43% and

0.40% respectively. They di�er only 0.02% from the average quarterly growth rates re-

ported in Section 3, which are well within the two posterior standard deviation regions

around the posterior mean.

For the analysis of the presence of a cointegration relation between the two series, we

assign equal probabilities to the possible cointegration ranks, i.e. Pr[rank = r] = 1
3
for

r = 0; 1; 2. The prior for � and �2 for the cointegration speci�cation (rank=1) is given by

(38). Since we have speci�ed a di�use prior for �, the Bayes factors for rank reduction are

not de�ned. Therefore, we consider PIC based Bayes factors for � = 0 and � = 0 in the

decomposition (33), where we replace the prior height by the penalty function (2�)�
1

2
(2�r)2

as suggested by Kleibergen and Paap (1998). This leads to the following Bayes factors

and posterior probabilities:

rank=r ln(BF(rj2)) Pr[rank = rjY T ]

0 10.10 0.99
1 4.90 0.01
2 0.00 0.00

The results show that a model with rank 0 or rank 1 is preferred to a model with full

rank. The Bayes factor to compare the model with rank 0 versus the model with rank
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1 equals ln(BF(0j1)) = 10:10� 4:90 = 5:20 such that the model without cointegration is

preferred. The Bayes factors lead to assigning 99% posterior probability to the model with

no cointegration relation. Hence, there is no evidence for a long run equilibrium between

US per capita consumption and income in a VAR model with only a deterministic trend3.

8.2 A Multivariate Markov Trend Model

The VAR model with a deterministic trend assumes that the quarterly growth rates of

consumption and income are constant over time. However, the stylized facts suggest that

the long run average quarterly growth rates are roughly the same, but that there may be

di�erent growth rates in both series during expansions and recessions. To correct for pos-

sible di�erent growth rates in consumption and income during recessions and expansions,

we consider the Markov trend model (20). The prior for the model parameters is given

by (27){(32). To identify the regimes we impose the restriction �0 > 0 and �0+�1 < 0 as

suggested in Section 5. The posterior means of the model parameters of the multivariate

Markov trend model with no cointegration imposed are given by

Yt = Nt +Rt + Zt;

Nt = �

0
B@

462:0
(0.6)

439:1
(0.8)

1
CA+

0
B@

0:73
(0.14)

0:98
(0.15)

1
CA (t� 1)�

0
B@

0:82
(0.16)

1:61
(0.23)

1
CA

tX
i=2

si;

Rt =

0
@ 0:16

(0.25)

0

1
A st;

�Zt =

0
B@

0:26 �0:23
(0.12) (0.08)

0:63 �0:51
(0.26) (0.17)

1
CAZt�1 + "t; with � =

0
B@

0:40 0:27
(0.06) (0.09)

0:27 0:67
(0.09) (0.16)

1
CA ;

(46)

where posterior standard deviations are in parentheses. The posterior means of the tran-

sition probabilities equal

p = 0:86 (0:07) and q = 0:76 (0:09).

The posterior mean of the per capita growth rates of disposable income are 0.98%

during expansions and �0:63% (0:98 � 1:61) during recessions. For the consumption

3Also the standard Johansen trace tests for rank reduction do not indicate the presence of a cointe-
gration relation between the two series.
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series the growth rates are 0.73% and 0.09% (0:73 � 0:82), respectively. The expected

slope of the Markov trend is given by �0 + �1(1 � p)=(2 � p � q). The posterior means

of this expected slope equals 0.42% for the consumption series and 0.39% for the income

series. Note that these slope values are almost the same as the posterior means of the

slope parameters of the deterministic trend in (45). Finally, note that the posterior mean

of the �1 parameter, which equals 0.16, lies within one posterior standard deviations from

zero.

Again, we perform a cointegration analysis but now we analyze the presence of a

cointegration relation in the deviations from a Markov trend instead of a deterministic

trend. We assign equal probabilities to the possible cointegration ranks, i.e. Pr[rank =

r] = 1
3
for r = 0; 1; 2. The prior for � and �2 for the cointegration speci�cation (rank=1)

is given by (38). Using decomposition (33) we compute Bayes factors for � = 0 and

� = 0, as in (43), where we replace the prior height by the penalty function (2�)�
1

2
(2�r)2

since we are dealing with an uninformative prior for �. This leads to the following Bayes

factors and posterior probabilities:

rank=r ln(BF(rj2)) Pr[rank = rjY T ]

0 2.72 0.13
1 4.62 0.86
2 0.00 0.01

Again, rank reduction is chosen above a full rank model. However, the Bayes fac-

tor to compare a multivariate Markov trend model with rank 1 versus rank 0 equals

ln(BF(0j1)) = 2:72� 4:62 = �1:90 and hence the model with one cointegration relation

is preferred. The posterior probabilities assign 86% probability to the model with one

cointegration relation.

Cointegration Speci�cation

The Bayes factors suggest that the multivariate Markov trend model with one cointegra-

tion relation (22) is suitable to model the logarithm of US per capita consumption and

income. The prior for the model parameters is given by (27){(31) and (38). The posterior
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means of the model parameters based on this prior are given by

Yt = Nt + Zt;

Nt = �

0
B@

462:1
(0.6)

439:1
(0.8)

1
CA +

0
B@

0:68
(0.18)

0:97
(0.21)

1
CA (t� 1)�

0
B@

0:78
(0.18)

1:65
(0.21)

1
CA

tX
i=2

si;

Rt =

0
@ 0:11

(0.20)

0

1
A st;

�Zt =

0
B@

0:31
(0.10)

0:68
(0.21)

1
CA
�

1 �0:84
(0.19)

�
Zt�1 + "t; with � =

0
B@

0:41 0:26
(0.06) (0.07)

0:26 0:64
(0.07) (0.12)

1
CA ;

(47)

where again posterior standard deviations appear in parentheses. The posterior means of

the transition probabilities equal

p = 0:86 (0:05) and q = 0:76 (0:09)

The posterior results are obtained by including a Metropolis-Hasting step in the Gibbs

sampler to sample � and �2, see Appendix B. The candidate draw for � and �2 was

accepted in 80% of the iterations.

The posterior mean of cointegration relation parameter �2 = �0:84 does not di�er

more than two posterior standard deviations from �1. In fact, a PIC based Bayes factor

for �2 = �1 equals 1.69 and hence the consumption-income relation (8) may be valid. The
Bayes factor is computed using the Savage-Dickey density ratio, where we use the 1=

p
2�

as a penalty function, since we have used an uninformative prior for �2, see also Section 7

for a similar approach. The adjustment parameters � are both positive, which indicates

that there is no adjustment towards the equilibrium for the consumption equation. This

phenomenon is not due to the non-linear Markov trend in the model, since unreported

results show that this also arises in a simple VAR model with and even without a deter-

ministic trend instead of a Markov trend, see also (45). Note that this does not imply that

the series move away from the equilibrium, since the adjustment of income towards the

equilibrium is larger than the non-adjustment in consumption, see also Johansen (1995,

p. 39{42).

The posterior mean of the �1 parameter equals 0.11 with a posterior standard deviation

of 0.21. A PIC based Bayes factor for �1 = 0 equals 3.93 and hence it is very likely that �1
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equals 0. The posterior means of the quarterly growth rates of the income series are 0.97%

during an expansion regime and �0:68% (= 0:97�1:65) during a contraction regime. For

the consumption series we get 0.68% and �0:10% (= 0:68 � 0:78), respectively. Hence,

during recessions the negative growth rate in consumption is smaller than the negative

growth rate in income. To correct for this di�erence in the growth rates, the positive

growth rate in income has to be larger than the positive growth rate in consumption during

expansions. The expected slope of the Markov trend is given by �0+�1(1�p)=(2�p�q).

The posterior means of this expected slope equals 0.40% for the consumption series and

0.37% for the income series and hence the expected long run slopes in both series are

roughly the same. Reduced rank Markov trend cointegration is not likely since based on

the posterior mean of � 0�1 equals 0:59 with a relatively small posterior standard deviation.

Hence, the existence of a consumption-income (8) which requires that both � 0�1 and �
0�0

equal 0 is not likely. On the other hand the results suggest that during recession periods

there is less decline in consumption than in income, which is compensated in the expansion

periods where income grows faster than consumption.

Finally, we analyze how the estimated Markov trend relates to the NBER business

cycle. The posterior mean of the probability of staying in the expansion regime is 0.86,

which is larger than the posterior mean of the probability of staying in a recession 0.76.

The posterior probability that p is larger than q is 0.92, which indicates the existence of an

asymmetric cycle. The posterior expectations of the states variables E[stjY T ] are shown

in Figure 3. Values of this expectation which are close to 1, correspond to recessionary

periods. Figure 4 shows the di�erence of the logarithm of US income and consumption.

The shaded areas correspond to the periods where the growth rate in consumption is larger

than the growth rate in income. In these periods the posterior mean of the growth rate for

the di�erence equals �0:78� 1:65 = 0:87%. The negative slope of 0.29% (= 0:69� 0:97)

in the other periods results from the larger positive slope of the Markov trend for the

income series than for the consumption series. As we already have discussed the posterior

mean of the expected slopes of the Markov trend is 0.37% for the income series and 0.40%

for the consumption series. Hence, the posterior mean of the unconditional expectation

of the slope of the Markov trend in the (1;�1)-cointegration relation is about �0:03%,
which is almost zero.
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Figure 3: Posterior expectations of the state variables
E[stjY T ].
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Figure 4: Di�erence between log US per capita con-
sumption and income. The shaded areas correspond to
periods where E[stjY T ] > 0:5.
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Table 1: Peaks and troughs based on the
posterior expectations of the states1.

US NBER
peak trough peak trough

{ 1958.2 1957.3 1958.2
1960.1 1960.4 1960.2 1961.1
1966.1 1967.4
1968.2 1970.4 1969.4 1970.4
1974.2 1975.1 1973.4 1975.1
1979.4 1980.2 1980.1 1980.3
1981.3 1983.1 1981.3 1982.4
1984.3 1987.1
1990.1 1991.1 1990.3 1991.1

1 A recession is de�ned by 2 consecutive
quarters for which E[stjY

T ] > 0:5. A peak
corresponds with the last expansion obser-
vation before a recession and a trough with
the last observation in a recession.

Table 1 shows the estimated peaks and troughs based on the posterior expectation

of the states variables together with the o�cial NBER peaks and troughs. We de�ne a

recession by 2 consecutive quarters for which E[stjY T ] > 0:5. A peak is de�ned by the last

expansion observation before a recession. A trough is de�ned by the last observation in a

recession. We see that the estimated turning points correspond very well with the o�cial

NBER peaks and troughs. However, we detect two extra recessionary periods, which do

not correspond to o�cial reported recessions. Note that the consumption income analysis

in this paper is based on per capita disposable income. If we look at the government

purchases on goods and services, which are used to create the disposable income series,

we see that government expenses increase during recessions resulting in an extra decrease

in disposable income. However, there was also a large increase in government expenses

during the two periods which are incorrectly reported as recession. This resulted in a

small decline or a smaller growth in disposable income during these two periods, which

explains the detection of the two extra recessions in our data.
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In summary, the multivariate Markov trend model provides a good description for the

US per capita income and consumption series. The multivariate Markov trend captures

the di�erent growth rates in both series during recession and expansion periods. After

detrending with the Markov trend we detect a stationary linear combination between

per capita income and consumption. This cointegration relation is not found if we use a

regular deterministic trend instead of a Markov trend for detrending.

9 Conclusion

In this paper we have proposed a multivariate Markov trend model to analyze the possible

existence of a long run relation between per capita consumption and income of the United

States. The model speci�cation has been based on suggestions by simple economic theory

and a simple stylized facts analysis on both series. The model contains a multivariate

Markov trend speci�cation, which allows for di�erent growth rates during recessions and

expansions. The deviations from the multivariate Markov trend are modelled by a vector

autoregressive model. To analyze the US series with the multivariate Markov trend model,

we have chosen for a Bayesian approach. Bayes factors are proposed to analyze the

presence of a cointegration relation in the deviations of the series from the multivariate

Markov trend.

The posterior results suggest that there exist a stationary linear relation between log

per capita consumption and income after correcting for a Markov trend. The Markov

trend models the di�erent growth rates in both series during recessions and expansions.

The negative growth rate in consumption is smaller in absolute value than the negative

growth rate in income during recessions. To compensate this di�erence the growth rate

in income is larger than the growth rate in consumption during expansion periods. If we

replace the Markov trend by a deterministic linear trend posterior results do not indicate

the presence of a stationary linear relation between both series.

We end this conclusion with some suggestion for further research. The multivariate

Markov trend model we proposed in this paper is linear in deviation from the Markov

trend. Possible cointegrating vectors and adjustment parameters are not a�ected by

regime changes. We may however also allow that the adjustment parameters or the coin-
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tegrating vector have di�erent values over the business cycle. This implies a nonlinear

error correction mechanism in consumption and income, see also Peel (1992). It is then

even possible that the series are only cointegrated in expansions and not in recessions.

Testing for the presence of cointegration in the di�erent regimes may however be di�cult

since the number of observations for recessionary periods is usually very small. Further-

more, the dynamic properties of such models are not easy to derive, see Holst et al. (1994)

and Warne (1996). Finally, we may also consider alternative multivariate nonlinear mod-

els to analyze the consumption and income series, like threshold models, see e.g. Granger

and Ter�asvirta (1993).
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A Jacobian Transformation

In this appendix we derive the Jacobian of the transformation from � to (�; �; �2) for

a 2-dimensional vector autoregressive model. For larger dimensions, see Kleibergen and

Paap (1998). De�ne � = (�1; �2), where �1 and �2 are scalars and �2 = ��2=�1 such
that � = �1� with � = (1 � �2)

0. The derivation of the Jacobian of the complete

transformation from � to (�1; �2; �; �2) is for notional convenience split up in the Jacobian

of the transformation of � to (�1; �2; �; �2) and then the transformation of �2 to �2. Since

�? 2 �? we can write

� = �� 0 + �?��
0
?

= (� �?)

�
1 0
0 �

��
� 0

� 0?

�

=

�
1 �2=

p
1 + �22

��2 1=
p
1 + �22

��
�1 0
0 �

��
1 ��2

��2=
p
1 + �22 1=

p
1 + �22

�

= �1

�
1 ��2
��2 �2�2

�
+

�p
(1 + �22)(1 + �22)

� ��2�2 �2
��2 1

�
(48)

The derivatives of � with respect to �1, �2, � and �2 read

J1 =
@ vec(�)

@�1
=

0
BB@

1
��2
��2
�2�2

1
CCA

J2 =
@ vec(�)

@�2
=

0
BB@

0
��1
0

�1�2

1
CCA+

�p
(1 + �22)(1 + �22)

0
BB@
��2 + �22�2=(1 + �22)

�2�2=(1 + �22)
1� �22=(1 + �22)
��2=(1 + �22)

1
CCA

J3 =
@ vec(�)

@�
=

1p
(1 + �22)(1 + �22)

0
BB@
��2�2
��2
�2
1

1
CCA

J4 =
@ vec(�)

@�2
=

0
BB@

0
0

��1
�1�2

1
CCA+

�p
(1 + �22)(1 + �22)

0
BB@
��2 + �2�

2
2=(1 + �22)]

1� �22=(1 + �22)
��2�2=(1 + �22)
��2=(1 + �22)

1
CCA :

(49)

The Jacobian from �2 to �2 is simply

G =

���� @�2@�2

���� = � 1

�1
(50)
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Hence, the Jacobian for the total transformation equals

J(�; �; �2) = jJ1 J2 J3 J4j jGj: (51)

B Full Conditional Posterior Distributions

Full Conditional Posterior of the States

To sample the states, we need the full conditional posterior density of st, denoted by

p(stjs�t;�2; Y
T ), t = 1; : : : ; T , where s�t = sTnfstg. Since st follows a �rst-order Markov

process, it is easily seen that

p(stjs�t) / p(stjst�1) p(st+1jst); (52)

due to the Markov property. Following Albert and Chib (1993), we can write

p(stjs�t;�2; Y
T ) =

p(stjs�t;�2; Y
t) f(Yt+1; : : : ; YT jY t; s�t; st;�2)

f(Yt+1; : : : ; YT jY t; s�t;�2)

/ p(stjs�t;�2; Y
t) f(Yt+1; : : : ; YT jY t; s�t; st;�2): (53)

Using the rules of conditional probability, the �rst term of (53) can be simpli�ed as

p(stjs�t;�2; Y
t) / p(stjs�t;�2; Y

t�1) f(Yt; st+1; : : : ; sT jY t�1; st;�2)

/ p(stjst�1;�2) f(YtjY t�1; st;�2)

p(st+1jst;�2; Y
t) p(st+2; : : : ; sT jst+1;�2; Y

t)

/ p(stjst�1;�2) f(YtjY t�1; st;�2) p(st+1jst;�2); (54)

where we use the fact that fst+2; : : : ; sTg is independent of st given st+1. The second term
of (53) is proportional to

f(Yt+1; : : : ; YT jY t; st;�2) /
TY

i=t+1

f(YijY i�1; si;�2): (55)

Next, using (54) and (55) the full conditional distribution of st for t = k + 1; : : : ; T is

given by

p(stjs�t;�2; Y
T ) / p(stjst�1;�2) p(st+1jst;�2)

TY
i=t

f(YijY i�1; si;�2); (56)
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where f(YtjY t�1; st;�2) is de�ned in (23) and the constant of proportionality can be

obtained by summing over the two possible values of st. At time t = T the term

p(sT+1jsT ;�2) drops out. The �rst k states can be sampled from the full conditional

distribution

p(stjs�t;�2; Y
T ) / p(stjst�1;�2) p(st+1jst;�2)

TY
i=k+1

f(YijY i�1; si;�2); (57)

for t = 1; : : : ; k, where at time t = 1 the term p(stjst�1;�2) is replaced by the uncondi-

tional density p(s1j�2), which is a binomial density with probability (1� p)=(2� p� q).

As Albert and Chib (1993) show, sampling of the state variables is easier if � = 0.

Under this restriction only the �rst (k � 1) future conditional densities of Yt depend on

st instead of all future conditional densities. However, sampling is possible in the same

way: take the most recent value of sT and sample the states backward in time, one after

another, starting with sT . After each step, the t-th element of sT is replaced by its most

recent draw.

Full Conditional Posterior of p and q

From the conditional likelihood function (24) if follows that the full conditional posterior

densities of the transition parameters are given by

p(pjsT ;�2nfpg; Y T ) / pN0;0(1� p)N0;1

p(qjsT ;�2nfqg; Y T ) / qN1;1(1� q)N1;0 ;
(58)

where Ni;j again denotes the number of transitions from state i to state j. This implies

that the transition probabilities can be sampled from beta distributions.

Full Conditional Posterior of �

It is easy to see from the conditional likelihood (24) that the full conditional posterior of

� is proportional to

p(�jsT ;�2n�; Y T ) / j�j� 1

2
(T�k+2) exp(�1

2
tr(��1((Y1 �N1)(Y1 �N1)

0 +
TX

t=k+1

�t�
0
t))

(59)

and hence the covariance matrix � can be sampled from an inverted Wishart distribution,

see Zellner (1971, p. 395).
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Full Conditional Posterior of N1, �0 and �1

To derive the full conditional posterior distribution of N1, �0 and �1 we write (20) as

��
1

2�(L)Yt = ��
1

2�(L)(�0(t� 1) + �1

tX
i=2

si +N1) + ��
1

2 "t

= ��� 1

2

kX
j=1

�j(�0 �1 N1)

0
@ Lj(t� 1)

Lj
Pt

i=2 si
1

1
A + ��

1

2 "t;

(60)

where �0 = �I. Without the �j matrices, we have a multivariate regression model in the

parameters N1, �0 and �1 and the full conditional distribution would be matrix normal.

To reverse the order of �(L) and the parameters (�0 �0 N1), we apply the vec operator to

both sides of (60). Using the vec notation and the fact that vec(ABC) = (C 0
A)vec(B),

we can write (60) as a linear regression model and hence the full conditional distributions

of vec(N1), vec(�0) and vec(�1) are normal.

Full Conditional Posterior of �1

We write (20) as

��
1

2�(L)(Yt �Nt) = ��
1

2�(L)�Rt + ��
1

2 "t (61)

with �0 = �I. Applying the vec operator to both sides leads to a standard regression

model with regression parameter �1. The full conditional posterior of �1 is therefore

normal.

Full Conditional Posterior of � and ��

To sample from the full conditional posterior of the autoregressive parameters we use that

conditional on �0, �1, N1 and the states fstgTt=1, equation (20) can be seen as a multi-

variate regression model in the parameters � and ��. From Zellner (1971, chapter VIII)

if follows that the full conditional posterior distribution of the parameter matrices are

matrix normal. A draw from the full conditional distribution of � can be obtained by

performing a singular value decomposition on the sampled � and solving for � using (36).
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Sampling of � and �2

To derive the full conditional posterior distributions for � and �2 we rewrite (22) such

that conditional on ��, N1, �0, �1 and the states fsTgTt=1 it resembles a simple VAR(1)

model. Using Zt = Yt �Nt � Rt�1 we can write

�Zt �
k�1X
i=1

��i�Zt�i = �� 0Zt�1;+"t

�Z�t = �� 0Z�t�1 + "t;

(62)

where �Z�t = �Zt �
Pk�1

i=1
��i�Zt�i and Z�t�1 = Yt�1 � Nt�1 � Rt�1. Kleibergen and

Paap (1998) propose a Metropolis-Hasting algorithm to sample � and �2 in this simple

VAR model. Chib and Greenberg (1994, 1995) show that it is possible to build such

a Metropolis-Hasting algorithm into the Gibbs sampling procedure. The Metropolis-

Hasting algorithm step works as follows. First, draw in iteration i of the Gibbs sampler

�i from its full conditional posterior distribution, see above. Perform a singular value

decomposition on � and solve for �i, �i and �i
2. Now accept this draw of �i and �i

2 with

probability min
�

w(�i;�i;�i

2
)

w(�i�1;�i�1;�
i�1

2
)
; 1
�
, where i denotes the current draw, i � 1 the previous

draw and

w(�; �; �2) =
jJ(�; �; �2)j�=0j
jJ(�; �; �2)j g(�j�2nf�g; Y T )j�=0 (63)

where

g(�j�2nf�g; Y T ) = (2�)�
1

2 j�0?��1�?j
1

2 j� 0?(Z�0�1Z��1)�?j
1

2

exp(�1

2
tr((� 0?(Z

�0
�1Z

�
�1)�?)(�� ~�)(�0?�

�1�?)(�� ~�))) (64)

with

~� = (� 0?(Z
�0
�1Z

�
�1)�?)

�1� 0?Z
�0
�1(�Z

� � Z��1��
0)��1�?(�

0
?�

�1�?)
�1 (65)

and Z��1 = (Z�k : : : Z
�
T�1)

0, �Z� = (�Z�k+1 : : :�Z
�
T )
0. If the draw of �i and �i

2 is rejected,

one has to take the previous draw i.e. �i = �i�1 and �i
2 = �i�1

2 , see Kleibergen and Paap

(1998) for more details on this sampling algorithm.
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