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1 Introduction

This paper is devoted to stability analysis of optimal and approximate solutions of

combinatorial optimization problems of the following form:

(P ) : minf�(c; x) j x 2 Xg;

where c 2 IRn, x = (x1; x2; . . . ; xn) is a vector of 0/1 variables, �(c; x) is either of

the form
P

n

i=1 cixi or max1�i�nfcixig, and X � f0; 1gn is the set of feasible solutions,

which does not depend on the objective vector c.

Suppose that for a given vector c and a given � � 0, an �{optimal solution �x 2 X is

known, i.e.,

�(c; �x) � (1 + �)�(c; x) 8x 2 X:

Note that we view optimality as a special case of �{optimality. Also note that for � > 0,

the concept of �{optimality only makes sense if �(c; x) � 0 for all x 2 X, which is

guaranteed if c � 0.

We will investigate the situation in which for one or more variables xi, the objective

coe�cient may actually be di�erent from ci. Such components of the objective vector

are referred to as unstable. Without loss of generality we assume that the unstable

components correspond to the �rst w variables x1; x2; . . . ; xw. The remaining n � w

components of the objective vector are stable and remain equal to cw+1; cw+2; . . . ; cn.

This paper focusses on the calculation of the largest � � 0 for which �x remains �{

optimal if the unstable components change simultanously, but each one not more than

�. Hence, we are looking for � of maximum value such that

�(c+ �; �x) � (1 + �)�(c + �; x) 8x 2 X

for every � 2 IRn with jj�jj1 � � and, if the objective vector is required to be non{

negative, c + � � 0. In the literature this maximal value of � is called the stability

2



radius of the �{optimal solution �x. We refer to Sotskov, Leontev and Gordeev [5] for

an extensive survey on this and related concepts. A more recent survey, which focusses

on scheduling problems, is given by Sotskov, Wagelmans and Werner [6], who also

present an algorithm to compute the stability radius for min{sum problems, i.e., when

�(c; x) =
P

n

i=1 cixi. In general, the complexity of this algorithm is exponential, even

if (P ) itself is polynomially solvable.

In Ramaswamy and Chakravarti [4] and Van Hoesel and Wagelmans [7] it was shown

that for w = 1 the existence of a polynomial algorithm for calculating the stability

radius of an optimal solution implies a polynomial algorithm for problem (P ). In [7]

a similar implication was also proven for the case � > 0 when the objective function is

of the min{sum type. This means that, even for w = 1, it is unlikely that the stability

radius can be calculated in polynomial time if (P ) is NP{hard. On the other hand,

in [4] it was shown that if w = 1 and problem (P ) is polynomially solvable, then the

stability radius of an optimal solution can be calculated in polynomial time. It still was

an open question (see [6]) whether it is possible to generalize this result to arbitrary

values of w and � > 0.

In this paper, we will present an algorithm to compute the stability radius of an �{

optimal solution of min{sum problems. We also show how to compute the stability

radius of optimal solutions for min{max problems, i.e., when �(c; x) = max1�i�nfcixig.

Our algorithms require the solution of a polynomial number of instances of problem

(P ). In particular this means that, for the cases considered, we provide a positive

answer to the open question mentioned before. Furthermore, we will show that it

is possible to extend our results to the tolerance approach, which was proposed by

Wendell [8] in the context of linear programming.
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2 Calculating stability radii for min{sum prob-

lems

In this section we consider the case that �(c; x) =
P

n

i=1
cixi. To facilitate the exposi-

tion, we will �rst assume that the objective coe�cients are unrestricted in sign.

2.1 Unrestricted objective coe�cients

Suppose a problem instance with objective vector c is given and let �x be an �{optimal

solution. We want to determine the largest � � 0 such that

nX

i=1

(ci + �i)�xi � (1 + �)

nX

i=1

(ci + �i)xi (1)

for all x 2 X and every � 2 IRn with j�ij � � for all i = 1; 2; . . . ; w and �i = 0 for all

i = w + 1; w + 2; . . . ; n.

One can easily verify that if there exist an x 2 X which di�ers from �x in at least one of

the �rst w components, then the stability radius is �nite and an upper bound is given

by

�u = max
1�i�w

fjcijg+ (1 + �) �

nX

i=w+1

maxfci; 0g � (1 + �) �

nX

i=w+1

minfci; 0g:

Moreover, if all x 2 X have xi = �xi for i = 1; 2; . . . ; w, then the stability radius

is in�nite. Hence, it su�ces to look for the stability radius on the interval [0; �u].

Note that for any value of � in this interval, the objective coe�cients ci(1 + �) � �di,

i = 1; 2; . . . ; n, are polynomial in c and �.

Inequality (1) is equivalent to

wX

i=1

�i
�
�xi � (1 + �)xi

�
�

nX

i=1

ci
�
(1 + �)xi � �xi

�
: (2)
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Let us �rst consider this inequality for a �xed, but unknown x 2 X, and a �xed � � 0.

Then the right hand side is a constant and the inequality holds if and only if it holds

for those values of �i with j�ij � �, i = 1; 2 . . . ; w, which maximize the left hand side.

Consider an i 2 f1; 2 . . . ; wg and suppose �xi = 0, then the term �i
�
�xi � (1 + �)xi

�
is

equal to ��i(1 + �)xi, which is maximized at �i = ��, irrespective of the value of xi.

In this case, we de�ne di = 1 + �. Hence, the maximum value is equal to �dixi.

Now suppose �xi = 1 for some i 2 f1; 2 . . . ; wg. If xi = 0 then the term �i
�
�xi� (1+�)xi

�

is equal to �i, which is maximized at �i = �. If xi = 1 then the term �i
�
�xi � (1 + �)xi

�

is equal to �i(��), which is maximized at �i = ��. Therefore, we de�ne di = �1 + � in

this case. The maximum value is always equal to �+ �dixi.

For convenience, we also de�ne di = 0 for i = w+1; w+2; . . . ; n. Then we have derived

that (2) holds if and only if

�

wX

i=1

�xi +

nX

i=1

�dixi �

nX

i=1

ci
�
(1 + �)xi � �xi

�
:

This immediately implies the following result.

Theorem 2.1 The stability radius is the largest � � 0 for which

min
x2X

� nX

i=1

�
ci(1 + �)� �di

�
xi
	
�

nX

i=1

ci�xi + �

wX

i=1

�xi: (3)

The right hand side of (3) is a linear function of �. The left hand side is the value

function of a parametric version of problem (P ), where the objective coe�cients are

linear functions of �. Let us call this value function v(�). It is well{known (see, for

instance, Eisner and Severance [1] or Gus�eld [2]) that v(�) is a continuous, piecewise

linear and concave function of �.

Lemma 2.1 The number of linear pieces of v(�) on [0; �u] is at most w2.

Proof. Since the slope of v(�) is always equal to
P

n

i=1
�dixi for some x 2 X, it

follows from the de�nition of the values di, i = 1; 2; . . . ;m, that this slope takes on
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values in the set fk + m� j �w � k � w; maxfk; 1g � m � wg. Moreover, because

of concavity, the slope of v(�) is non{increasing. The bound on the number of linear

pieces now follows.

2

There exists a method (see [1]) to compute v(�) in O
�
B � R(jIj; �)

�
time, where B is

the number of linear pieces, jIj is the size of the problem instance with objective vector

c, and R(jIj; �) is the complexity of solving an instance of (P ) corresponding to any

value of � 2 [0; �u]. This complexity is a function of data which, as we have pointed

out before, depends polynomially on jIj and �. Once v(�) has been computed, it is

trivial to �nd the largest value of � for which this function is greater than or equal to

the linear function
P

n

i=1
ci�xi+ �

P
w

i=1
�xi. Hence, the stability radius can be calculated

in O
�
w2

�R(jIj; �)
�
time. This has the following important implication.

Theorem 2.2 The stability radius of an �{optimal solution can be computed in poly-

nomial time, if (P ) has a min{sum objective function and if it is polynomially solvable

for any objective vector.

Proof. The only observation that we need to make is that R(jIj; �) is polynomial in

the size of problem instances, which are in turn polynomial in jIj and �.

2

2.2 Non{negative objective coe�cients

Our approach can easily be extended to problems in which the objective vector is

required to be non{negative. Assume, without loss of generality, that c1 � c2 �

. . . � cw. Suppose that we consider only values of � in the interval [cj; cj+1] for some

j 2 f1; 2; . . . ; w � 1g. Then, for every i � j, �i may not be chosen smaller than

�ci. Therefore, for these values of i, if �xi = 0, the maximum value of the term

�i
�
�xi � (1 + �)xi

�
is now equal to (1 + �)ci. If �xi = 1, then the maximum value is
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equal to � if xi = 0, and equal to ci� if xi = 1. Hence, in this case, the maximum is

always equal to �� �xi+ ci�xi. This means that if the stability radius is an element of

[cj; cj+1], then it is the largest value of � in this interval for which

min
x2X

� X

1�i�j: �xi=1

�
ci + �

�
xi +

nX

i=j+1

�
ci(1 + �)� �di

�
xi
	
�

nX

i=1

ci�xi + �

wX

i=1

�xi: (4)

As before, the value function on the left hand side of (4) is piecewise linear and concave

on [cj; cj+1]. Note that for any �xed value of �, indeed a problem instance with non{

negative objective coe�cients results.

To �nd the stability radius, it is not necessary to construct the value function of every

interval [cj; cj+1], j = 1; 2; . . . ; w � 1. Note that if (4) holds in the endpoints, then,

because of concavity, it holds on the complete interval. Therefore, the interval which

contains the stability radius can easily be found by checking only the endpoints of

the intervals. This means that the correct interval (possibly [cw; �u]) can be found in

O(w �R(jIj; �)) time. Once that interval is known, the stability radius is calculated in

O
�
w2

� R(jIj; �)
�
time. Hence, the complexity of our approach is the same as before

and the following result is obvious.

Theorem 2.3 If (P ) has a min{sum objective function with objective coe�cients which

are restricted to be non{negative and if (P ) is polynomially solvable for any non{

negative objective vector, then the stability radius of an �{optimal solution can be com-

puted in polynomial time.

2.3 Extension to the tolerance approach

The stability radius can be viewed as a measure which focusses on absolute deviations

of the unstable objective coe�cients. Sometimes it may make more sense to look at

relative deviations instead. For instance, suppose that the objective coe�cients are

unrestricted in sign, and we would like to know the largest 
 � 0 such that

nX

i=1

ci(1 + �i)�xi � (1 + �)

nX

i=1

ci(1 + �i)xi (5)
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for all x 2 X and every � 2 IRn with j�ij � 
 for all i = 1; 2; . . . ; w and �i = 0 for all

i = w+1; w+2; . . . ; n. This is similar to the tolerance approach to sensitivity analysis,

which was developed by Wendell [8] for linear programming. Therefore, we will refer

to the largest value of 
 satisfying (5) as the tolerance radius.

To caculate the tolerance radius, we can essentially follow the same approach as in

Subsection 2.1. It boils down to �nding the largest 
 such that

min
x2X

� nX

i=1

�
ci(1 + �)� 
dijcij

�
xi
	
�

nX

i=1

ci�xi +
X

1�i�w: �xi=1


jcij: (6)

However, it is not possible to bound the number of linear pieces of the value function

on the left hand side in a similar way as in Lemma 2.1. Therefore, we need to calculate

the largest intersection point of the value function with the right hand side of (6),

without constructing the complete value function. This is possible by using a technique

due to Gus�eld [2], which is based on a method by Megiddo [3] for solving minimum

ratio combinatorial optimization problems. The only requirement is that (P ) can be

solved by an algorithm with the property that if the input data consists of linear

functions of a single parameter, the algorithm performs only operations which preserve

the linear dependence of the data on the parameter (in ours case: 
). Gus�eld calls such

algorithms suitable. Note that most combinatorial algorithms are of this type. Given

a suitable algorithm with complexityO
�
R(jIj; �)

�
, Gus�eld's technique will determine

the tolerance radius in O
�
R(jIj; �)2

�
time. This implies the following result.

Theorem 2.4 The tolerance radius of an �{optimal solution can be computed in poly-

nomial time if (P ) has a min{sum objective function and if it is solvable, for any

objective vector, by a suitable polynomial algorithm.

It is left to the reader to verify that the above results can be extended to the case

of non{negative objective coe�cients. To end this section, we note that Wendell's

tolerance approach is actually more general, since it also allows the components of �

to be weighted by a vector di�erent from c. Our approach can also be generalized in

this way.
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3 Calculating stability radii for min{max prob-

lems

In this section we consider the case that �(c; x) = max1�i�nfcixig, i.e., (P ) is a min{

max (bottleneck) problem. The case in which the objective vector is required to be

non{negative requires no particular care, so it will not be treated separately.

Suppose that a problem instance with objective vector c is given and that an optimal

solution �x is available. We will derive an explicit expression for the stability radius of

�x and will also show that it may be calculated by solving at most polynomially many

instances of (P ) of about the same size as the given instance.

3.1 All components unstable

In order to simplify the discussion, we �rst analyze the case that w = n, i.e., all

components of the objective vector are unstable. De�ne J1 = fj j �xj = 1g. For each

j 2 J1, we let x
j denote an optimal solution solution for the modi�ed problem instance

in which xj is required to be 0, and we let bj denote the corresponding objective value.

We de�ne �j = (bj � cj)=2. If xj = 1 for all x 2 X, bj and �j are 1.

Theorem 3.1 If w = n, then the stability radius is equal to minj2J1f�jg.

Proof. We will �rst show that the stability radius is at least minj2J1f�jg. Consider

a vector � with j�ij � minj2J1f�jg for all i = 1; 2; . . . ; w. Note that any solution x 2 X

with xj = 1 for all j 2 J1 has always a value greater than or equal to �x. Therefore

it su�ces to consider only solutions which have xj = 0 for some j 2 J1. For such a

solution, let k 2 J1 be such that xk = 0 and ck � cj for all j 2 J1 with xj = 0. Note

that xj = 1 for all j 2 J1 with cj > ck. This implies

�(c+ �; x) � maxfci + �i j i 2 J1; ci > ckg: (7)
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Furthermore, it follows from �(c; x) � bk that

�(c+ �; x) � bk �min
j2J1

f�jg � bk � �k � (bk + ck)=2: (8)

We also have

ci + �i � ck +min
j2J1

f�jg � ck + �k � (bk + ck)=2 8i 2 J1 with ci � ck: (9)

Using the lower bounds on �(c+ �; x) de�ned in (7) and (8), as well as (9), we obtain

�(c+ �; x) � maxf(bk + ck)=2; maxfci + �i j i 2 J1; ci > ckg

� maxfci + �i j i 2 J1g = �(c+ �; �x):

This establishes the inequality.

We will next show that for any � strictly greater than minj2J1f�jg, there exists a vector

� such that j�ij � � for each i, while �(c + �; x) < �(c + �; �x) for some x 2 X. To

be more speci�c, suppose that � > �k for some k with �xk = 1. Consider the vector �

where �i = ��k if xk
i
= 1 and ci � (bk + ck)=2, �k = � and �i = 0 otherwise. Note

that �(c; xk) = bk � �(c; �x) � ck, which implies �(c; xk) � (bk + ck)=2. Therefore,

�(c + �; xk) = bk � �k = (bk + ck)=2 < ck + � � �(c + �; �x). This establishes that the

stability radius is at most minj2J1f�jg and completes the proof.

2

To compute bj, we just need to solve the instance of (P ) with objective vector ~c, where

~cj is equal to a value M , which is strictly greater than the largest of c1; c2; . . . ; cn, and

~ci = ci for i 6= j. If the optimal objective value of this problem instance turns out to be

M , then xj = 1 for each feasible solution and bj =1. Otherwise, the optimal objective

value is exactly bj. It therefore follows from Theorem 3.1 that when all components

are unstable, the stability radius can be calculated by solving
P

n

i=1
�xi instances of (P ).
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3.2 Stable and unstable components

Let us now permit w to be any arbitrary integer less than or equal to n. Assume

without loss of generality that cw+1 � cw+2 � . . . � cn. We will compute the stability

radius as the minimum of certain values �̂j, j 2 J1, which we will de�ne below.

For j 2 J1, j � w, and m � w we let f (j;m) denote the optimal value of the problem

instance with objective vector c and the additional restrictions xj = 0 and xi = 0 for

all i > m. If this instance does not have a feasible solution, then f (j;m) is set to1. Let

x(j;m) be any optimal solution of this problem instance and let d(j;m) denote the value of

the largest ci, i > w for which x
(j;m)

i
= 1. We de�ne d(j;m) to be �1 if x

(j;m)

i
= 0 for all

i > w. For j 2 J1, j � w, we now de�ne �̂j = minm�w maxf(f (j;m)
� cj)=2; d

(j;m)
� cjg.

To compute f (j;m), j 2 J1, j � w, m � w, we solve the instance of (P ) with objective

vector ~c, where ~ci =M for i = j and all i > m, and ~ci = ci for all other components. If

the optimal objective value of this problem instance turns out to beM , then f (j;m) =1.

Otherwise, the optimal objective value is exactly f (j;m) and we obtain a solution x(j;m)

and the corresponding value d(j;m). (To compute �̂j it actually su�ces to calculate f (j;m)

in order of decreasing m until a value of m is reached for which (f (j;m)+ cj)=2;� d(j;m),

because f (j;m) is non{increasing in m.)

For j 2 J1, j > w, we let gj denote the optimal value of the problem instance with

objective vector c and the additional restrictions xj = 0 and xi = 0 for all i > w with

ci � cj; g
j =1 if this problem instance does not have a feasible solution. For j 2 J1,

j > w, we now de�ne �̂j = gj � cj. The calculation of gj is obvious.

Lemma 3.1 Suppose that x 2 X is a solution with xj = 0 for some j 2 J1, j � w.

Let l be the largest index such that l > w with xl = 1; de�ne cl = �1 if no such index

exists. Then cj + �̂j � maxf(�(c; x) + cj)=2; clg.

Proof. Suppose xi = 0 for all i > w, then �(c; x) � f (j;w). Since d(j;w) = �1, it

follows that cj + �̂j � maxf(f (j;w) + cj)=2; d
(j;w)

g � (�(c; x) + cj)=2.

If xi = 1 for some i > w, then �(c; x) � f (j;l) and cl � d(j;l). Therefore, cj + �̂j �
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maxf(f (j;l) + cj)=2; d
(j;l)

g � maxf�(c; x) + cj)=2; clg.

2

Theorem 3.2 The stability radius is equal to minj2J1f�̂jg.

Proof. We will �rst show that the stability radius is at least equal to minj2J1f�̂jg.

Consider a vector � such that �i = 0 for all i > w, and j�ij � minj2J1f�̂jg for all i � w.

We have

�(c+ �; �x) = max
�

maxfci + �i j i 2 J1; i � w; ci � ckg;

maxfci + �i j i 2 J1; i � w; ci > ckg;

maxfci j i 2 J1; i > w; xi = 1g;

maxfci j i 2 J1; i > w; xi = 0g
	

(10)

For any solution x 2 X, we will show that the four expressions on the right hand side

of (10) are all lower bounds on �(c + �; x).

Let k = argmaxfci j i 2 J1; i � w; xi = 0g. The �rst expression, maxfci + �i j i 2

J1; i � w; ci � ckg, is less than or equal to ck + minj2J1f�̂jg � ck + �k. Because

of Lemma 3.1 this is at most maxf(�(c; x) + ck)=2; clg, where cl is de�ned as in the

lemma. Clearly, cl � �(c+�; x). Furthermore, if (�(c; x)+ck)=2 > cl, then �(c+�; x) �

�(c; x)� �̂k = (�(c; x) + ck)=2.

To see that the second expression is a lower bound, it su�ces to observe that if i 2 J1

and ci > ck, then xi = 1. The third expression is an obvious lower bound.

De�ne r = argmaxfci j i 2 J1; i > w; xi = 0g, then the fourth expression is equal to

cr. To show that this is a lower bound on �(c+ �; x), we �rst note that this is certainly

true if it is not greater than cl. Now suppose that cr > cl, i.e., xi = 0 for all i > w

with ci � cr. Then �(c; x) � gr, and we have �(c+ �; x) � �(c; x)� �̂r � gr � �̂r = cr.

This establishes the desired inequality.

If we are given any �̂ strictly greater than minj2J1f�̂jg, then we can �nd a vector �

such that j�ij � �̂ for each i � w, �i = 0 for each i > w, while �(c+ �; x) < �(c+ �; �x)
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for some x. The argument is quite similar to that used in the proof of Theorem 3.1

and therefore we omit details. This completes the proof.

2

The main result of this section is summarized as follows.

Theorem 3.3 The stability radius of an optimal solution can be computed in polyno-

mial time, if (P ) has a min{max objective function and if it is polynomially solvable

for any objective vector.

3.3 Extensions

A straightforward extension to the tolerance approach is possible for min{max problems

as well. In the case in which w = n, i.e., all components are unstable, we de�ne


j = (bj � cj)=(b
j + cj) and the tolerance radius is equal to minj2J1f
jg. The proof is

quite similar to that of Theorem 3.1 and is therefore omitted. The more general case,

in which w is an arbitrary integer between 1 and n may be dealt with quite similarly.

It appears that the stability radius of an �{optimal solution to a min{max problem

may be determined by techniques which are conceptually similar, but more intricate

than the ones presented in this section. We have therefore refrained from carrying out

a full investigation of this topic.
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