
Abbring, Jaap H.; van den Berg, Gerard J.

Working Paper

The Non-Parametric Identification of the Mixed
Proportional Hazards Competing Risks Model

Tinbergen Institute Discussion Paper, No. 00-066/3

Provided in Cooperation with:
Tinbergen Institute, Amsterdam and Rotterdam

Suggested Citation: Abbring, Jaap H.; van den Berg, Gerard J. (2000) : The Non-Parametric
Identification of the Mixed Proportional Hazards Competing Risks Model, Tinbergen Institute
Discussion Paper, No. 00-066/3, Tinbergen Institute, Amsterdam and Rotterdam

This Version is available at:
https://hdl.handle.net/10419/85509

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/85509
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


TI 2000-066/3 
Tinbergen Institute Discussion Paper 

                      
The Non-Parametric Identification 
of the Mixed Proportional Hazards 
Competing Risks Model 

 Jaap H. Abbring 

Gerard J. van den Berg

 
 
 
 



 
 

Tinbergen Institute 
The Tinbergen Institute is the institute for economic research of  the 
Erasmus Universiteit Rotterdam, Universiteit van Amsterdam and  
Vrije Universiteit Amsterdam.  
 
 
Tinbergen Institute Amsterdam 
Keizersgracht 482 
1017 EG Amsterdam 
The Netherlands 
Tel.: +31.(0)20.5513500 
Fax: +31.(0)20.5513555 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31.(0)10.4088900 
Fax: +31.(0)10.4089031 
 
 
 
Most TI discussion papers can be downloaded at  
http://www.tinbergen.nl  

 



The Non-Parametric Identi�cation of

the Mixed Proportional Hazards

Competing Risks Model

Jaap H. Abbring

Gerard J. van den Berg�

July 21, 2000

Abstract

We prove identi�cation of dependent competing risks models in which

each risk has a mixed proportional hazard speci�cation with regressors, and

the risks are dependent by way of the unobserved heterogeneity, or frailty,

components. We show that the conditions for non-parametric identi�cation

given by Heckman and Honor�e (1989) can be relaxed. We generalize the

results for the case in which multiple spells are observed for each subject.
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1 Introduction

A spell in a state can often end for a number of reasons. Competing risks models

interpret the observed duration or failure time as the minimum of a number of

competing latent failure times. The model then speci�es the distribution of the

observed failure time and the corresponding cause of failure as the distribution of

the minimum of the competing latent failure times in combination with the iden-

tity of the smallest latent failure time. Suppose there are two competing risks, i.e.

competing causes of failure, A and B, with corresponding nonnegative random

failure times TA and TB. The observed failure time T is T = mini2fA;Bg Ti and

the cause of failure I is I = argmini2fA;Bg Ti. Together, T and I are called the

\identi�ed minimum" of TA and TB. In this paper we focus on continuously dis-

tributed failure times (see Crowder, 1996, for results on discrete time competing

risks models).

Competing risks models are very commonly used in empirical research (see

e.g. the overviews in Kalbeisch and Prentice, 1980, Yamaguchi, 1991, Andersen

et al., 1993, Klein and Moeschberger, 1999). One may argue that any duration

analysis of failure time data subject to right-censoring involves competing risks,

where the failure of interest constitutes one risk and the censoring time the other,

and where the identi�ed minimum is the smallest of the two, taking into account

which one is actually smaller (see e.g. Van den Berg, Lindeboom and Ridder,

1993).

It is well known that the joint distribution of (TA; TB) is not identi�ed from

the joint distribution of (T; I) (see Cox, 1962 and Tsiatis, 1975; Moeschberger

and Klein, 1996, provide a survey of the literature). In particular, for any joint

distribution of the latent failure times there is a joint distribution with indepen-

dent latent failure times that generates the same distribution of the identi�ed

minimum. (Note that \identi�ability" here concerns the invertability of the map-

ping from the model to the distribution of T; I, and this should not be confused

with \identi�ed" in \identi�ed minimum".) The joint distribution of the latent

failure times can only be identi�ed if some structure is imposed on it, for example

if it is imposed that TA and TB are independent.

A particularly popular class of competing risks models assumes that the haz-

ard rates of the latent failure times each have a mixed proportional hazard (MPH)

speci�cation, so they depend multiplicatively on the elapsed duration and a set

of regressors (or explanatory variables), part of which may be unobserved (Lan-
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caster, 1990, Van den Berg, 2000). If the unobserved determinants (or frailties)

are dependent across the risks then the failure times given the observed determi-

nants are dependent. In practice there is often ample reason to suspect that the

unobserved determinants are dependent, especially if the subject is an individual

whose behavior may a�ect all hazard rates. We call this class of models the class

of MPH competing risks models. The popularity of this class of models is derived

from the popularity of the MPH model for single risks. The latter is by far the

most popular class of duration models in econometrics, and is also frequently

applied in �elds like demography and biostatistics. Also, MPH (competing risks)

models often serve as building blocks for models of generalized Markovian pro-

cesses (see Van den Berg, 2000, for an extensive review and references).

Heckman and Honor�e (1989) show that, within this class of competing risks

models, the model speci�cation is non-parametrically identi�ed if there is suÆ-

cient variation of the latent failure times with the regressors and some regularity

conditions are satis�ed. Here, \non-parametric" means that no parametric func-

tional forms are assumed for the baseline hazards or the multivariate distribution

of frailties, while the identi�ability concerns the invertability of the mapping from

the model determinants (like the baseline hazards and frailty distribution) to the

distribution of T; I (which summarizes the population data). In this paper we

show that the conditions of Heckman and Honor�e (1989) can be relaxed consid-

erably. In particular, our results allow for less variation in the regressor values,

and as such they are likely to be more relevant for applications.1 We also provide

intuition on the identi�cation of the dependence between the risks.

It is important to know whether, under a certain set of conditions, the MPH

competing risks model is non-parametrically identi�ed. First of all, if it is non-

parametrically identi�ed then the estimates of the model speci�cation may be

less sensitive to parametric functional forms on the model determinants, in the

sense that the estimates are not completely driven by these functional forms.

Secondly, as noted above, the MPH competing risks model is often nested in a

larger multi-state model of failure times. In that case it is useful to know whether

the information corresponding to the competing risks part is suÆcient to identify

certain model determinants or whether the estimates of these determinants are

completely driven by the information corresponding to other parts of the model.

1Heckman and Honor�e (1989) require stronger conditions for identi�cation because they

examine a class of models that is somewhat more general than the MPH competing risks

model.
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Admittedly, identi�ability corresponds to a weak qualitative notion of data infor-

mation, and future work should focus on other properties of the mapping from

model to data and to quantitative measures of information (see e.g. Hahn, 1994,

Heckman and Taber, 1994, and Klaassen and Lenstra, 1998, in the context of a

single risk).

In this paper we also generalize the identi�cation results to the case in which

we have multiple spell data, i.e. data on more than one identi�ed minimum for

each subject. More precisely, these are data that contain multiple independent

drawings from the subject-speci�c distribution of the identi�ed minimum, so

that the unobserved determinants are identical across the spells. Such data are

frequently available in, for example, econometric applications (Van den Berg,

2000). In the context of a single risk, it is well known that multiple spell data

allow for identi�cation under much less stringent conditions than single spell

data (see e.g. Honor�e, 1993, for some important results, and Van den Berg, 2000,

for a survey of the identi�cation literature). We show that this carries over to

competing risks models.

The paper is organized as follows. In Section 2, the MPH competing risks

model is introduced. Sections 3 and 4 deal with the identi�cation in case of single

spell data and multiple spell data, respectively. Section 5 concludes. Appendix A

provides the proofs that are omitted from the main text for expositional purposes.

2 The MPH competing risks model

The MPH model is an extension of the Cox (1972) proportional hazard model (it

was introduced by Lancaster, 1979, in econometrics and by Vaupel, Manton and

Stallard, 1979, in demography). In particular, it allows for observed as well as

unobserved regressors. The survivor function of a single duration T , conditional

on only on the observed regressors x, is therefore a mixture of the survivor func-

tion conditional on observed and unobserved regressors x and V , respectively. As

a result, the class of MPH models is characterized by the survivor functions

Pr(T > tjx) = LF (Z(t)�(x)); (1)

where LF is the Laplace transform of a (proper) distribution F of V with sup-

port on [0;1) such that F (0) < 1: LF (s) :=
R1
0

exp(�sv)dF (v). The \integrated

baseline hazard" Z : [0;1) ! [0;1) is assumed to be nondecreasing and dif-

ferentiable, with derivative Z 0, and Z(0) = 0. The function � : X ! (0;1) is
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the \regressor function", where X is the support of x. In applications, this re-

gressor function is frequently speci�ed as �(x) = exp(x0�), for some vector �

of parameters. However, we will not make such parametric assumptions in this

paper.

Note that equation (1) is indeed a mixture of

Pr(T > tjx; V ) = exp (�Z(t)�(x)V )

over the distribution F of V .2 The corresponding hazard rate is Z 0(t)�(x)V for

T j(x; V ), which explains the terminology \mixed proportional hazard". The Z 0

function is called the \baseline hazard", which represents duration dependence at

the subject level if subjects are characterized by realizations of (x; V ). In applica-

tions, such duration dependence is often considered of independent interest, as it

can frequently be related to the behavior of the subject under study (see e.g. Van

den Berg, 2000). The V factor is usually dubbed the unobserved heterogeneity

term or frailty, and is treated as a nuisance component.

The multivariate MPH model allows for a convenient structure of the depen-

dence between the failure times. For expositional clarity, we restrict attention to

two risks throughout this paper. The extension to more than two risks is trivial.

In the case of two failure times TA and TB and a vector of regressors x, the MPH

competing risks model speci�es the joint survivor function of (TA; TB)jx as

S(tA; tBjx) := Pr(TA > tA; TB > tBjx) = LG(ZA(tA)�A(x); ZB(tB)�B(x)):

(2)

where LG is the Laplace transform of a (proper) bivariate distribution G with

support on [0;1)2 such that limv!1G(0; v) < 1 and limv!1G(v; 0) < 1:

LG(sA; sB) :=

Z 1

0

Z 1

0

exp(�sAvA � sBvB)dG(vA; vB)

The integrated baseline hazards ZA : [0;1) ! [0;1) and ZB : [0;1) ! [0;1)

again satisfy ZA(0) = 0 and ZB(0) = 0. For expositional convenience, we assume

that ZA and ZB are continuously di�erentiable on (0;1), with derivatives Z 0
A > 0

and Z 0
B > 0. The results can be extended straightforwardly to allow for intervals

on which Z 0
A = 0 or Z 0

B = 0, as in Ridder (1990). Finally, �A : X ! (0;1) and

�B : X ! (0;1) are the regressor functions.

2Here, it is implicitly understood that either V is independent of x, or F is the distribution

of V conditional on x. Explicit assumptions are made in Sections 3 and 4.
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As in the univariate case, equation (2) has a mixture interpretation. Let VA

and VB be nonnegative random variables such that Pr(VA > 0; VB > 0) > 0.

Then, equation (2) is a mixture of

Pr(TA > tA; TB > tBjx; VA; VB) = exp (�ZA(tA)�A(x)VA � ZB(tB)�B(x)VB)

over the joint distributionG of (VA; VB), with corresponding hazard rates Z
0
i(t)�i(x)Vi

for Tij(x; Vi), i = A;B. Thus, the dependence of the latent failure times TA and

TB, conditional on x, runs by way of the stochastic dependence of the unobserved

heterogeneity components VA and VB.

An interesting feature of the model is that it allows for two di�erent sources of

defectiveness of the mixed duration distribution. First, it allows for mass points

of either VA and/or VB at 0, in which case some fraction of the population never

experiences a realization of the events corresponding to TA and/or TB. Second,

it does not require that ZA(t) ! 1 and ZB(t) ! 1 for t ! 1. In other

words, it allows for defectiveness of the duration distribution conditional on the

unobserved heterogeneity components. In the latter case, the entire population

faces a positive probability of never realizing the events corresponding to TA

and/or TB.

Heckman and Honor�e (1989) do not restrict attention to the class of models

captured by (2), but they consider a somewhat more general class,

S(tA; tBjx) = K (exp(�ZA(tA)�A(x)); exp(�ZB(tB)�B(x))) ; (3)

where K is a joint cumulative distribution function on [0; 1]2. This more general

survivor function reduces to the MPH competing risks survivor function in (2) if

K(xA; xB) =

Z 1

0

Z 1

0

xvAA xvBB dG(vA; vB) (4)

for (xA; xB) 2 (0; 1]2, K(0; x) = limxA#0K(xA; x) and K(x; 0) = limxB#0K(x; xB)

for x 2 (0; 1], and K(0; 0) = limx#0K(0; x) = limx#0K(x; 0). If either VA (VB)

has a mass point at 0, then K(0; 1) > 0 (K(1; 0) > 0): the relevant marginal

distribution corresponding to K has a mass point at 0. Obviously, this corre-

sponds to a defectiveness of the corresponding marginal duration distribution.

Heckman and Honor�e (1989) do not explicitly mention this possibility, and it is

not particularly interesting without the speci�c mixture interpretation o�ered by
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the MPH framework. It should be noted that they do discuss defectiveness due

to the functions ZA and ZB.

It is not diÆcult to see that the joint distribution of the identi�ed minimum

(T; I)jx is fully characterized by the functions

QA (tjx) := Pr (TA > t; TB > TAjx) and

QB (tjx) := Pr (TB > t; TA > TBjx) :
(5)

(see Tsiatis, 1975). In the analysis of identi�cation, these functions are taken to

be known. Note that S(t; tjx) = QA(tjx) + QB(tjx). The functions QA and QB

can be characterized explicitly in terms of their derivatives,

@Qi (tjx)

@t
= �i (x)Z

0
i (t)DiLG (�A (x)ZA (t) ; �B (x)ZB (t)) ; i = A;B: (6)

Here, DiLG(sA; sB) := @LG(sA; sB)=@si.

Before presenting the identi�cation results, it is useful to introduce a general

result on completely monotone functions, which are frequently encountered in the

analysis of MPH models in the form of (derivatives of) Laplace transforms.

De�nition 1. Let 
 be a nonempty open set in R
n . A function f : 
 ! R is

absolutely monotone if it is nonnegative and has nonnegative continuous partial

derivatives of all orders. f is completely monotone if f Æm is absolutely monotone,

where m : x 2 f! 2 R
n : �! 2 
g 7! �x.

Note that for n = 1 this de�nition reduces to the familiar de�nitions in Widder

(1946). In the sequel, we occasionally refer to the following result.

Proposition 1. Let 	 be a nonempty open connected set in Rn and let f : 	! R

and g : 	 ! R be completely monotone. If f and g agree on a nonempty open

set in 	, then f � g.

Proof. The proof exploits two facts that are well known for functions on R: (i)

completely monotone functions are real analytic and (ii) real analytic functions

are uniquely determined by their values on an open set. See Appendix A for

details.

3 The main identi�cation result

We make the following assumptions on the MPH competing risks model in (2).
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Assumption 1. (Independence between observed and unobserved re-

gressors.) G does not depend on x.

Assumption 2. (Variation in observed regressors.) The function (�A(x); �B(x))

can attain all values in a nonempty open set � � (0;1)2 when x varies over X .

Assumption 3. (Normalizations.)For some a priori chosen t� 2 (0;1), ZA(t
�) =

ZB(t
�) = 1. For some a priori chosen x� 2 X , �A(x

�) = �B(x
�) = 1.

Assumption 4. (Tail of the frailty distribution.) lims#0DALG(s; s) < 1

and lims#0DBLG(s; s) <1.

Assumption 1 is standard in the MPH literature, and reduces to the stochastic

independence assumption (VA; VB)??x in the mixture interpretation with stochas-

tic Vi. If �i(x) = exp(x0�i), then it is suÆcient for Assumption 2 that x has two

continuous covariates which a�ect the hazard rates of both risks but with di�erent

nonzero coeÆcients, and which are not perfectly collinear. Note that this assump-

tion is fundamentally weaker than exclusion restrictions of the sort encountered

in instrumental variable analysis, where there is a covariate which a�ects one en-

dogenous variable but not the other.3 Assumption 3 concerns innocuous normal-

izations. In the mixture interpretation, Assumption 4 is equivalent to E(Vi) <1,

i = A;B, which is a standard assumption in the single spell MPH literature (e.g.,

Elbers and Ridder, 1982). Ridder (1990) shows that this assumption cannot be

omitted without loss of identi�cation.

We have the following result.

Proposition 2. If Assumptions 1{4 are satis�ed, then the MPH competing risks

model (which is characterized by the functions �A, �B, ZA, ZB, and LG) is non-

parametrically identi�ed from the distribution of (T; I)jx.

Proof. Take an arbitrary x 2 X : x 6= x�, and compute the ratios of both

@QA(tjx)=@t and @QB(tjx)=@t at x and x�. For i = A;B, this gives

DiLG [�A(x)ZA(t); �B(x)ZB(t)]�i(x)Z
0
i(t)

DiLG [�A(x�)ZA(t); �B(x�)ZB(t)]�i(x�)Z 0
i(t)

: (7)

3In the case of binary data on the \identi�ed minimum" (i.e., it is observed which duration

ends �rst but not when), exclusion restrictions are necessary to achieve identi�cation. This

illustrates the fact that the timing of events in duration data provides a valuable source of

information concerning the underlying model.
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Cancel Z 0
i(t) and let t # 0. Then, by Assumptions 4 and 3, (7) reduces to �i(x).

Next, in equation (2), let (�A(x); �B(x)) range over the open set � of Assump-

tion 2, for tA = tB. Then, as we observe S(t; tjx) and because of the complete

monotonicity of the bivariate Laplace transform, we can trace out LG on (0;1)2

by Proposition 1.

Finally, for any given x 2 X , we can rewrite equation (6) as a system of two

di�erential equations, in (ZA; ZB), (Z
0
A; Z

0
B) and t:

Z 0
i =

@Qi (tjx)

@t
[�i (x)DiLG (�A (x)ZA; �B (x)ZB)]

�1 ; i = A;B (8)

with initial conditions that are provided by the normalizations on Zi in Assump-

tion 3: ZA(t
�) = ZB(t

�) = 1.

Let the function f : (0;1)3 ! (0;1)2 denote the right-hand side of the

system of di�erential equations in (8), as a function of (t; ZA; ZB), so that the

system can be written as (Z 0
A; Z

0
B) = f(t; ZA; ZB). Note that f is continuous.

By construction, a solution (ZA; ZB) : (0;1) ! (0;1)2 of this system exists.

Furthermore, continuity of @f=@Zi (i = m; p) on its domain (0;1)3 implies

Lipschitz continuity of f with respect to ZA and ZB. This implies local uniqueness

of the solution to the initial conditions. As we already know that a solution exists

on (0;1), this in turn implies that there is a unique solution on (0;1). See e.g.

Walter (1998), Theorem 10.VI. As ZA(0) = 0 and ZB(0) = 0, this implies that

(ZA(t); ZB(t)) is uniquely determined on [0;1).

Note that LG in turn identi�es G by the uniqueness of the bivariate Laplace

transform. Also, note that we can solve equation (8) uniquely for any given x 2 X .

If we have solutions for any two x; x0 2 X , our model restricts these two solutions

to be identically the same. This provides overidentifying restrictions similar to

those discussed by Melino and Sueyoshi (1990) for the single risk MPH model.

The main di�erence between our Proposition 2 and the identi�cation result

of Heckman and Honor�e (1989) is that they tighten Assumption 2 by imposing

that � = (0;1)2, which is often unlikely to be satis�ed in applications. The

restriction to MPH competing risks models provides us with the latitude to relax

this strong assumption on the regressor e�ects.4

4In fact, for identi�cation we only need that (u; v) 7! K(exp(�u); exp(�v)) in equation

(4) is real analytic, and not that it is actually a Laplace transform, as in the MPH model.

However, as stated before the MPH model is frequently applied and has an attractive mixture

interpretation.
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It is interesting to obtain some insight into the identi�cation of whether the

durations are dependent or not, since this distinguishes the above identi�cation

result from the literature in which competing risks models without regressors are

examined. We de�ne

�A(tAjx; TB > tA)

to be the hazard rate of the duration TA at the value tA, conditional on x

and conditional on the duration TB exceeding tA. More generally, the hazard

�A(tAjx; TB > tB) corresponds to the conditional distribution of TAjx; TB > tB.

We evaluate this hazard for given tA and tB, and in fact we take tB = tA. Obvi-

ously, the hazard �B(tBjx; TA > tB) can be de�ned analogically. It is important

that the \conditional" hazard rates �A(tAjx; TB > tA) and �B(tBjx; TA > tB)

can be expressed in terms of the distribution of T; I, so that, in the analysis of

identi�cation, these rates are taken to be known.

Assumption 2 implies that �A(x) and �B(x) are not perfectly related, and

that there is some independent variation in both. Now suppose that VA and VB

are independent. Then, �A(tAjx; TB > tA) does not vary with �B(x) if �A(x) is

held constant. Similarly, �A(x) does not a�ect �B(tBjx; TA > tB).

Now let us examine what happens if VA and VB are dependent. It is straight-

forward to show that

�A(tAjx; TB > tA) =
EV [Z 0

A(tA)�A(x)VA exp (�ZA(tA)�A(x)VA � ZB(tA)�B(x)VB)]

EV [exp (�ZA(tA)�A(x)VA � ZB(tA)�B(x)VB)]

with EV denoting the expectation with respect to the bivariate distribution

G(vA; vB). If we di�erentiate this with respect to �B(x) then the resulting ex-

pression has the same sign as

�Cov(VA; VBjx; TA > tA; TB > tA)

(provided that tA > 0). If VA and VB are dependent then in general there are

many values of tA such that the above expression is nonzero. If �B(x) is large

then the dynamic selection of individuals with high VB occurs relatively fast.

By conditioning on TB > tA, we therefore condition on a sub-population with

relatively low values of VB. If VA and VB are positively related then this sub-

population also has relatively low values of VA, and hence a low hazard rate for

risk A.
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In sum, the derivative of �A(tAjx; TB > tA) with respect to �B(x) and its

mirror image for TB are informative on the dependence or independence of the

unobserved heterogeneity terms. This is intuitively very plausible. If the regressor

part of the hazard rate of TB does not directly a�ect the individual hazard rate

of TA but does a�ect the observed hazard rate of TA then this indicates that

there is a spurious relation between the durations by way of their unobserved

determinants. It should again be stressed that this is not based on an exclusion

restriction in the usual sense of the word. All explanatory variables are allowed to

a�ect both duration variables { they are just not allowed to a�ect both duration

distributions in the same way.5

4 Identi�cation with multiple spells

So far, we have focused on \single spell" competing risks models, which spec-

ify the distribution of the identi�ed minimum (T; I) of a single pair of latent

failure times (TA; TB) (conditional on regressors x). Instead, assume that for

each subject we observe two spells, with identi�ed minima (T1; I1; T2; I2), with

T1 = mini2fA;Bg Ti;1, I1 = argmini2fA;Bg Ti;1, T2 = mini2fA;Bg Ti;2, and I2 =

argmini2fA;Bg Ti;2, and with corresponding latent failure times (TA;1; TB;1) and

(TA;2; TB;2).

The survivor function of (TA;1; TB;1; TA;2; TB;2)jx is given by

S(tA;1; tB;1; tA;2; tB;2jx)

:= Pr(TA;1 > tA;1; TB;1 > tB;1; TA;2 > tA;2; TB;2 > tB;2jx)

= LG(ZA;1(tA;1jx) + ZA;2(tA;2jx); ZB;1(tB;1jx) + ZB;2(tB;2jx));

(9)

where the distribution G of (VA; VB) is now more generally allowed to depend on

x. The functions Zi;j : [0;1) � X ! [0;1) (i = A;B; j = 1; 2) are increasing

in their �rst argument, with Zi;j(0jx) = 0, for all x 2 X . Also, for any given

x 2 X , Zi;j(tjx) is assumed to be continuously di�erentiable on (0;1). In the

sequel, we will still refer to the Zi;j as the \integrated baseline hazards", even

though these now include regressor e�ects. It is important to point out that we

5Note that the intuitive argument does not use all assumptions we made for full identi�ca-

tion. Of course, the �i(x) are not directly observed. We identify these by examining data at

zero durations. It is a topic for further research to expand on this by constructing a useful test

statistic on independence.
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allow the risk-speci�c baseline hazards, including the way they depend on x, to

di�er across spells.

With VA and VB again nonnegative random variables, we can interpret equa-

tion (4) as a mixture of

Pr(TA;1 > tA;1; TB;1 > tB;1; TA;2 > tA;2; TB;2 > tB;2jx; VA; VB)

= exp (�ZA;1(tA;1jx)VA � ZB;1(tB;1jx)VB � ZA;2(tA;2jx)VA � ZB;2(tB;2jx)VB)

over the distribution G, which is now the joint conditional distribution G of

(VA; VB)jx. The corresponding hazard rates are Z 0
i;j(tjx)Vi for Ti;jj(x; Vi), where

Z 0
i;j(tjx) := @Zi;j(tjx)=@t (i = A;B; j = 1; 2). So, conditional on (x; VA; VB), the

pairs of latent failure times (TA;1; TB;1) and (TA;2; TB;2) are independent realiza-

tions. Thus, we can interpret the model as a model for two spells in a \stratum"

that is characterized by a single realization of (VA; VB), and where the spells are

independent conditional on (x; VA; VB).

The stratum could either correspond to a single physical unit, like an indi-

vidual, for which we observe multiple spells in exactly the same state, or it could

consist of single spells corresponding to multiple similar physical units, like for in-

stance a pair of twins. In either case, multiple spell information, i.e. strati�cation

of the data with respect to (VA; VB), provides us with multiple realizations of T; I

conditional on the same values of the unobservables. It is intuitively clear that

such multiple spell data facilitate identi�cation of our model. The analogy with

panel data suggests that we can deal with unobserved heterogeneity in multiple

spell data by a conditional likelihood approach or a �rst-di�erencing approach.

However, in our case this is non-trivial because of the nonlinearity of the model.

In the remainder of this section, we formally analyze the identi�cation of the

multiple spell model.

Consider the following assumption for the multiple spell model:

Assumption 5. (Normalizations.) For some a priori chosen t� 2 (0;1),

ZA;1(t
�jx) = ZB;1(t

�jx) = 1, for all x 2 X .

This normalization precludes variation of the conditional integrated baseline haz-

ards at t = t� with x. It is necessary for identi�cation as we allow for general

scale e�ects of x on the conditional distribution G of (VA; VB)jx. At �rst sight

11



this might seem restrictive. Consider for example a model with

Pr(TA;1 > tjx; VA) = exp (�ZA;1(tA;1)�A(x)VA) ; and VA; VBjx � G(vA; vBjx);

(10)

where �A is a non-constant positive function on X , and where ZA;1(t) satis�es the

part of Assumption 5 that concerns ZA;1(tjx). Then, as �A(x) is not constant,

Z�
A;1(tjx) := ZA;1(t)�A(x) does not satisfy the part of Assumption 5 that con-

cerns ZA;1(tjx). Thus, the model in equation (10) does not satisfy Assumption

5. However, there is an observationally equivalent model that does satisfy the

assumption. Changing variables V �
A := �A(x)VA in equation (10) gives

Pr(TA;1 > tjx; VA) = Pr(TA;1 > tjx; V �
A) = exp (�ZA;1(tA;1)V

�
A) ; and

V �
A; VBjx � G(vA=�A(x); vBjx) =: G

�(v�A; vBjx)

(11)

This model does satisfy Assumption 5, and it can always be translated back

into model (10).6 We prefer Assumption 5 over an alternative normalization that

restricts the dependence of (a scale parameter of) G on x, for the sole reason that

we believe that the former is more convenient from an expositional point of view.

Note that the issue here is somewhat reminiscent of the role of time-constant

regressors in linear panel data models with �xed e�ects.

We have the following result.

Proposition 3. If Assumption 5 is satis�ed, then the functions ZA;1, ZB;1, ZA;2,

and ZB;2 are non-parametrically identi�ed from the distribution of (T1; I1; T2; I2)jx.

Proof. Pick an arbitrary x 2 X . From the distribution of T1; I1; T2; I2jx we can

derive

Z t�

0

@Pr (TA;1 > �; TB;1 > TA;1; TA;2 > t; TB;2 > tjx) =@�

@Pr (TA;1 > �; TB;1 > �; TA;2 > t; TB;2 > TA;2jx) =@t
d� =

1

Z 0
A;2(tjx)

;

6In (10) the individual hazard rate varies over x whereas in (11) the frailty distribution

among individuals with a given x varies over x. This di�erence is semantic, except if a physical

interpretation is given to what constitutes the frailty, but there is often no reason to do so.

12



using Assumption 5. This identi�es ZA;2. In turn, ZA;1 is then identi�ed from

Z t�

0

@Pr (TA;1 > t; TB;1 > t; TA;2 > �; TB;2 > TA;2jx) =@�

@Pr (TA;1 > t; TB;1 > TA;1; TA;2 > �; TB;2 > � jx) =@t
d� =

ZA;2(t
�jx)

Z 0
A;1(tjx)

:

Similarly, we can identify ZB;1 and ZB;2.

Having identi�ed the integrated baseline hazards, the natural next step is to

use these in identifying LG. It is not diÆcult to see that, for any given x 2 X ,

we can identify LG and its �rst and second order partial derivatives on Zx :=

f�(t1; t2jx) : (t1; t2) 2 (0;1)2g � (0;1)2, where �(t1; t2jx) := (ZA;1(t1jx) +

ZA;2(t2jx); ZB;1(t1jx) + ZB;2(t2jx)). Note that � is identi�ed under Assumption

5. As limt#0 �(t; tjx) = (0; 0), we can identify the �rst and second moments of

G, for each x 2 X . However, without further assumptions on the e�ects of the

covariates x, we cannot exploit variation in x as in the single spell case, and

we have to identify G from variation in � for given x 2 X . Without further

restrictions on the integrated baseline hazards, G may not be identi�ed, as the

following counter-example shows.

For given x 2 X , suppose that ZB;1(tjx) � kZA;1(tjx) and ZB;2(tjx) �

kZA;2(tjx), for some constant k > 0. This implies that Zx = f(z; kz) : z 2 (0;1)g

is simply a curve in (0;1)2. Then, for given x 2 X , we can only identify the bi-

variate transform LG and its �rst and second derivatives on this single curve,

which cannot be extended to the entire (0;1)2 as required for identi�cation of

LG.

The following assumption excludes such cases, without exploiting variation in

x.

Assumption 6. (Variation in baseline hazards.) For each x 2 X , there is a

(�1; �2) 2 (0;1)2, which may depend on x, such that

Z 0
A;1(�1jx)Z

0
B;2(�2jx) 6= Z 0

B;1(�1jx)Z
0
A;2(�2jx):

Assumption 6 is not very restrictive. For example, suppose that, for given

x 2 X , both ZA;1(tjx) � t and ZA;2(tjx) � t, and ZB;1(tjx) � ZB;2(tjx). Then, it

requires that ZB;1 is not linear on all of (0;1). In general, Assumption 6 ensures

that, for each x 2 X , there is a (�1; �2) 2 (0;1)2 such that �(t1; t2jx) is an open

mapping locally around (�1; �2). In turn this implies that we can trace LG on an

open set that contains �(�1; �2jx) by varying (t1; t2) over an open set containing
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(�1; �2). Then, variation in the baseline hazards can replace regressor variation in

the multiple spell case. Formally, we have

Proposition 4. If Assumptions 5 and 6 are satis�ed, then the multiple spell

MPH competing risks model (which is characterized by the functions ZA;1, ZB;1,

ZA;2, ZB;2, and LG) is non-parametrically identi�ed from the distribution of (T1; I1; T2; I2)jx.

Proof. ZA;1, ZB;1, ZA;2, ZB;2 are identi�ed by Proposition 3. As a consequence, �

is identi�ed. Next, as, for given x 2 X , � is continuously di�erentiable, it is an

open mapping locally around (�1; �2) as in Assumption 6, by direct implication of

the inverse function theorem. Thus, for each x 2 X , we can trace LG on an open

set by varying (t1; t2) over an open set that contains (�1; �2). For each x 2 X , this

identi�es LG by Proposition 1.

It follows from Proposition 3 that Assumption 6 is identi�ed, i.e. can be

tested, under Assumption 5. If Assumption 6 is not satis�ed, we have to rely on

alternative assumptions, which guarantee that we can exploit variation in x as in

the single spell case.

First, we need independence of (VA; VB) and x as in Assumption 1.

Assumption 7. (Independence between observed and unobserved re-

gressors, up to a scale factor.) There are functions �A : X ! (0;1) and

�B : X ! (0;1), and a distribution function G� : [0;1)2 ! [0; 1] that does

not depend on x, such that G(u=�A(x); v=�B(x)) � G�(u; v). For some a priori

chosen x� 2 X , �A(x
�) = �B(x

�) = 1.

It should be noted that we cannot simply require independence of (VA; VB) and

x, as G is supposed to absorb multiplicative regressor e�ects at t = t� (see the

discussion of Assumption 5). The functions �A and �B in Assumption 7 can be

thought of as the multiplicative regressor e�ects at t = t�. If we rewrite the model

in terms of G�, we get

S(tA;1; tB;1; tA;2; tB;2jx) =

LG�((ZA;1(tA;1jx) + ZA;2(tA;2jx))�A(x); (ZB;1(tB;1jx) + ZB;2(tB;2jx))�B(x)):

The regressor functions �A and �B enter proportionally in the conditional hazard

rates of the transformed model. Thus, Assumption 7 reduces the second step

identi�cation problem to the identi�cation of �A, �B, and a distribution G� that
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does not depend on x. The normalization is innocuous, as we leave the scale of

G� unnormalized.

De�ne Z� := f��(t1; t2jx) : (t1; t2) 2 (0;1)2; x 2 Xg, with ��(t1; t2jx) :=

((ZA;1(t1jx)+ZA;2(t2jx))�A(x); (ZB;1(t1jx)+ZB;2(t2jx))�B(x)). If we can identify

��, we can trace LG� on Z�. The following assumption ensures that there is

suÆcient variation of ��.

Assumption 8. (Variation in observed regressors.) There is a nonempty

open set �� such that �� � Z�.

A suÆcient condition for Assumption 8 is that (�A; �B) satis�es Assumption 2,

but more subtle conditions are obviously suÆcient.

We cannot directly apply Assumption 8, as we have not shown that �A and

�B, and therefore ��, are identi�ed. Indeed, it is clear that these functions are

not identi�ed from within-stratum variation, as �A and �B are time-invariant

and appear proportionally in the hazard rates of each of the spells in a stratum.

This can be solved by also imposing the �nite means Assumption 4, so that we

can identify �A and �B by evaluating the mixture hazard rates near 0, as in the

single spell case.

Thus, we have

Proposition 5. If Assumptions 4, 5, 7, and 8 are satis�ed, then the multiple

spell MPH competing risks model (which is characterized by the functions ZA;1,

ZB;1, ZA;2, ZB;2, and LG) is non-parametrically identi�ed from the distribution

of (T1; I1; T2; I2)jx.

Proof. Again, ZA;1, ZB;1, ZA;2, ZB;2 are identi�ed as in Proposition 3. Identi�ca-

tion of �A, �B and G� follows from the obvious multiple spell equivalent to the

�rst two steps of the proof of the single spell Proposition 2, where (�A(x); �B(x))

is replaced by ��(t1; t2jx), and � by ��.

Without Assumption 6, much of the strength of the multiple spell argument is

lost. Even in this case, however, we are still able to allow for general nonpropor-

tionality between duration and regressor e�ects in the conditional hazard rates.

We end this section by concluding that with multiple spell data, the inte-

grated baseline hazards and regressor e�ects are identi�ed without most of the

assumptions used for the single spell result. In particular, we do not need �nite

means of the frailties, or independence between (VA; VB) and x. Also, x may enter
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in an arbitrary nonproportional manner in the conditional hazard rates, and we

do not even need variation of x. These results are in line with Honor�e (1993), who

derives identi�cation results for single risk MPH models if multiple spell data are

available. However, we cannot fully identify the mixing distribution under the

same weak conditions as in Honor�e (1993). The competing risks nature of the

data complicates tracing the bivariate Laplace transform of this distribution.

Proposition 4 shows that an additional minor and testable restriction on the

integrated baseline hazards is suÆcient to identify G without further assumptions

on the role of x. If this condition does not hold, we can still allow for general non-

proportionalities between duration and regressor e�ects in the conditional hazard

rates. This result, as stated in Proposition 5, does however rely on regressor vari-

ation, �nite means of the unobservables, and independence of the unobservables

and the regressors.

5 Conclusion

In this paper we show that the conditions for non-parametric identi�cation of

the dependent competing risks model with regressors, as given by Heckman and

Honor�e (1989), can be relaxed. In particular, Heckman and Honor�e (1989) require

the hazard rates corresponding to the latent failure times to cover all values in

(0;1)2 by varying the regressor values over their support. Instead, we only need

these hazard rates to vary over a nonempty open subset of (0;1)2 by varying

the regressor values. In applications, the latter condition is much more likely to

be satis�ed.

With multiple spell data, the integrated baseline hazards and regressor e�ects

are identi�ed without most of the assumptions used for the single spell result.

In particular, we do not need to assume independence between the observed and

unobserved regressors. Also, the observed regressors may enter in an arbitrary

nonproportional manner in the conditional hazard rates, and we do not even

need variation of observed regressors.

The multiple spell results are quite general and can be derived without most

of the assumptions used for the single spell result. It should be noted, however,

that these results are particularly useful if we have \ideal" data, containing a

complete set of multiple durations for each subject. In practice, censoring of

multiple spell data may be more problematic than censoring of single spell data,
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and this somewhat reduces the relevance of multiple spell identi�cation results.

See Visser (1996) and Ridder and Tunal� (1999) for discussions of these problems

in the context of single risk duration models.
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Appendix A Proof of Proposition 1

We need the following de�nition of real analyticity, adapted from Narasimhan (1971).

De�nition 2. Let 
 be a nonempty open set in Rn . The function f : 
 ! R is real analytic

if to each ! 2 
 corresponds a power series in x � ! that converges to f(x) for all x in some

neighborhood U � 
 of !.

The following lemma is proven in Widder (1946) for the special case of n = 1 (Theorem

3a in Chapter IV). This lemma with n = 1 is sometimes called S. Bernstein's Theorem (e.g.,

Krantz and Parks, 1992, Theorem 2.4.1). Here we prove it for general n.

Lemma 1. Let 
 be a nonempty open set in Rn . If f : 
! R is absolutely monotone, then f

is real analytic.

Proof. Let ! 2 
, and let � > 0 be such that !+h 2 
 for h 2 Un(�) := f� 2 Rn : (�0�)1=2 < �g.

For functions f : Rn ! R de�ne

Dif(x) :=
@

@xi
f(x);

where x := (x1; : : : ; xn). Let D be the n� 1-vector (D1; : : : ; Dn), so that Df(x) = @f(x)=@x.

By Taylor's Theorem with exact remainder (e.g., Widder, 1961), we have that

f(! + h) =

kX
j=0

1

j!
(h0D)

j
f(!) +Rk(!; h);

with

Rk(!; h) =

Z 1

0

(1� t)k

k!
(h0D)

k+1
f(! + th)dt;

for h 2 Un(�).

Now, take any h := (h1; : : : ; hn) 2 Un(n
�1=2�). De�ne a := maxfjh1j; : : : ; jhnjg, and denote

the n � 1-unit vector by en. Note that 0 � a < n�1=2�, which implies that aen 2 Un(�). Take

any b 2 R such that a < b < n�1=2�. Then,

0 � jRk(!; h)j �

Z 1

0

(1� t)k

k!
(jhj0D)

k+1
f(! + th)dt

� ak+1
Z 1

0

(1� t)k

k!
(e0nD)

k+1
f(! + th)dt

�
�a
b

�k+1 Z 1

0

(1� t)k

k!
(be0nD)

k+1
f(! + tben)dt

=
�a
b

�k+1
Rk(!; ben)

�
�a
b

�k+1
f(! + ben) �! 0 as k !1:
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Obviously, Lemma 1 implies that if a function f : 
! R is completely monotone on a nonempty

open set 
 in Rn , then f is real analytic.

Narasimhan (1971) shows that if f : 	! R is real analytic on a nonempty open connected

set 	 in Rn , and f vanishes on a nonempty open subset of 	, then f � 0 (Narasimhan, 1971,

Proposition 1 in Chapter 1 and Remark 2 on page 4). Proposition 1 now follows immediately,

as the di�erence of two real analytic functions is real analytic.
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