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Abstract

This paper provides an extensive Monte-Carlo comparison of sev-

eral contemporary cointegration tests. Apart from the familiar Gaussian

based tests of Johansen, we also consider tests based on non-Gaussian

quasi-likelihoods. Moreover, we compare the performance of these

parametric tests with tests that estimate the score function from the

data using either kernel estimation or semi-nonparametric density ap-

proximations. The comparison is completed with a fully nonparamet-

ric cointegration test. In small samples, the overall performance of the

semi-nonparametric approach appears best in terms of size and power.

The main cost of the semi-nonparametric approach is the increased

computation time. In large samples and for heavily skewed or mul-

timodal distributions, the kernel based adaptive method dominates.

For near-Gaussian distributions, however, the semi-nonparametric ap-

proach is preferable again.
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1 Introduction

The last decade has witnessed an explosively growing interest in the long-run
properties of economic time series. Key words in this area of research are non-
stationarity, unit roots, and cointegration. The concept of cointegration has
witnessed a particularly widespread popularity in the applied literature. See,
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e.g., Franses et al. (1998) for marketing applications, and Clarida and Taylor
(1997) for an application to spot and forward exchange rates. Other areas
of application include stock markets, the term structure of interest rates,
international trade and purchasing power parity, consumption and income,
and the demand for money.

Cointegrating relations are often given an economic interpretation relat-
ing to market equilibrium and/or market e�ciency. As such, it is useful
to test whether di�erent economic time series are cointegrated. Statistical
tests for cointegration have gone through several stages of development, see,
e.g., Hamilton (1994). Here we will focus on cointegration tests based on
the systems approach and the likelihood principle. The seminal reference is
Johansen (1988). Johansen tests for the presence of cointegrating relations
in the framework of a vector autoregressive (VAR) time series model. By
assuming a normal distribution for the innovations to the VAR, Johansen is
able to derive a closed-form expression for the likelihood ratio test statistics
for the null of no cointegration against the alternative of cointegration, as
well as its limiting distribution under the null. Johansen (1991a) extends the
test procedure to allow for deterministic trends in the time series.

The assumption of normally distributed innovations is crucial in deriving
the form of the Johansen test statistic. It is much less important for the
applicability of the limiting distribution of the test. If, however, innovations
are non-normal, e.g., fat-tailed or skewed, then the power of the test can be
increased by exploiting the non-normality in the estimation and testing stage.
This can be done by extending the methodology of Johansen to non-Gaussian
likelihoods or quasi-likelihoods as in Lucas (1997a,1998). This is a parametric
approach which gives satisfactory results if the salient features of the true
likelihood are adequately captured by the postulated quasi-likelihood. If this
is not the case, then the parametric approach adopted in Lucas may result
in poor power performance, compare the simulations in Shin and So (1998)
for the univariate case.

To avoid the loss in power due to an inappropriate choice of the quasi-
likelihood, it might seem a good idea to estimate the likelihood function from
the data using (semi-)nonparametric techniques. Hodgson (1998) discusses
adaptive estimation of long-run parameters in an error-correction framework.
His ideas can easily be extended to the estimation of the unit root parame-
ters in such models. For the univariate case, this has been done by Shin and
So (1998). We extend their test procedure in the present paper to the mul-
tivariate setting, thus constructing an adaptive version of Johansen's coin-
tegration test. Boswijk and Lucas (1997) follow a similar route and use
semi-nonparametric (SNP) density expansions following the ideas of Gallant
and Nychka (1987) instead of kernel estimation as in Hodgson (1998) and

2



Shin and So (1998). Both the adaptive and the SNP approach claim a power
gain over the Johansen method. Moreover, Boswijk and Lucas also claim a
power gain with respect to the parametric tests proposed in Lucas (1998).
No formal comparison between the adaptive and SNP methods in the frame-
work of cointegration testing has yet been performed, such that it is di�cult
to say which of the two methods performs best.

The aim of the present paper is to provide a Monte-Carlo comparison of
several cointegration tests available in the contemporary literature. We inves-
tigate the size and power properties of the tests under various distributional
assumptions, sample sizes, and data generating processes. We are mainly
interested in three comparisons: (i) the Gaussian versus the non-Gaussian
tests, (ii) the parametric versus the (semi)-nonparametric tests, and (iii) the
adaptive versus the SNP tests. To complete the comparisons, we also include
a fully nonparametric cointegration test, in particular the test proposed by
Bierens (1997). This tests builds on a similar generalized eigenvalue problem
as Johansen (1988,1991a).

The simulations reveal that the SNP approach is a clear winner in small
samples. The power gain under non-normal innovations does not come at
the cost of a power loss under Gaussian innovations. This stands in sharp
contrast to the adaptive approach. For large sample sizes, however, the SNP
tests have much more di�culty in picking up skewness and/or multimodality
compared to the adaptive approach. Again, however, the adaptive approach
su�ers from a substantial power loss if the innovations are (near) normal.
The main cost of using the SNP approach over the adaptive approach is the
required computation time.

The paper is set up as follows. Section 2 gives details on the model and
cointegration test procedures. Section 3 presents the estimation principles
used. This section also provides some computational details pertaining to
the available Gauss code to compute the tests. The simulation set-up and
results are presented in Section 4. Section 5 concludes.

2 Model and test statistics

Consider the VAR of order p,

�yt = �yt�1 + �1�yt�1 + : : :+ �p�1yt�p+1 + �+ "t; (1)

where yt; �; "t 2 R
k , �;�i 2 R

k�k for i = 1; : : : ; p� 1, yt is an observed time
series, � is a vector of constants, � and �1; : : : ;�p�1 are parameter matrices,
and "t is an unobserved innovation process. Model (1) can be augmented with
additional deterministic components such as seasonal dummies and linear
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trends. These additional complexities are not the prime focus of our paper,
however, and are therefore omitted from the analysis.

We make the following standard assumption for the process in (1), see
also Johansen (1988,1991a).

Assumption 1 (i) The roots of j(1�z)I��z��1(1�z)�: : :��p�1z
p�1(1�

z)j lie outside the unit circle or at +1; (ii) the series �yt is stationary; (iii)
the innovations "t are independent and identically distributed (i.i.d.) with
�nite variance-covariance matrix 
"".

Parts (i) and (ii) of Assumption 1 ensure that the time series yt is inte-
grated of at most order one, i.e., the �rst di�erences of the time series are
stationary, while the levels are possibly non-stationary. Part (iii) of Assump-
tion 1 allows us to invoke a multivariate invariance principle to establish the
limiting distribution of our test statistics. This assumption can be relaxed
to the assumption of a �nite variance martingale di�erence sequence at the
cost of additional complexities in the proofs. As the focus of the present pa-
per is not on the limiting distribution theory, but more on the �nite sample
performance of the cointegration tests, we stick to the requirement in part
(iii).

Our main interest is in the rank of the matrix �. If the rank of � equals
r, we say there are r cointegrating relations. In that case the matrix � can
be decomposed as � = ��>, with � and � two k� r matrices of full column
rank. The columns of � are called the cointegrating vectors, while r is called
the cointegration rank of the system. In order to test whether the rank of �
is equal to r, we introduce the LU-type decomposition of � as proposed by
Kleibergen and van Dijk (1994). Let

� =

�
�11 0
�21 �22

��
Ir �>21
0 Ik�r

�
; (2)

with �11, �21, �22, and �21 r � r, (k � r) � r, (k � r) � (k � r), and (k �
r)� r matrices respectively. Moreover, we de�ne �> = (�>11; �

>
21) and �

> =
(Ir; �

>
21), and assume that � and � have full column rank. The hypothesis

H0 : rank(�) = r now boils down to the hypothesis H 0
0 : �22 = 0, see

Kleibergen and van Dijk (1994) and Lucas (1997a,1998) for more details.
Let vec(�) denote the operator that stacks the columns of a matrix into

a vector. De�ne �> = (vec(�)>; vec(�1)
>; : : : ; vec(�p�1)

>; �>). Most of the
tests in this paper build on the parametric model (1), combined with a (pos-
sibly misspeci�ed) family of densities f("t; �), where � is an additional pa-
rameter vector determining the shape of the density. De�ning "t(�; �22) as
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the residual from (1) under (2) for a particular value of the parameters, the
(possibly nonparametrically estimated) quasi-likelihood L(�) becomes

L(YT ; �; �22; �) =
TY
t=1

f("t(�; �22); �); (3)

with Y >
T = (y>1 ; : : : ; y

>
T ), and T the sample size. The dimension of � may

range from zero to in�nity. For example, if a Gaussian quasi-likelihood with
known covariance matrix is used, � is empty. By contrast, if the density of
"t in (1) is estimated nonparametrically, � is in�nite dimensional. Normally,
the parameter vector � at least contains the nonredundant elements of the
covariance matrix of the errors, 
"", see Assumption 1. Our main interest in
the present paper is to compare contemporary cointegration tests that use
di�erent speci�cations of � in (3) and/or di�erent methods to estimate �.

To test the null hypothesis H0 : �22 = 0 against the alternative H0 :
�22 6= 0, we consider two types of tests, namely the (quasi)-likelihood ratio
(QLR) test and the (quasi)-Lagrange multiplier (QLM) test. A Wald variant
of the test is not considered, as the Wald test for �22 = 0 turns out to depend
on the ordering of the variables in yt, see Kleibergen and van Dijk (1994) and
Lucas (1996). Let �̂ and ~� denote the estimates of � under the alternative
and under the null, respectively. A similar de�nition holds for �̂ and ~�. We
also need the additional notation �� and �� to denote estimates of � and �
respectively, based on a preliminary estimation procedure. We now obtain

QLR = �2 ln[L(YT ; ~�; 0; ~�)=L(YT ; �̂; �̂22; �̂)]; (4)

as one of the tests considered. The QLM tests are somewhat more di�cult
to present. Let

GT = G(YT ; �; �22; �); (5)

JT = J(YT ; �; �22; �); (6)

and
HT = H(YT ; �; �22; �); (7)

denote the gradient, the outer product of gradients, and the Hessian of the
quasi-likelihood with respect to (�>; vec(�22)

>; vec(�)>), respectively. Fur-
thermore, let S denote a selection matrix such that

S(�>; vec(�22)
>; vec(�)>)> = vec(�22): (8)

Then the QLM tests we consider are either of the form

�
S ~H�1

T
~GT

�> �
S ~H�1

T
~JT ~H�1

T S>
��1 �

S ~H�1
T

~GT

�
; (9)
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or �
S �H�1

T
�GT

�> �
S �H�1

T
�JT �H�1

T S>
��1 �

S �H�1
T

�GT

�
; (10)

where the notation with a tilde, e.g., ~GT , denotes evaluation in (~�; 0; ~�), while
the notation with the upper bar, e.g., �GT , denotes evaluation in (��; 0; ��). The
formulation in (9) will be used for the parametric and semi-nonparametric
cointegration tests, while (10) is useful for the adaptive cointegration test.

For inference, the computed cointegration tests have to be confronted
with a critical value. It is common practice to use the critical values from the
limiting distribution ofQLR andQLM . In the present paper, we do not want
to focus on the di�erent regularity conditions needed to establish the limiting
distribution for the parametric, semi-nonparametric, and the adaptive tests.
For the technical details, the reader is referred to Johansen (1988,1991a),
Lucas (1997a,1998), Boswijk and Lucas (1997), Hodgson (1998), and Shin
and So (1998). The limiting distribution, however, is the same for all testing
procedures considered. This is summarized `informally' in Theorem 1.

De�ne �? as any k�(k�r) matrix of full column rank such that �>?� = 0.
Furthermore, de�ne the quasi-score  t and the quasi-information I as

 t = �@ ln f("t; �)
@"t

; I = �E
�
@2 ln f("t; �)

@"t@">t

�
: (11)

Theorem 1 Under `suitable' regularity conditions (see the references men-
tioned above), the QLM tests for model (1) under the additional assumption
� = ��0 with �0 2 R

r , converge weakly to the functional

trace
�
(
R
�B1dB

>
2 )

>(
R
�B1

�B>
1 )

�1(
R
�B1dB

>
2 )
	
; (12)

with �B1 = B1 �
R
B1, B1 and B2 two standard (k � r)-vector Brownian

motions with diagonal correlation matrix R, and R containing the canonical
correlations between �>?"t and �

>
?I�1 t.

Remark 1 The notation in Theorem 1 is standard,
R
B1dB

>
2 denoting the

stochastic integral
R 1

0
B1(s)dB2(s)

>, and
R
B1 and

R
B1B

>
1 denoting standard

Riemann integrals,
R 1

0
B1(s)ds and

R 1

0
B1(s)B1(s)

>ds, respectively.

Remark 2 Theorem 1 only gives the results for the QLM test. The only
QLR test we consider in this paper is that of Johansen (1991a) based on
the Gaussian quasi-likelihood. The limiting distribution of that test statistic
is given by (12) with B2 replaced by B1, see Johansen (1991a). If a non-
Gaussian quasi-likelihood were to be used for the QLR test, additional nui-
sance parameters would enter the limiting distribution if the quasi-likelihood
and the true likelihood did not coincide, see Lucas (1997a). This is why we
concentrate on the use of the QLM rather than the QLR type tests.
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Remark 3 Theorem 1 states the additional assumption � = ��0. This
implies that there are no linear deterministic trends in the data generating
process. If this assumption does not hold, the limiting distribution changes in
the familiar way, compare Johansen (1991a). In particular, the �rst element
of the vector �B1(s) then has to be replaced by s � 0:5. Similar changes
to the limiting distribution have to be carried through in case additional
deterministic components are present either in the regression model or in the
data generating process.

Before proceeding with the presentation of the di�erent estimators used
in this paper, we �rst pay some more attention to the way to conduct in-
ference in the present framework. As mentioned in Theorem 1, the limiting
distribution of the cointegration tests considered depends on the nuisance pa-
rameter R, containing the canonical correlations between �>?"t and �

>
?I�1 t.

It is therefore clear that the critical values of the QLM test depend both on
the true likelihood and the quasi-likelihood. This means that new critical
values have to be tabulated for each new estimation principle chosen and
each new distribution of the innovations. There are at least two ways to deal
with this problem. The �rst approach was suggested and implemented by
Lucas (1998). One obtains a consistent estimate of R using the regression
residuals "̂t, ~"t, or �"t, and the estimated quasi-scores  ̂t, ~ t, or � t (and cor-
responding estimates of the quasi-information I). Using the estimated value
of R, the integrals and Brownian motions in (12) can be approximated by
sums and by random walks, respectively. The random walks have standard
normal innovations with correlation matrix R̂, ~R, or �R. By drawing a large
number of (correlated) random walks for a given estimate of R and using
the discretized version of (12), one can obtain an estimate of the appropriate
asymptotic critical value or p-value of the test. The computation time re-
quired for these simulations is feasible for practical purposes. We adopt this
simulation based method in the Monte-Carlo comparison in Section 4. As
an alternative to the simulation based method, one can use Gamma approxi-
mations to the usual limiting distribution of the Johansen cointegration test
and mix these with an independent stochastic term depending only on the
(estimated) matrix R. For the univariate case, this approach was suggested
by Abadir and Lucas (1996), while the multivariate case has very recently
been addressed by Boswijk and Doornik (1998) and Doornik (1998).
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3 Estimators and implementation of test sta-

tistics

In this section we consider the di�erent choices for the quasi-likelihood (3).
We also discuss how the parameters of the quasi-likelihood can be chosen,
and how these estimates can be used in the construction of the cointegra-
tion tests. Each choice of the quasi-likelihood and estimation principle is
treated in a separate subsection. The �nal subsection contains some details
on the non-parametric cointegration test procedure of Bierens (1997). This
test is included for completeness. It can be used to contrast the results for
the parametric model (1) combined with a possibly nonparametrically esti-
mated quasi-likelihood, with the results one obtains by a fully nonparametric
approach.

3.1 Gaussian quasi-likelihood

As an obvious benchmark case, we consider the Gaussian QLR and QLM
cointegration tests as proposed by Johansen (1991a) and Kleibergen and van
Dijk (1994), respectively. In this case the parameter � only contains the non-
redundant elements of the variance-covariance matrix 
"" of the innovations.
Maximum likelihood estimates of � under both the null and the alternative
can be obtained explicitly once the parameters � and �22 are known, see
Johansen (1991a). For the Gaussian quasi-likelihood, R in Theorem 1 reduces
to the identity matrix, such that B2 � B1, see also Remark 2.

3.2 Student t quasi-likelihood

A �rst parametric alternative to the Gaussian quasi-likelihood is the Student
t quasi-likelihood. We use a Student t with 5 degrees of freedom. Coin-
tegration tests based on this quasi-likelihood were studied in, e.g., Lucas
(1997a,1998), and successfully applied in, e.g., Franses and Lucas (1998),
Franses et al. (1998). Fixing the degrees of freedom parameter a priori
has some advantages from a statistical robustness point of view, see Lucas
(1997b). Again, � only contains the nonredundant parameters of the co-
variance matrix of the innovations. Though no explicit form is available
for the estimates of �, �22, and �, they can be obtained straightforwardly
by standard maximization techniques. Estimated residuals and quasi-scores
can be used to estimate the nuisance parameter R and to conduct inference
as described towards the end of Section 2.
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3.3 Semi-nonparametric approach

The semi-nonparametric (SNP) approach centers around the following spec-
i�cation of the quasi-likelihood for the t-th observation:

pn(L"t +m; �1)
2 � t(L"t +m; �2); (13)

where pn(�; �1) is a nth order polynomial with coe�cients given in �1, t(�; �2) is
the standard Student t distribution with zero mean and unit scaling matrix,
and degrees of freedom parameter �2. The lower-triangular matrix L cap-
tures the covariances between the innovations, while the vector m is added
to ensure that the expectation of "t following from (13) equals zero. For
�2 !1, we obtain the SNP approach as introduced by Gallant and Nychka
(1987). The extension to the Student t distribution (� < 1) was proposed
by Boswijk and Lucas (1997) in order to obtain a parsimonious parameter-
ization of skewness and fat-tailedness. The skewness is mainly captured by
the premultiplication with the polynomial factor, while the fat-tailedness is
captured by both the polynomial factor and the leptokurtosis of the Student
t distribution.

For the quasi-likelihood in (13), we have � = (�1; �2; �3), where �3 contains
the non-redundant elements of L. The vector m does not enter, as it is a
known function of �, see Boswijk and Lucas (1997). Moreover, there is a
constraint on the value of �2 with respect to the order n of the polynomial,
see also Boswijk and Lucas (1997). This constraint is needed to ensure that
(13) is a proper density, i.e., integrates out to 1.

To obtain somewhat more insight into the form of the polynomial, con-
sider the bivariate case, k = 2. We then have

pn ((x1; x2); �1) = 1 + (14)

�1;1x1 + �1;2x2 +

�1;3x
2
1 + �1;5x1x2 + �1;6x

2
2 +

...

�1;N�nx
n
1 + �1;N�n+1x

n�1
1 x2 + : : :+ �1;N�1x1x

n�1
2 + �1;Nx

n
2 ;

where N denotes the number of elements in �1, i.e., N = n(n+1)=2� 1, and
�1 = (�1;1; : : : ; �1;N). By an appropriate choice of the elements of �1, one can
model several types of skewness and leptokurtosis. Note that for n = 0, (13)
reduces to the Student t quasi-likelihood with estimated degrees of freedom
parameter.

Gallant and Nychka (1987) formally prove for �2 = 1 that the set of
densities characterized by (13) forms a dense set in a larger class of densities
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that comprises most familiar densities used in econometric applications. This
holds a fortiori if �2 2 R+ . It is therefore possible to approximate most
familiar densities arbitrarily closely by a quasi-likelihood (13) that has a
su�ciently large value of n. By letting the degree n of the polynomial diverge
to in�nity with the sample size at the appropriate rate, one can under suitable
regularity conditions consistently estimate the true likelihood from the data.
Little is known, however, on the precise rate required. We therefore adopt
a di�erent approach in the Monte-Carlo simulations in Section 4. First,
we estimate the model parameters for several choices of n = 0; 1; : : : ; �n.
For each of these choices, we compute the cointegration test. Next we use
the Akaike Information Criterion (AIC) to select the most suitable value
of n and the corresponding cointegration test statistic. This approach can
be compared with kernel estimation of the innovations' density with data
dependent bandwidth selection, see also Subsection 3.4. Similar approaches
are adopted in the literature, see, e.g., Gallant and Tauchen (1997). We have
no formal proof that the AIC results in an admissible rate of divergence of
the polynomial degree n with the sample size T . Given our simulation results
in Section 4, however, we conjecture that the use of the AIC for the SNP
approach does not invalidate the inference procedure suggested in Section 2.

The quasi-likelihood maximization problem based on (13) is highly non-
linear. Apart from this, however, there are no conceptual di�culties with
obtaining the parameter estimates of � and � under the null for given n or
for the AIC selected value of n. Again, these estimates are used to construct
an estimate of R that can be used for inference purposes.

3.4 Adaptive approach

Whereas in the previous subsection we used semi-nonparametric density ex-
pansions in order to estimate the complete true likelihood from the data,
here we use kernel estimation. We label this approach the adaptive one.
Adaptive estimation has a long history, see, e.g., Manski (1984). It has been
applied in the non-stationary time series context by Hodgson (1998) for the
estimation of the parameters in (1) for known value of r, and by Shin and So
(1998) for testing the rank of � in (1) in the univariate (k = 1) case. In the
present paper we extend the results of the previous papers by constructing
an adaptive cointegration test for the multivariate case. Though a formal
proof of the validity of Theorem 1 for this adaptive test is beyond the scope
of the present paper, such a proof can quite straightforwardly be constructed
using the results of Hodgson (1998) and Shin and So (1998). This claim is
strongly supported by the simulation results in Section 4.

The adaptive cointegration testing procedure is e�ectively a two-step
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procedure. First, consistent estimates of the model parameters are con-
structed. For this we use the standard estimates based on the Gaussian
quasi-likelihood. Let "�t denote the t-th regression residual implied by these
preliminary parameter estimates. Then the density of the innovations is
estimated as

f �("t) =
1

T � 1

X
i6=t

Kh ("
�
i � "t) ; (15)

where Kh(�) is a kernel, see further below for more details. The delete-one
(i 6= t) kernel estimate in (15) is needed to establish the limiting distribution
of the test, see Hodgson (1998) and Shin and So (1998). The parameter � is
now equal to the true density of the innovations "t, and it is estimated using
(15). Denote this estimate by ��. Given ��, one can update the preliminary
estimate of � by doing a one-step Newton-Raphson improvement. The gra-
dient needed for this one-step improvement can be obtained directly from
(15) by straightforward di�erentiation. The Hessian, however, is replaced
by the outer-product-of-gradient matrix. In this way, we avoid the explicit
computation of second order derivatives. The replacement of the Hessian by
the outer-product-of-gradient is valid asymptotically due to the information
matrix equality and the consistency of the kernel estimator. Denote the up-
dated estimate of � by ��. This �� can used to construct residuals under the
null �22 = 0. Call these residuals �"t. The estimate of � used to construct the
cointegration test is now given by

�� = �f("t) =
1

T � 1

X
i 6=t

�Kh (�"i � "t) : (16)

Again, (16) is used to construct the gradient of the likelihood and the outer-
product-of-gradients. The test statistic is then given by (10), with �HT set
equal to �JT . Moreover, the canonical correlations between the gradients
based on (15) and the residuals �"t are used to estimate the nuisance parameter
R needed for inference.

To complete the description of the adaptive approach, we have to give
some more details on the choice of the kernel functions Kh(�) and �Kh(�). We
only discuss Kh(�), as the de�nition of �Kh(�) is completely analogous. Let
�(�) be the multivariate standard normal density function. Then

Kh(x) = h�1 � jV j�1=2 � �((V �)�1=2x=h); (17)

where

V � =
1

T � 1

TX
t=1

"�t ("
�
t )
>: (18)
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The scalar h denotes the bandwidth parameter. We choose Silverman's
(1986) rule of thumb to select the bandwidth,

h = 0:96=T 1=(4+k): (19)

Note that no scale parameter is needed in the expression for h, as the scale
parameter is already present through the matrix V in (18).

Following Hodgson (1998) and Shin and So (1998), we also consider a
symmetrized version of the density estimates (15) and (16), e.g.,

f �;s("t) =
1

2(T � 1)

X
i6=t

[Kh ("
�
i � "t) +Kh ("

�
i + "t)] ; (20)

such that f �;s("t) = f �;s(�"t). A claim made by Hodgson is that the sym-
metrized version of the kernel estimate also has satisfactory properties for
non-symmetric distributions. We investigate this claim in Section 4 by fo-
cusing on the properties of the adaptive cointegration test.

3.5 Fully nonparametric approach

All cointegration tests so far are centered around the parametric model (1).
In this subsection, we briey discuss the fully nonparametric cointegration
testing procedure of Bierens (1997). Though the motivation underlying the
test of Bierens di�ers from that underlying the adaptive approach, it is useful
to confront the cointegration tests based on (1) with a test that does not use
any parametric model at all.

It is beyond the scope of the present paper to give a detailed exposition
of the implementation of Bierens' test. The essential idea is based on the
following properties. Let fFk(x); k = 1; 2; : : :g denote a set of functions

on [0; 1] satisfying
R 1

0
Fk(x)dx = 0 and

R 1

0
Fj(x)Fk(x)dx = 0; j 6= k; these

conditions are satis�ed, e.g., by Fk(x) = cos(2k�x). Next, de�ne for any
time series fzt; t = 1; : : : ; Tg, the weighted average

Mk(z) =
1

T

TX
t=1

Fk

�
t

T

�
zt: (21)

If yt � I(1), then it follows that Mk(y) = Op(T
1=2). However, for a sta-

tionary linear combination � 0yt, we �nd Mk(�
0y) = � 0Mk(y) = Op(T

�1=2).
This di�erent rate of convergence in the stationary and non-stationary di-
rections is used to obtain a consistent test for the null hypothesis of no
cointegration against the alternative of cointegration. The reader is referred
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to the original paper, Bierens (1997), for more details on the test statis-
tic and its null distribution. Here we only mention that we have imple-
mented two versions of Bierens test. The �rst variant of the test (using
Fk(x) = cos(2k�x)) only provides the correct limiting distribution in case
the assumption � = ��0 in Theorem 1 is satis�ed. The second variant of the
test uses Fk(x) = cos(2k�[Tx� 1

2
]=T ), and is correct even if this assumption

fails to hold, e.g., in case there are deterministic trends in the data.

4 Monte-Carlo set-up and results

Following the simulation experiment in Boswijk and Lucas (1997), we con-
sider the following bivariate (k = 2) data generating process (DGP):

�

�
y1t
y2t

�
=

�
0 0
0 �c=T

��
y1;t�1
y2;t�1

�
+

�
"1t
"2t

�
: (22)

More complicated DGP's involving genuine cointegrating relations and/or
endogeneity of regressors can also be used without altering the results of the
present paper. Of course, such alterations will a�ect the absolute rejection
frequencies of our test procedures, but they will not a�ect the ordering of
the di�erent testing principles in terms of power performance, see also Lucas
(1998). Dividing c in (22) by the sample size T follows the local alternatives
formulation of Phillips (1988), see also Johansen (1991b). It allows us to
investigate the e�ect of the sample size on the performance of the tests in an
elegant way.

We consider 4 values for c, namely c = 0; 5; 10; 20, and two sample sizes,
namely T = 100; 1000. To limit the (heavy) computational burden of the
simulations, we conduct 2000 and 1200 Monte-Carlo simulations for sample
sizes T = 100 and T = 1000, respectively. Note that within each Monte-
Carlo simulation, we need an additional simulation in order to determine the
critical values or p-values of the test, see the end of Section 2. We use 500
simulations to estimate the asymptotic p-values. In our experience, this is
su�cient from a practical point of view. We test the null of no cointegration
against the alternative of at least one cointegrating relation. We use a 5%
signi�cance level. We set �n = 3 as the upper bound on the order of the
SNP polynomial used in the simulations. This is done in order to limit the
computational burden.

In order to investigate the performance of the tests under alternative
conditions, we use several distributions for the innovations "t. Following
Boswijk and Lucas (1997), we use:

� the standard bivariate normal distribution;
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� the standard bivariate Student t distribution with 3 degrees of freedom;

� the standard bivariate Student t distribution with 1 degree of freedom,
truncated such that 95% of the original probability mass is preserved;

� a �2 distribution with 3 degrees of freedom for each of the (independent)
components of "t;

� an F distribution with degrees of freedom parameters equal to 3 and
3, respectively, for each of the (independent) components of "t;

� a mixture of three normals, each with unit covariance matrix, and with
means (0;�3=2) with probability 0.5, (3=2; 7=6) with probability 0.3,
and (�9=4; 2) with probability 0.2;

� a mixture of four normals, each with unit covariance matrix, and with
means (�3;�3), each mixture component receiving probability 0.25.

This comprises a variety of di�erent distributions, displaying skewness, fat-
tailedness, and multimodality. We extend the above set of distributions
for i.i.d. "t by considering bivariate ARCH and GARCH processes. ARCH
and GARCH processes exhibit volatility clustering, a phenomenon that is
important for �nancial time series. We concentrate on two processes:

� the components of "t are individually ARCH(1) with parameter 0.95,
i.e., "it =

p
hit�it for i = 1; 2 with hit = 1+�"2i;t�1, where � = 0:95 and

�it is i.i.d. standard normal (over i as well as t);

� the components of "t are individually GARCH(1,1) with parameters
0.15 and 0.8, i.e., "it =

p
hit�it for i = 1; 2 with hit = 1+�"2i;t�1+�hi;t�1,

where � = 0:15, � = 0:8, and �it is i.i.d. standard normal (over i as
well as t);

The parameters of the GARCH process are typically found in empirical ap-
plications for �nancial time series using daily data. The persistence of the
volatility process for our GARCH(1,1) speci�cation is �+� = 0:95, which is
also the value taken for the ARCH(1) parameter. By considering the volatil-
ity clustering processes, we can investigate the robustness of our results with
respect to realistic deviations from Assumption 1.

The results of the simulations are presented in Tables 1 and 2.
First note that the sizes of the tests seem acceptable in all cases consid-

ered, excepting the ARCH(1) process. For the ARCH(1), all tests appear
oversized, but the size distortion for the Gaussian tests is much greater than
for the non-Gaussian tests. This is in accordance with results of Caner (1998).
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Table 1:
Cointegration Test Performance Comparison, Sample Size T = 100

c Joh G t(5) SNP A-S A-NS NP1 NP2
0 1 2 3 AIC

Normal
0 0.06 0.04 0.05 0.05 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.04
5 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.05 0.04
10 0.15 0.13 0.12 0.13 0.13 0.13 0.11 0.13 0.11 0.09 0.06 0.05
20 0.48 0.43 0.35 0.42 0.43 0.38 0.35 0.42 0.33 0.27 0.05 0.04

t(3)
0 0.06 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.04 0.03
5 0.08 0.07 0.16 0.16 0.16 0.15 0.14 0.16 0.11 0.12 0.06 0.05
10 0.16 0.14 0.39 0.39 0.38 0.36 0.33 0.38 0.28 0.27 0.06 0.05
20 0.48 0.42 0.78 0.78 0.79 0.77 0.70 0.77 0.63 0.60 0.05 0.04

Truncated (95%) Cauchy
0 0.07 0.06 0.05 0.05 0.05 0.05 0.04 0.05 0.03 0.04 0.05 0.04
5 0.08 0.07 0.45 0.48 0.38 0.36 0.30 0.48 0.22 0.28 0.05 0.05
10 0.17 0.15 0.84 0.84 0.80 0.75 0.67 0.84 0.57 0.60 0.05 0.04
20 0.48 0.42 0.99 0.99 0.99 0.98 0.94 0.99 0.91 0.90 0.06 0.05

�2(3)
0 0.05 0.04 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.03 0.05 0.04
5 0.07 0.07 0.11 0.10 0.12 0.13 0.13 0.13 0.12 0.20 0.05 0.05
10 0.15 0.13 0.22 0.22 0.30 0.30 0.30 0.32 0.26 0.46 0.05 0.04
20 0.46 0.40 0.56 0.59 0.71 0.72 0.74 0.74 0.61 0.85 0.06 0.05

F (3; 3)
0 0.05 0.04 0.04 0.03 0.03 0.04 0.04 0.03 0.03 0.03 0.06 0.04
5 0.06 0.05 0.85 0.87 0.93 0.92 0.86 0.93 0.84 0.89 0.06 0.04
10 0.10 0.09 0.95 0.96 0.98 0.98 0.92 0.98 0.97 0.99 0.04 0.04
20 0.37 0.30 0.98 0.97 0.97 0.96 0.91 0.97 1.00 1.00 0.07 0.05

Mixture of normals, I
0 0.06 0.05 0.05 0.04 0.04 0.04 0.05 0.05 0.04 0.04 0.05 0.04
5 0.08 0.07 0.07 0.06 0.06 0.12 0.16 0.16 0.06 0.14 0.04 0.04
10 0.15 0.13 0.13 0.12 0.14 0.27 0.40 0.40 0.12 0.34 0.05 0.04
20 0.49 0.43 0.38 0.43 0.47 0.68 0.82 0.81 0.38 0.74 0.06 0.06
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Table 1: (continued)
c Joh G t(5) SNP A-S A-NS NP1 NP2

0 1 2 3 AIC

Mixture of normals, II
0 0.06 0.04 0.05 0.05 0.05 0.04 0.05 0.04 0.04 0.04 0.05 0.04
5 0.09 0.08 0.05 0.07 0.08 0.11 0.53 0.52 0.39 0.66 0.04 0.04
10 0.16 0.13 0.05 0.13 0.16 0.21 0.84 0.84 0.79 0.96 0.06 0.05
20 0.46 0.41 0.16 0.41 0.49 0.49 0.94 0.94 0.98 1.00 0.05 0.05

ARCH(1), � = 0:95
0 0.24 0.21 0.06 0.06 0.07 0.08 0.09 0.07 0.08 0.08 0.07 0.06
5 0.24 0.23 0.14 0.15 0.15 0.16 0.15 0.15 0.13 0.15 0.07 0.06
10 0.33 0.30 0.24 0.24 0.25 0.26 0.25 0.23 0.21 0.22 0.09 0.06
20 0.61 0.56 0.35 0.36 0.41 0.44 0.40 0.35 0.31 0.30 0.13 0.08

GARCH(1,1), � = 0:15; � = 0:8
0 0.08 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.04
5 0.11 0.10 0.07 0.09 0.08 0.09 0.09 0.09 0.09 0.08 0.06 0.05
10 0.18 0.16 0.11 0.15 0.15 0.14 0.14 0.14 0.14 0.13 0.06 0.04
20 0.52 0.46 0.29 0.41 0.40 0.40 0.38 0.40 0.34 0.29 0.06 0.05

Note: The table contains empirical rejection frequencies over 2000 Monte Carlo repli-
cations of several cointegration testing procedures. The data generating process is
�y1t = "1t, �y2t = c � y2;t�1=T + "2t. c is the non-centrality parameter in the data
generating process, such that c = 0 gives an indication of the size of the test. Joh is
the Johansen (1991) test statistic. G and t(5) are the cointegration LM test statistics
based on a Gaussian and a Student t(5) quasi-likelihood, respectively. SNP is the semi-
nonparametric approach, with �xed order of the polynomial equal to 0, 1, 2, and 3. The
column AIC indicates that the order of the SNP expansion is determined through the
Akaike information criterion. A-S and A-NS give the results for the Hodgson (1997) type
adaptive cointegration test with symmetrized and non-symmetrized kernel density esti-
mator, respectively. NP1 and NP2 give the results for Bierens (1997) nonparametric test,
without and with taking care of deterministic trends in the data, respectively. The table
has nine panels, corresponding to di�erent distributions for the innovations "t = ("1t; "2t)

>.
Normal is the standard normal distribution. t(3) is a Student t distribution with 3 de-
grees of freedom. Truncated Cauchy gives drawings from a standard Cauchy distribution.
The drawings are discarded if ">t "t exceeds the 95th percentile of the F (1; 1) distribution.
For the �2(3) and the F (3; 3) distribution, "1t and "2t are drawn independently from the
mentioned distributions. The �rst mixture of normals consists of 3 normals with unit co-
variance matrix. The means are (0;�3=2) with probability 0.5, (3=2; 7=6) with probability
0.3, and (�9=4; 2) with probability 0.2. The second mixture of normals has four normals
with unit variance matrix and means (�3;�3), all selected with equal probability 0:25.
For ARCH(1), "it =

p
hit�it, hit = 1+�"2i;t�1

, with � = 0:95 and �it i.i.d. standard normal

(over i as well as t). For GARCH, similarly hit = 1+�"2i;t�1
+�hi;t�1, with � = 0:15 and

� = 0:8.
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Table 2:
Cointegration Test Performance Comparison, Sample Size T = 1000

c Joh G t(5) SNP A-S A-NS NP1 NP2
0 1 2 3 AIC

Normal
0 0.06 0.06 0.06 0.05 0.05 0.06 0.06 0.05 0.06 0.06 0.07 0.07
5 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.07 0.06 0.06
10 0.14 0.14 0.13 0.13 0.15 0.14 0.14 0.13 0.13 0.12 0.05 0.05
20 0.44 0.43 0.35 0.43 0.43 0.43 0.41 0.43 0.34 0.33 0.05 0.05

t(3)
0 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.05 0.06 0.07 0.07
5 0.08 0.08 0.21 0.21 0.20 0.18 0.16 0.21 0.20 0.17 0.06 0.06
10 0.17 0.16 0.52 0.53 0.50 0.46 0.36 0.52 0.47 0.43 0.05 0.05
20 0.42 0.42 0.92 0.93 0.92 0.91 0.79 0.92 0.89 0.88 0.06 0.06

Truncated (95%) Cauchy
0 0.05 0.05 0.05 0.05 0.06 0.05 0.06 0.05 0.04 0.06 0.05 0.05
5 0.07 0.07 0.53 0.57 0.45 0.43 0.25 0.57 0.50 0.51 0.06 0.05
10 0.17 0.17 0.94 0.95 0.91 0.87 0.60 0.95 0.90 0.90 0.05 0.05
20 0.43 0.42 1.00 1.00 1.00 0.98 0.85 1.00 1.00 1.00 0.06 0.06

�2(3)
0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
5 0.08 0.08 0.11 0.12 0.14 0.13 0.13 0.14 0.22 0.36 0.07 0.07
10 0.16 0.16 0.26 0.25 0.35 0.32 0.30 0.34 0.56 0.81 0.06 0.06
20 0.43 0.43 0.65 0.68 0.83 0.81 0.75 0.80 0.95 0.99 0.08 0.08

F (3; 3)
0 0.05 0.05 0.04 0.05 0.04 0.05 0.04 0.04 0.04 0.03 0.06 0.06
5 0.06 0.06 0.99 1.00 1.00 1.00 0.97 1.00 1.00 1.00 0.06 0.06
10 0.10 0.10 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.06 0.06
20 0.37 0.36 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.05 0.05

Mixture of normals, I
0 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.06 0.05 0.05
5 0.08 0.08 0.07 0.08 0.08 0.15 0.16 0.16 0.07 0.19 0.06 0.06
10 0.15 0.15 0.15 0.15 0.17 0.38 0.46 0.46 0.14 0.47 0.06 0.06
20 0.46 0.45 0.41 0.46 0.50 0.82 0.86 0.86 0.43 0.92 0.05 0.05
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Table 2: (continued)
c Joh G t(5) SNP A-S A-NS NP1 NP2

0 1 2 3 AIC

Mixture of normals, II
0 0.06 0.06 0.06 0.06 0.06 0.05 0.04 0.04 0.05 0.06 0.06 0.06
5 0.09 0.09 0.06 0.09 0.09 0.10 0.43 0.43 0.47 0.71 0.05 0.05
10 0.15 0.14 0.07 0.15 0.17 0.17 0.71 0.71 0.91 0.97 0.05 0.05
20 0.44 0.43 0.14 0.43 0.55 0.52 0.89 0.89 1.00 1.00 0.06 0.06

ARCH(1), � = 0:95
0 0.14 0.13 0.07 0.06 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06
5 0.18 0.18 0.26 0.26 0.26 0.25 0.19 0.26 0.25 0.28 0.05 0.05
10 0.28 0.27 0.54 0.53 0.53 0.52 0.39 0.53 0.52 0.53 0.05 0.05
20 0.54 0.54 0.88 0.88 0.89 0.87 0.67 0.87 0.85 0.83 0.06 0.06

GARCH(1,1), � = 0:15; � = 0:8
0 0.08 0.08 0.06 0.07 0.07 0.08 0.08 0.07 0.07 0.07 0.05 0.05
5 0.10 0.10 0.09 0.10 0.10 0.09 0.10 0.10 0.09 0.10 0.05 0.05
10 0.18 0.18 0.15 0.16 0.16 0.16 0.15 0.16 0.14 0.17 0.05 0.05
20 0.46 0.45 0.37 0.43 0.43 0.44 0.40 0.42 0.36 0.34 0.06 0.06

Note: The table contains empirical rejection frequencies over 1200 Monte Carlo repli-
cations of several cointegration testing procedures. The data generating process is
�y1t = "1t, �y2t = c � y2;t�1=T + "2t. c is the non-centrality parameter in the data
generating process, such that c = 0 gives an indication of the size of the test. Joh is
the Johansen (1991) test statistic. G and t(5) are the cointegration LM test statistics
based on a Gaussian and a Student t(5) quasi-likelihood, respectively. SNP is the semi-
nonparametric approach, with �xed order of the polynomial equal to 0, 1, 2, and 3. The
column AIC indicates that the order of the SNP expansion is determined through the
Akaike information criterion. A-S and A-NS give the results for the Hodgson (1997) type
adaptive cointegration test with symmetrized and non-symmetrized kernel density esti-
mator, respectively. NP1 and NP2 give the results for Bierens (1997) nonparametric test,
without and with taking care of deterministic trends in the data, respectively. The table
has nine panels, corresponding to di�erent distributions for the innovations "t = ("1t; "2t)

>.
Normal is the standard normal distribution. t(3) is a Student t distribution with 3 de-
grees of freedom. Truncated Cauchy gives drawings from a standard Cauchy distribution.
The drawings are discarded if ">t "t exceeds the 95th percentile of the F (1; 1) distribution.
For the �2(3) and the F (3; 3) distribution, "1t and "2t are drawn independently from the
mentioned distributions. The �rst mixture of normals consists of 3 normals with unit co-
variance matrix. The means are (0;�3=2) with probability 0.5, (3=2; 7=6) with probability
0.3, and (�9=4; 2) with probability 0.2. The second mixture of normals has four normals
with unit variance matrix and means (�3;�3), all selected with equal probability 0:25.
For ARCH(1), "it =

p
hit�it, hit = 1+�"2i;t�1

, with � = 0:95 and �it i.i.d. standard normal

(over i as well as t). For GARCH, similarly hit = 1+�"2i;t�1
+�hi;t�1, with � = 0:15 and

� = 0:8.
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Caner proves that the Gaussian cointegration test with in�nite variance er-
rors has critical values which lie to the left of those of Johansen (1988,1991a).
As the ARCH(1) considered is close the the in�nite variance region, the high
rejection frequencies for c = 0 can be expected. Note, however, that these
size distortions do not appear if the ARCH e�ect is not dominant, though
the volatility persistence may be just as high, see the GARCH(1,1) results.
Smaller size distortions in case of ARCH(1) for the robust tests and the SNP
tests can also be expected, see also Lucas (1998), as the critical values of
these tests generally also lie to the left of those of Johansen. Note that the
SNP and adaptive density estimates will generally be fat-tailed, because the
unconditional distribution of "t for GARCH processes is fat-tailed, see Nelson
(1990).

Given the satisfactory result for the level of the tests, we concentrate the
remaining discussion on the power properties of the tests. We �rst discuss
the case of small sample sizes, T = 100. Next, we deal with larger samples,
T = 1000.

For the Gaussian distribution, we see that the Gaussian QLR test is op-
timal, closely followed by the Gaussian QLM test and the SNP(0) based
test, SNP(0) denoting the 0th order SNP expansion, i.e., the Student t with
estimated degrees of freedom. As expected in this case, the power of the
SNP test generally decreases if the degree of the polynomial is (unnecessar-
ily) increased. The AIC based SNP approach, however, succeeds in selecting
the appropriate order of the polynomial, such that the power behavior of
SNP(AIC) almost coincides with that of the Gaussian QLR and QLM tests.
We also note the familiar power loss of the Student t approach with �xed
degrees of freedom parameter (t(5)), see, e.g., Lucas (1998). Furthermore,
the power behavior of the adaptive approach is much worse than that of
the SNP(AIC) approach, especially for the non-symmetrized kernel density
estimator. Finally, note that the nonparametric test has virtually no power
whatsoever. This holds consistently throughout the simulations. We there-
fore refrain from further comments on the fully nonparametric approach in
the subsequent discussion.

For the Student t(3) distribution and the truncated Cauchy, some of
the results are changed dramatically. The power of the Gaussian tests is
similar to the case of Gaussian "t. The power of the SNP, t(5), and adaptive
approaches, however, are increased substantially. Again we note a decrease
in power for the SNP approach if the degree of the polynomial is increased.
Also, the performance of the t(5) based QLM test and of the SNP(AIC) test
are indistinguishable. The power of the adaptive tests clearly falls below that
of the SNP(AIC) approach. Note that absolute power substantially increases
with the degree of leptokurtosis.
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We now turn to the skewed distributions. If the distribution is thin-
tailed (�2(3)), we note a similar power behavior of the Gaussian tests as for
normally distributed innovations. The robust test based on the t(5) quasi-
likelihood clearly does better. However, the robust test is outperformed for
distant alternatives by the adaptive procedure based on the incorrect sym-
metrized kernel density estimate. This, in turn, is outperformed by the
SNP(AIC) approach, while �nally the adaptive procedure based on the non-
symmetrized kernel density estimator performs best. Note that the power of
the SNP tests is generally increasing now in the degree of the polynomial.
This is to be expected, as the quasi-likelihoods with the higher order poly-
nomials are better suited at capturing the skewness. Quite similar results
hold if the skewed distribution is also fat-tailed (F (3; 3)). Note that the non-
Gaussian cointegration tests reveal a substantial power increase with respect
to the situation with thin-tailed skewed innovations (�2(3)). By contrast,
the Gaussian based procedures display a power loss.

We now turn to the multimodal distributions, i.e., the mixtures of nor-
mals. If multimodality is fairly limited and if there is also skewness (mixture
I), we see the familiar behavior for the Gaussian tests. Also the Student
t(5) based test and the adaptive (symmetrized) test display about the same
behavior as for normally distributed innovations. By contrast, the SNP and
the non-symmetrized adaptive approaches are able to detect this form of
non-normality. For the SNP approach, however, the order of the polynomial
has to be set high enough. It is comforting to note that the AIC generally
succeeds in choosing su�ciently high polynomial orders. This results in a
doubling of power for this sample size for distant alternatives. It is important
to notice the strong e�ect of the incorrect imposition of a symmetrized ker-
nel density estimate. Clearly, if skewness is expected, the non-symmetrized
approach seems preferable to the symmetrized adaptive approach. If the mul-
timodality is much stronger and if skewness is absent (mixture II), the results
change. The power of the Gaussian based tests is still constant. By contrast,
the power of the Student t(5) quasi-likelihood based test is very poor. This
con�rms simulation results for the univariate case of Shin and So (1998).
The power of the SNP test is again increasing in the order of the polyno-
mial, with the AIC selecting the appropriate order for power maximization.
The symmetrized adaptive test also works quite well in this setting, though
the power lags somewhat compared to the SNP(AIC) approach for not too
distant alternatives. Surprisingly, the non-symmetrized adaptive approach
performs even better than the symmetrized one.

The �nal two processes for the innovations exhibit volatility clustering.
First note that there are substantial size distortions for the Gaussian tests,
and to a lesser extent for the non-Gaussian based tests. This was explained at

20



the beginning of the present section. For the remainder, the results for both
types of volatility clustering look very similar to the case of i.i.d. Gaussian
innovations. The only striking di�erence is the low power of the Student t(5)
based test for the GARCH process. Moreover, the AIC seems less able to
pick the appropriate orders of the polynomial from a power maximization
perspective.

We now investigate the e�ect of a larger sample size by discussing Ta-
ble 2. For the Gaussian situation, increasing the sample size does not have a
substantial impact on the results. Some patterns are emerging for the other
distributions, however. Generally, power seems to increase if the uncondi-
tional distribution of the innovations is fat-tailed and heavily multimodal,
while little is changed otherwise. Another interesting e�ect of an increased
sample size is the relative ordering of SNP(AIC) and the adaptive approach
in terms of power. Whereas the SNP(AIC) approach dominates for small
sample sizes, for larger sample sizes the adaptive approach seems preferable
if the distribution is thin-tailed and skewed or heavily multimodal. This
holds at least if we only consider SNP expansions up to order 3. The results
might change if higher orders were incorporated in the analysis. This is not
unreasonable, as we can link the maximum order of the SNP polynomial
(inversely) to the bandwidth parameter of the kernel estimator. Whereas
the latter automatically decreases with the sample size, see (19), the for-
mer does not automatically increase in our present set-up. More parameters
or higher order polynomials are needed to adequately capture skewness and
multimodality if more observations are available. We leave this for further
research.

We also note that increasing the sample size has no e�ect on the inability
of the symmetrized adaptive approach to exploit moderate departures from
normality in the form of moderate skewness and multimodality, see mixture
I. By contrast, the SNP(AIC) and non-symmetrized adaptive approaches
succeed in gaining power with respect to the Gaussian based test for the
mixture I distribution, both for samples of size T = 100 and T = 1000.

Some �nal remarks are due concerning the computation time. For T =
100, the computation time of the SNP approach of order 3 is dramatically
much higher than that of the adaptive approach. It appears, however, that
the required computation time for the SNP approach increases approximately
linearly, while that of the adaptive approach increases (at least) quadratically.
For T = 1000, the computation time for SNP(3) is still higher than for
the adaptive approach, but the percentage di�erence has decreased by a
factor between 5 and 30, depending on the distribution considered. Note
that the di�erence in computational burden would be reduced considerably
if the adaptive approach is augmented with a cross-validation procedure for
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bandwidth selection. In that case, the SNP approach might well become less
computationally intensive than the adaptive approach.

We summarize the main �ndings of the simulations in the next section.

5 Conclusions

In this paper we have contributed to the literature on cointegration testing
and the application of (semi)-nonparametric techniques to non-stationary
data. We have constructed an adaptive multivariate cointegration test and
confronted its performance to old and new alternative cointegration test pro-
cedures under a wide variety of di�erent conditions. Several conclusions
emerge.

First, it turns out to be possible to use semi-nonparametric (SNP) and
nonparametric techniques e�ciently in the construction of cointegration tests.
By using these techniques, we can avoid the arbitrary speci�cation of a quasi-
likelihood. In �nite samples, this can be done at either a substantial power
loss with respect to statistically optimal procedures, or (almost) no loss at
all, depending on the method used. The advantages already take e�ect for
samples as small as 100, at least for bivariate processes. We have also shown
that the power losses of cointegration tests based on arbitrarily chosen quasi-
likelihoods, e.g., a Student t(5), can perform quite poorly if they fail to cap-
ture salient characteristics of the true likelihood.

As a second conclusion, for small sample sizes (T = 100) estimating the
likelihood through SNP density expansions with the order of the expansion
determined by the AIC is clearly preferable to kernel estimation in terms of
overall performance of the corresponding cointegration test statistic. If the
kernel estimate is symmetrized, it is not suited for picking up mild forms of
skewness in contrast to the SNP approach. If it is not symmetrized, there is
a substantial power loss with respect to the SNP approach for near-Gaussian
innovations. For large sample sizes (T = 1000), the reverse result emerges
from our simulation experiments. This is due to the fact that for both sample
sizes we use the same upper bound on the order of the SNP expansion that is
considered. The general pattern that emerges, therefore, is that the order of
the SNP expansion must not be set to low. Otherwise, the potential power
advantages of using SNP techniques will not materialize. It is then preferable
to use kernel estimators for the density of the innovations.

A third clear conclusion from our simulation is that the fully nonpara-
metric cointegration testing approach of Bierens has almost no power against
simple reasonable alternatives. This implies there is further room for the de-
velopment of fully nonparametric cointegration tests.
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As always, several interesting directions for further research remain. First,
the tests can be applied to real data. For example, when conducting a stan-
dard modeling exercise using the Johansen (1988,1991a) cointegration test,
one can check the robustness of the results to the choice of the Gaussian quasi-
likelihood by running one of the tests discussed in the present paper. If the
results di�er, closer inspection of the data and/or the model is warranted.
As a second extension, one can further re�ne the adaptive cointegration test
with cross-validation for the bandwidth selection. Some preliminary simula-
tion results revealed, however, that little is gained. Also a formal proof of
the validity of the AIC (or some other criterion) for the SNP approach would
be very welcome. Finally, it is interesting to see how the tests perform if the
data generating process is more complicated, especially if the dynamics in
the system are more complicated than that of the simple VAR(1) used in the
present paper.
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