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Abstract
This paper studies the second-best problem where not all links of a congested transportation
network can be tolled. The second-best tax rule for this problem is derived for general static
networks, so that the solution presented is valid for any graph of the network, and for any set
of tolling points available on that network. It is demonstrated that the solution obtained
indeed generalizes a number of known second-best tax rules presented earlier in the
literature, for specific cases of the general problem discussed in the present paper. Finally, it
is demonstrated that, for instance by using the concept of ‘virtual links’, the analysis can be
applied rather easily also to a broader class of second-best problems in static networks.
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1. Introduction

Pigouvian marginal external cost pricing (Pigou, 1920) is widely accepted among transport

economists as the first-best bench-mark solution in the regulation of road transport

externalities. It is, however, almost equally commonly recognized that the necessary

assumptions for the practical applicability of this standard Pigouvian tax rule will seldom, if

ever, be met in reality. These assumptions include, for instance, that optimal charging

mechanisms be available, allowing the regulator to set perfectly differentiated taxes for all road

users and on all links of the network; that first-best conditions prevail throughout the economic

environment to which the transport system under consideration belongs; and the assumption of

perfect information for all users of the system as well as for the regulator.

Indeed, such assumptions are quite unrealistic, and second-best issues in transport

regulation have accordingly received ample attention in the literature. For instance, Wilson

(1983), and d'Ouville and McDonald (1990) study optimal road capacity with sub-optimal

congestion pricing. Braid (1989) and Arnott, De Palma and Lindsey (1990) consider uniform

or step-wise pricing of a bottleneck. Arnott (1979) and Sullivan (1983) look at congestion

policies through urban land-use strategies. A classic problem in the second-best regulation in

road transport concerns the two-route problem, where an untolled alternative road is available

parallel to a toll road. This problem has for instance been studied by Lévy-Lambert (1968),

Marchand (1968), and more recently also by Braid (1996) and Verhoef, Nijkamp and Rietveld

(1996). Glazer and Niskanen (1992) study second-best optimal parking fees for a city centre

where through-traffic as well as road users with access to private parking places cannot be

charged. Verhoef, Emmerink, Nijkamp and Rietveld (1996) consider second-best congestion

tolls under conditions of stochastic congestion and imperfect information. A recurring results

in the studies mentioned here, as well as in other studies, is that second-best tax-rules – set so

as to maximize social welfare given the persistence of the second-best distortion – are

generally different from the simple Pigouvian rule (Verhoef, Nijkamp and Rietveld, 1995).

The present paper aims to offer a general solution for the second-best problem where

not all links of a congested transportation network can be tolled. A specific application of this

problem is the two-route problem just mentioned. Numerous other applications can however

be thought of. This type of problem will become increasingly relevant from a practical

viewpoint when the foreseen introduction of electronic road charging for a growing number of

urban areas becomes reality (Small and Gomez-Ibañez, 1998). For example the determination

of optimal cordon charges, for a toll-ring around a city centre, is a special case of the general

problem studied in this paper. Often, this type of second-best problems may be ‘self-imposed’

by the regulator, in particular when it is considered inefficient to collect charges on all links of

a network, rather than on a subset of links only. This could be the case if relatively high costs

are associated with installing the additional tolling equipment, while only relatively low social

benefits would be expected to arise from having the additional tolls available. Especially with

electronic tolling, such a cost structure may often be the rule rather than the exception.
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The analysis to follow considers congestion as the only relevant externality, and is cast

in terms of a road network. The purpose is to derive the second-best optimal tax rules that

would apply for any set of toll-points on any congested transportation network. The analysis

pertains to static networks only, and assumes deterministic equilibria with perfect information.

Generalizations to dynamic transportation networks, and to networks with imperfect

information and stochasticity, are left as important topics for future research.

The paper is organized as follows. The next section introduces the notation, and

discusses some important features related to the uniqueness of equilibrium values of some key

variables in general transportation networks. Section 3 presents the second-best optimization

problem and its solution, and in addition considers the related important question of the

optimal location of additional toll-points. Section 4 shows that the general solution obtained

indeed is a generalization of earlier results in the literature, and presents some further possible

applications of the general model. Section 5 concludes.

2. A general characterization of the problem

The analysis in this paper pertains to a general transportation network G with continuous

numbers of users. This network consists of a set of nodes and a set of directed links (arcs).

Any pair of distinct nodes can be an origin-destination (OD-)pair, and the demand for trips

between such an OD-pair is not restricted to be perfectly inelastic. Apart from having a

possibly different willingness to pay for making a trip, and possibly different nodes of origin

and destination, all (potential) users of the network are assumed to be identical. The following

notation will be used (where primes denote derivatives):

N the set of nodes in the network

I the set of OD-pairs, denoted i=1,…,I

Ni the continuous number of users (or OD-flow) for OD-pair i, with Ni≥0

Di(Ni) the inverse demand function for trips for OD-pair i, with Di′≤0

J the set of directed links in the network, denoted j=1,…,J

Nj the continuous number of users (or link-flow) on link j, with Nj≥0

cj(Nj) the average cost function for the use of link j, with cj′≥0

P the set of non-cyclical paths in the network, denoted p=1,…,P

Np the continuous number of users (or path-flow) for path p, with Np≥0

Pi the set of non-cyclical paths for OD-pair i, denoted pi=1,…,Pi

δjp a dummy that takes on the value of 1 if link j belong to path p, and a value of 0

otherwise

δj a dummy that takes on the value of 1 if a toll can be charged on link j, and a value of 0

otherwise

fj the level of the toll on link j if δj=1

δip a dummy that takes on the value of 1 if pePi and

( )δ δjp j j j j i i
j

J

c N f D N⋅ + ⋅ − ≤
=

∑ ( ) ( ) ,0
1

 and a value of 0 otherwise
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The relevance and interpretation of the last of these variables will become clear in the

discussion of the equilibrium conditions for the network below. It is assumed that that all

relevant functions Di(Ni) and cj(Nj) are continuous and smooth. The cost functions represent

generalized user costs including monetized time costs, and are upward sloping in case of

congestion. In the analysis below, congestion is assumed to be link-specific. The more general

case, where the travel time on a link may also depend on the usage of other links, is presented

in the Appendix. It turns out to be a straightforward generalization of the analysis to be

presented below. In case of a dynamic generalization of the present model, for instance based

on Vickrey’s (1969) model of bottleneck congestion, account should indeed be taken of the

possibility that in case of an arrival rate of users at the tail of a link exceeding its capacity,

queuing will occur, and will directly affect the cost levels at preceding links. For a static model,

however, which can by definition not give a meaningful representation of cases where arrival

rates exceed capacities anyway (Verhoef, 1998), the assumption that congestion is link-specific

may often be acceptable, unless intersections are considered to be an important source of

congestion (see the Appendix).

Because every path p connects one unique OD-pair, defined by the nodes at the tail of

the first arc and the head of the last arc, we have:

P Pi
i

I

=
=
∑

1

(1)

Since we are dealing with a static network, we also have:

N Nj jp p
p

P

= ⋅
=

∑δ
1

(2)

An important equilibrium concept is Wardrop’s (1952) first principle, stating that for every

OD-pair i the costs for used paths must be the same and that there are no unused paths with

strictly lower costs. For the general case where the demand functions Di(Ni) are not necessarily

perfectly inelastic, this can be represented according to the following complementary slackness

equilibrium conditions (see, for instance, Smith, 1979):

( ) ( )N c f D N c f Dj jp j j j i
j

J

j jp j j j i
j

J

≥ ⋅ + ⋅ − ≥ ⋅ ⋅ + ⋅ −








 =

= =
∑ ∑0 0 0

1 1

; δ δ δ δand

 " pePi (3)

(the arguments in the cost and demand functions are dropped whenever this does not lead to

confusion). Compared with the case of inelastic demands, equation (3) therefore adds the

economic equilibrium principle that marginal benefits should be equal to marginal private costs

to the standard Wardrop condition. The fact that Wardrop’s principle allows a formulation of

network problems in terms of variational inequalities (Kinderlehrer and Stampacchia, 1980) has

been recognized by for instance Dafermos (1980) and Nagurney (1993). Inspection of (3)

reveals that the dummy variable δip defined earlier takes on the value of 1 only if path p from

the set Pi is among those that may be used in the equilibrium by travellers between OD-pair i.

Such paths with δip=1 will be called ‘relevant paths’ in the sequel. However, for some of the
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relevant paths, Np actually still may be equal to zero in the equilibrium, as will become clear

when the uniqueness of the various variables in an equilibrium is considered below. First,

however, a final identity can be given, equating the usage for a OD-pair to the sum of usage on

all relevant paths connecting that OD-pair:

N Ni ip p
p

P

= ⋅
=

∑δ
1

(4)

Under rather general conditions, a transportation network as described above can be expected

to have a unique equilibrium in OD-flows (the vector Ni) and link-flows (the vector Nj) for a

given set of tolls fj, in particular if Di′(Ni)<0 and cj′(Nj)>0 for all relevant i and j over the

relevant ranges (see, for instance, De Palma and Nesterov, 1998). It will be assumed

throughout this paper that such a unique solution exists. However, this does not imply that the

solution will be necessarily unique also in path-flows (the vector Np), nor in (first-best or

second-best) optimal toll levels (the vector fj). This can be illustrated by considering the simple

network with four links (I-IV), connecting two OD-pairs A-C and B-C, shown in Figure 1.

Note that both OD-pairs have two paths: in the last part of the trip, either link III or IV can be

chosen by both types of drivers (‘A-drivers’ and ‘B-drivers’). It is assumed that the regulator

can set tolls on each of the four links. Consider the first-best optimum, where the tolls fj are

each set equal to the marginal external congestion costs (MECj) on these links, and suppose

that the two OD-flows and the four link-flows are all positive.

Figure 1. Non-uniqueness of path-flows and link-tolls in a simple network

It is then straightforward that this equilibrium is not unique in path-flows: after interchanging

an A-driver on link III with a B-driver on link IV, the same equilibrium in OD-flows and link-

flows (and hence also in terms of total as well as marginal benefits and costs) results, although

the equilibrium has changed in terms of path-flows. Also, the equilibrium is not unique in link-

tolls. In particular, the same optimum can be realized by any set of tolls according to:

f MEC x

f MEC x

f MEC x

f MEC x

I I

II II

III III

IV IV

= +
= +
= −
= −

(5)

where x can have any value. Of course, for other network configurations, the equilibrium can

be unique also in terms of path-flows and link-tolls. The latter can be verified in the example

A

B

C

I

II

III

IV
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above by adding a third group of users, also having C as their destination, but having the

intersection of the four links as their node of origin. Therefore, the main point here is only that

for general networks, one cannot be sure that a unique solution in terms of path-flows and

(first-best or second-best) link-tolls exists. This, in turn, will be reflected in the general solution

to be derived below.

3. Solving the second-best optimization problem

The stage is now set to derive the second-best optimal congestion tolls in the case that tolls

can be charged only on a given subset of links. As a matter of fact, the first-best problem

where tolls can be charged on all links is, of course, actually only a special case of this general

second-best problem. It is assumed that, given the second-best constraint, the regulator sets

tolls so as to maximize social welfare, defined as total benefits minus total costs. Benefits are

determined according to the Marshallian measure. Using the notation and assumptions

presented in the previous section, the regulator therefore has to solve the problem that can be

represented by the following Lagrangian:

Λ =
∑

− ⋅ ⋅ ⋅ ⋅ ⋅










+ ⋅ ⋅ ⋅ ⋅ ⋅








 + ⋅









 − ⋅













⋅

= =====

== ==

=∫ ∑ ∑∑∑∑∑

∑∑ ∑∑

D x dx N c N

c N f D N

i i i

N

jp
p

P

ip p j jq
q

P

kq q
k

I

i

I

j

J

i

I

ip p jp j jq
q

P

kq q
k

I

j j i iq q
q

P

j

J

ip p
p

P

( )
0

1 11111

11 11

1

δ
δ δ δ δ

δ λ δ δ δ δ δ








==

∑∑
p

P

i

I

11

(6)

The first set of terms represent total benefits, summed over all OD-pairs; note that the total

OD-flow is determined according to (4). The second set of terms represent total costs,

summed over all links in the network; note that the total link-flow is determined according to

(2). The third set of terms represent the constraints caused by the equilibrium conditions that

for each relevant path, the marginal benefits will be equal to the average costs plus the fees

incurred on the links making up that path. Note that these constraints are consistent with (3),

and that λp denotes the Lagrangian multiplier associated with the constraint for path p. These

multipliers will be discussed in further detail below. Finally, it ought to be noted that the

inclusion of the dummies δip, or δiq when the index q is used to denote paths for notational

reasons, secures that in the determination of the necessary first-order conditions for a local

optimum only the relevant paths – which either are used or could be used in the second-best

equilibrium – are considered. Note that, also for notational reasons, the index k, when used,

denotes OD-pairs. The following necessary first-order conditions can now be derived (where

arguments in demand and cost functions are again dropped for notational convenience):

∂
∂

δ δ δ δ

δ λ δ δ δ λ δ

Λ
N

D c N c

c D p

p
ip i

i

I

jp j jq kq q j
q

P

k

I

j

J

kq q jp jq j
j

J

q

P

k

I

ip p i
i

I

ip

= ⋅ − ⋅ + ⋅ ⋅ ⋅ ′










+ ⋅ ⋅ ⋅ ⋅ ′








 − ⋅ ⋅ ′ = ∀ =

= ===

=== =

∑ ∑∑∑

∑∑∑ ∑

1 111

111 1

0 1with

(7)
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∂
∂

δ δ λ δ
Λ
f

j
j

ip jp p
p

P

i

I

j= ⋅ ⋅ = ∀ =
==

∑∑
11

0 1with (8)

( )∂
∂ λ

δ δ δ δ
Λ

p
jp j j j

j

J

ip i
i

I

ipc f D p= ⋅ + ⋅ − ⋅ = ∀ =
= =

∑ ∑
1 1

0 1with (9)

Note that, notwithstanding the fact that the second-best equilibrium may not be unique in path-

flows as pointed out in the previous section, equations (7) indicate that the first-order

conditions with respect to path-flows should be used to solve the problem. Path-flows give the

necessary connection between the benefit side (in terms of OD-flows) and the cost side (in

terms of link-flows) in the model. It may in particular be noted that the value of the derivative

in (7) is independent of the specific distribution of users from a given OD-pair over the various

possible paths, as long of course as the equilibrium conditions shown in equation (3) hold,

since the relevant terms only depend on either OD-flows or link-flows, which will all remain

the same for any of the possible equilibria in terms of path-flows.

Substitution of (9) into (7) for each p for which δip=1 subsequently yields the following

expression for the Lagrangian multipliers λp:

λ

δ δ λ δ δ δ δ

δ δ

δ δ

p

jp jq q j
q

P

j

J

q jp jq j
j

J

jp j j
j

J

q q p

P

jp j
j

J

ip i
i

I

ip iq

N c c f

c D

p q

=

⋅ ⋅ ⋅ ′








 − ⋅ ⋅ ⋅ ′









 − ⋅ ⋅

⋅ ′ − ⋅ ′

∀ = ∀ =

== = == ≠

= =
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∑ ∑
11 1 11

1 1

1 1

,

with and with

(10)

These Lagrangian multipliers, when being unequal to zero, cause the second-best solution to

be inferior to the first-best case where tolls can be set on all links. The fact that these

multipliers would be zero in the first-best case can most easily be verified by rewriting (6) as if

path-tolls fp could be charged for all paths. This would yield, in place of (8), λp=0 for all

relevant paths, and path tolls equal to the sum of marginal external congestion costs on all links

used in that path (given by the first of the three terms in the numerator of (10)). This, in turn,

can be realized with link tolls each equal to the marginal external congestion costs for that link.

The Lagrangian multipliers λp can thus be interpreted as the ‘shadow price of non-

optimal pricing’ in the second-best optimum – which, of course, already followed from the

specification of the Lagrangian (6) from the outset. Although for a general network, no

analytical solution exists with each relevant λp explicitly solved for the other relevant λp’s (or

λq’s as they are labelled in (10)), it can be noted that for equations (10) will make up a system

of X equations, generally linearly independent, in X unkowns (the λp’s), where X denotes the

number of relevant paths in the second-best optimum. Hence, for a given problem, these

multipliers can be solved for, independent of the value of the other multipliers. The reason that

no general analytical solution can be given is, of course, that the expression for this solution

will depend on the specific network, the tolling points, and the relevant paths.

A further inspection of equations (10) allows the identification of the terms affecting

the size of the ‘shadow price of non-optimal pricing’ for a relevant path in the second-best
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optimum. Focusing first on the first and third term in the numerator, this shadow price appears

to be increasing in the extent to which the marginal external congestion costs caused (the first

term) exceeds the sum of total tolls paid during the trip (the third term). This is confirm

intuition. The middle term shows that, because we are in a second-best optimum, also indirect

effects count. In particular, the shadow price is decreasing in the extent to which the presence

of users from the path considered prevents users from other non-optimally priced relevant

paths to use the network. The associated term is in the first place increasing in the shadow

prices for these other paths. This reflects that the ‘reward’ (that is, the reduction in the own

shadow price) becomes larger, the larger the shadow prices for the other affected groups are.

The term is also increasing in the slope of the average cost functions on the relevant links in the

second-best optimum, which reflects that this effect becomes more important as the cost levels

on these links are more strongly dependent on link usage. Note that λp may have either sign –

which was in fact already implied by the first-order condition (8)1. Finally, the denominator of

(10) shows that the ‘shadow price of non-optimal pricing’ for a specific relevant path is

decreasing in the sensitivity of the path flow to distorted prices in the second-best optimum. If

either the demand for the OD-pair or the ‘supply’ (represented by the link-cost functions) is

fully inelastic, the multiplier vanishes. As (8) shows, an important feature of the second-best

optimum is that the sum of the relevant λp’s be minimized, which rather intuitively reflects the

goal of minimizing the overall distortions due to imperfect pricing.

Finally, substitution of (10) into (8) gives the following expression for the second-best

optimal congestion fees:

f
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(11)

where, for notational reasons, the index m, when used, denotes links. After the discussion of

(10), the interpretation of (11) is actually more easy to give than may seem at first sight. First,

the first term Σpδjp in the numerator of (11) shows that only the relevant paths using the link j

should be considered directly in the determination of the second-best toll fj – although, via the

terms λq in the numerator’s numerator, other relevant paths may of course indirectly affect the

level of fj. As a matter of fact, this term in the numerator’s numerator again gives the difference

between an OD-flow’s ‘generalized marginal external costs’ (corrected for the indirect effect

                                               
1 This is actually also the reason for using the dummy variables δip and writing the problem as a Lagrangian
instead of using a Kuhn-Tucker formulation, in which case the resulting multipliers would be restricted to be
positively signed.
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on the usage by other relevant paths) and the total tolls (but now net of the specific toll fj

itself), closely resembling the term already encountered in the numerator of (10). Finally, the

further structure of (11) shows that the second-best optimal toll on a link should be a weighted

average of the sum of the generalized marginal external costs, minus the tolls paid on other

links, for the relevant OD-flows (possibly passing that link). The weights are increasing with

the sensitivity of the OD-flow to prices in the second-best optimum. This effect reflects what

was already observed in the discussion of equation (10).

The structure of (11) shows that the second-best tolls may need not be independent in

the second-best optimum, as was illustrated already for the simple network considered in the

previous section. An important question, however, is whether the first-order conditions (7)-(9)

and the implied second-best values of the relevant λp’s and fj’s imply a unique local second-

best optimum in terms of OD-flows and link-flows (assuming that the second-order conditions

are fulfilled). It is questionable whether a general answer to this question can be given, as it

may depend on the exact shape of the network, the selected tolling points, and the shape of the

demand and cost functions. One has to be modest, therefore, and it should be emphasized that

the tax rules implied by (11) give necessary conditions for a local and a global second-best

optimum in a general transportation network only, rather than sufficient conditions. Under

quite general circumstances, however, one would expect only few (if more than one) second-

best equilibria supported by taxes as given in (11) to exist, and considering only those

equilibria where such taxes apply will generally greatly reduce the task of finding the second-

best optimum for a given problem.2

Finally, an important question that is closely related to the above analysis concerns the

optimal location of additional toll-points. This question will be relevant not only when an

existing tolling system can be extended to cover a larger part of the network, but of course

also when an entirely new tolling system can be installed. Clearly, the most preferable way of

selecting the optimal location for a single next toll-point would be to calculate the level of

welfare under second-best tolling according to (11), for having a toll added on each possible,

as yet untolled link. The optimal next toll-point is the one yielding the highest welfare

improvement (which could of course be compared with the costs of adding the toll-point to

guarantee an efficient investment). For larger networks, however, this procedure may require

many calculations, in particular if the problem is somewhat more general, and the optimal

location for a (possibly also optimized) number of additional toll-points should be determined.

In such cases, the calculation of ‘shadow tolls’ φj for those links j on which no tolls can

be set in the second-best optimum, according to the expression given for fj in equation (11),

may provide a rather efficient way of selecting the link for which it could be most efficient to

                                               
2 A general numerical procedure for finding such a second-best optimum in a given transport network model
could be based on the following sequence: (step 1) start with zero tolls and calculate the equilibrium; (step 2)
calculate the out-of-equilibrium values of the λp’s for all relevant paths for this equilibrium according to (10);
(step 3) calculate the implied out-of-equilibrium tolls for the relevant toll points according to (11); (step 4)
apply these tolls by adding them to the (perceived) link costs and calculating the new equilibrium; (step 5)
check for convergence and go back to (step 2) if the system has not yet converged.
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add the next toll. In particular, the link for which |φj| is maximized can be identified as the one

for which a marginal change in the zero toll level gives the highest net social benefits. This may

often be the link for which also in the new second-best equilibrium, with a toll added on that

link, the total social welfare improvement is the largest.3 Often, this link-selection procedure

may offer a quick and reasonably accurate manner to select the optimal location for a next toll-

point, or – by applying it sequentially – a number of toll-points. Nevertheless, as with the

uniqueness of local optima, also for this matter one cannot be sure whether the suggested link-

selection procedure will always be optimal.

4. Comparing the general solution with earlier results

It is instructive to validate the tax-rule (11) by comparing it to results reported earlier in the

literature for second-best problems that are special cases of the general problem considered

here. Three such cases will be considered: first-best tolling, the standard two-route problem,

and the parking problem studied by Glazer and Niskanen (1992). The section concludes with

some thoughts on further possible applications of the general model presented above.

4.1. First-best tolling

The most straightforward special case of the general second-best problem discussed is in fact

the first-best problem where tolls can be set on all links. For that case, one would expect

equation (11) to be consistent with the simple Pigouvian rule equating the tax to the marginal

external congestion costs for each link, as given in (12):

f N cj jp p j
p

P

= ⋅ ⋅ ′
=

∑δ
1

(12)

To show that this indeed is the case, first observe that – as was argued before – al λp’s are

equal to zero in the first-best case. Hence, the second term in the numerator’s numerator in

(11) drops out in the first-best case. Equation (11) then reduces to an expression stating that

the toll on a link should be equal to the weighted average (over all relevant paths using j) of the

difference between the total marginal external congestion costs for that path (over the entire

trip, so over all links including link j itself) minus the tolls paid on all links other than j itself.

Evidently, the simple Pigouvian tax in (12) is consistent with this rule (as pointed out in

Section 2, for many networks the first-best solution needs not be unique in link-tolls).

4.2. The standard two-route problem

The standard two-route problem concerns a network as illustrated in Figure 2, where an

untolled route (U) exists parallel to a tolled route (T), and both routes connect the same single

origin-destination pair (AB). As mentioned, this problem has been studied by Lévy-Lambert

(1968), Marchand (1968), Braid (1996), and Verhoef, Nijkamp and Rietveld (1996). These

studies have shown that the optimal second-best one-route toll for route T can be written as:

                                               
3 Note in particular that adding a toll on a link for which φj=0 will yield no welfare improvement at all, since
the optimal toll for this link will then also be fj=0, and the same second-best equilibrium will necessarily result.
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f N c N c
D

c DT T T U U
AB

U AB

= ⋅ ′ − ⋅ ′ ⋅
− ′
′ − ′

(13)

Equation (13) shows that this toll should be equal to the marginal external congestion costs on

the tolled route minus a term consisting of a fraction (between 0 and 1) of the marginal

external congestion costs on the untolled route. Note that (13) may imply a zero or even a

negative second-best optimal toll. For a further interpretation of (13), see for instance Verhoef,

Nijkamp and Rietveld (1996); the important question now is whether the general tax rule in

(11) is consistent with (13).

Figure 2. The standard two-route problem

To demonstrate that this is the case, it is sufficient to observe that for this problem, the two

paths coincide with the two links, so that the necessary first-order conditions (7)-(9) become4:

( )∂
∂

λ λ λ
Λ
N

D c N c c D
T

AB T T T T T T U AB= − − ⋅ ′ + ⋅ ′ − + ⋅ ′ = 0 (14a)

( )∂
∂

λ λ λ
Λ

N
D c N c c D

U
AB U U U U U T U AB= − − ⋅ ′ + ⋅ ′ − + ⋅ ′ = 0 (14b)

∂
∂

λ
Λ
f T

T= = 0 (15)

∂
∂ λ

Λ

T
T T ABc f D= + − = 0 (16a)

∂
∂λ

Λ

U
U ABc D= − = 0 (16b)

Fully consistent with (10), using (15), (16b) and (14b) λU can then be solved as:

λU
U U

U AB

N c

c D
=

⋅ ′
′ − ′

(17)

and substitution of (15), (16a) and (17) into (14a) gives the desired result given in (13).

                                               
4 These first-order conditions only differ from those in Verhoef, Nijkamp and Rietveld (1996) in the sense that
the sign of the constraints and hence of the Lagrangian multipliers are now opposite to the signs in the original
formulation. This, of course, does not affect the result.

A B

T (fTT0)

U (fU=0)
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4.3. Parking policies

A final example concerns the problem of optimal parking fees for congestion management in

the case where a subset of road users do not have to pay this fee, for example because they

have access to private parking places. This problem was studied by Glazer and Niskanen

(1992). By adding two ‘virtual links’ to the original one-link network, the problem can be

represented as a network problem that allows the solution of the optimal second-best parking

fee using the methodology presented in the previous sections.

Figure 3. The Glazer and Niskanen (1992) parking problem in a network representation

Figure 3 shows the resulting three-link network, connecting two OD-pairs AB and AC, where

B denotes priced parking space and C free parking space. Congestion only occurs on the

shared link I. The virtual links II and III are costless, but a fee can of course be charged on link

II. We then have the ingredients to solve the parking problem given above. Hence, the

resulting second-best parking fee again should be consistent with (11). To demonstrate that

this is the case, it is sufficient to observe that for this two-path problem, the two paths coincide

with the two OD-pairs, so that the necessary first-order conditions (7)-(9) now become (note

that cII=c′II=cIII=c′III=0):

( )∂
∂

λ λ λ
Λ

N
D c N c c D

AB
AB I I I AB AC I AB AB= − − ⋅ ′ + + ⋅ ′ − ⋅ ′ = 0 (18a)

( )∂
∂

λ λ λ
Λ

N
D c N c c D

AC
AC I I I AB AC I AC AC= − − ⋅ ′ + + ⋅ ′ − ⋅ ′ = 0 (18b)

∂
∂

λ
Λ
f II

AB= = 0 (19)

∂
∂ λ

Λ

AB
I II ABc f D= + − = 0 (20a)

∂
∂ λ

Λ

AC
I ACc D= − = 0 (20b)

where NI=NAB+NAC. Fully consistent with (10), using (19), (20b) and (18b) λAC can then be

solved as:

λAC
I I

I AC

N c

c D
=

⋅ ′
′ − ′

(21)

and substitution of (19), (20a) and (21) into (18a) gives:

A

B

II (fIIT0)

III (fIII=0)

C

I
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f N c
D

c DII I I
AC

I AC

= ⋅ ′ ⋅
− ′
′ − ′

(22)

showing that the optimal second-best congestion toll is now a fraction of the marginal external

congestion costs on the congested link, where the fraction depends on the demand elasticity for

the untolled users of this link (see Glazer and Niskanen, 1992, and Verhoef, Nijkamp and

Rietveld, 1995, for further discussions). Also in this case therefore, the second-best optimal

congestion toll turns out to be a specific case of the general solution given in (11).

4.4. Some further possible applications of the general model

The use of the concept of virtual links in the final case above in fact demonstrates how easily

the general model in equations (6)-(11) can be adapted to allow consideration also of different

types of second-best policies in a network environment, other than the pure problem caused by

the physical joint existence of tolled and untolled links in the network.

Consider, for instance, the use of peak-hour permits. With such a policy, road users

would have to purchase a permit before they are allowed to use the road. However, once they

do have such a permit, there would be no further restriction on the use of the network. To

determine the second-best optimal price for such permits for a given road network, the

regulator therefore has to solve the second-best problem that is caused by the fact that the

same single ‘toll’ (that is: the price of the permit) applies for drivers using different paths, and

hence generally causing different levels of marginal external costs. The only adaptation that

needs to be made to solve this particular problem using the general network model presented in

equations (6)-(11), is to add one single virtual link, with zero costs, on which the regulator can

set a toll. This virtual link should be added to all paths, and the optimal toll can then be derived

directly according to (11).5

A second application that can be mentioned is the use of distance-based tolls. If the

regulator can set only a toll level per vehicle-kilometre travelled, while marginal external

congestion costs per vehicle-kilometre vary over the network, another second-best problem

results. Also this problem can be solved using the proposed model. To do so, rewrite the

original tolls fj as Lj⋅f, where Lj denotes the length of link j. Observe that the original first-order

condition (8) is then replaced by:

 
∂
∂

δ λ δ δ
Λ
f

Lip p jp j j
j

J

p

P

i

I

= ⋅ ⋅ ⋅ ⋅ =
===

∑∑∑
111

0 (23)

(Note that the formulation allows cases where the per vehicle-kilometre toll is not charged on

all links. This could be relevant when the scheme applies to a certain area only, and some users

originate from outside this area). In the second-best solution, now the weighted sum of the λp’s

                                               
5 If the regulator wants to use a system of tradeable peak-hour permits, according to the same principles but
distributed initially for free, in fact exactly the same problem as described in the main text has to be solved. The
second-best optimal number of permits to be issued will then be equal to the number of trips made in the
second-best optimum considered in the main text; and the equilibrium price of the permits will be equal to the
second-best toll. This holds true, of course, only under the assumption of zero transaction costs.
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should be equal to zero, where the weights increase in the number of tolled kilometres for a

path. The problem can then be solved analogous to the discussion in Section 3.

Clearly, the two second-best problems just mentioned do not have simple analytical

solutions. However, the reason for mentioning these problems here was merely to illustrate

that the network model presented in Sections 2 and 3 can easily be extended to deal also with

different classes of second-best problems in static transportation networks, other than the pure

problem caused by the physical joint existence of tolled and untolled links in one network.

5. Conclusion

This paper presented a general solution for the problem of second-best congestion tolling in

static transportation networks where not all links can be tolled. With the existing plans for

introducing electronic road pricing in many urban areas throughout the world, this type of

problem is likely to become very important in the near future, in particular because it will often

be considered inefficient (or unmanageable) to install the necessary equipment in all existing

links. For small networks, the second-best tax rule may still yield analytically tractable

congestion tolls, as was shown in the previous section where three special cases of the general

problem were discussed. Due to the occurrence of all sorts of cross-effects between tolled and

untolled links, however, the tax rules will become solvable via numerical modelling only as the

networks considered become more realistic and, as a consequence, larger. Nevertheless, the

analysis presented has provided the necessary conditions for second-best optimality in such

large networks, that can directly be applied regardless the size and the shape of the network.

Moreover, it was demonstrated that, for instance by using the concept of ‘virtual links’, the

analysis can even be applied rather easily to different classes of second-best problems in static

networks as well.

In solving the general problem, an important set of variables used were the Lagrangian

multipliers representing the ‘shadow price of non-optimal pricing’ for tolled and untolled links.

The latter only play an indirect role in the second-best tax rule, reflecting indirect spill-over

effects and interdependencies in networks that ought to be considered in second-best

regulation. The former (the multipliers for the tolled links) are used directly in the optimization,

in the sense that the absolute value of their sum is minimized. It was shown that in the first-best

solution, these multipliers will all, individually, be equal to zero.

It was argued that the application of the second-best tax rule also for untolled links may

often provide an intuitive guideline for selecting the particular link for which it is economically

most beneficial to add the subsequent toll-point. In particular in large, realistic networks,

where it is computationally too demanding to explicitly calculate the impact of adding a toll on

each of the as yet untolled links, such procedures may be helpful.

A number of future research topics can be mentioned. The first of these would be the

derivation of second-best tolls in general dynamic networks and under conditions of

uncertainty. Another important topic is to test the applicability of the tax rule derived in

existing static network models. A third topic, related to this, would be to investigate the
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possibility of deriving general conditions under which networks will have a unique local

second-best local optimum.
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Appendix: Relaxing the assumption of link-specific congestion
The assumption of strictly link-specific congestion, that was made for the general model presented in

the main text, may become problematic if intersections are to be modelled more realistically. The

formulation used in the main text could only be applied directly to intersections if all users of an

intersection to the same extent suffer from, and contribute to congestion on that intersection. In that

case, the intersection could of course be treated as another link, just like the other links. In more

realistic formulations, however, the representation with only link-specific congestion can in fact be

considered as too restrictive. This can be illustrated by considering the intersection depicted in Figure

A.1, where two two-way streets intersect. The dashed links, showing the 12 possible ways of using

the intersection, cross each other in various cases, and hence direct congestion cost

interdependencies between links are very likely to exist.6 Moreover, the size of the (marginal) cost

interdependency certainly needs not be constant over all pairs of links on the intersection. For

instance, two different ‘turns-to-the-right’ will hardly hinder each other, while ‘turns-to-the-left’ and

‘straight-ons’ will generally be more conflicting (note that it is assumed that drivers use the right side

of the road).

Figure A.1 Direct cost interdependencies between links on a simple intersection

Fortunately, it is rather straightforward to incorporate the implied direct cost interdependencies in

the main model presented in equations (6)–(11). Doing so of course further complicates the analysis

and the various expressions, but the main conclusions remain similar. We therefore present the

equivalent expressions (A6)–(A11) below, for the more general case where the average user costs on

link x may possibly depend on the level of usage Nj on all other links j, without further detailed

comments.

First, the Lagrangian (6) can now be written as:

                                               
6 It is very important to distinguish between these direct cost interdependencies between links, and the indirect cost
interdependencies between links, that were mentioned also in the main text. Direct cost interdependencies result from
the technical, direct interactions between users from different links; indirect cost interdependencies are caused by the
equilibrating behaviour of users as described in Wardrop’s first principle, leading to equalized equilibrium cost levels
for all used routes between given OD-pairs.
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Note that the only difference between (6) and (A6) is that in (A6), cj possibly depends on the link-

flow on all links in the network.

The following necessary first-order conditions can now be derived:
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Note that only (A7) has changed, reflecting that the marginal external costs of a trip may now

concern more links, namely also those links x for which the cross effect ∂cx/∂Nj is positive for any

link j which is part of the path p. The second line of (A7) shows that, for the same reason, a larger

number of other path-flows may now be affected by marginal changes in Np.

Substitution of (A9) into (A7) for each p for which δip=1 subsequently yields the following

expression for the Lagrangian multipliers λp:
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As in the model in the main text, also here the system of equations (A10) should in principle have a

unique solution for each λp, because it again makes up a system of X equations, generally linearly

independent, in X unkowns (the λp’s), where X denotes the number of relevant paths in the second-

best optimum.

Finally, substitution of (A10) into (A8) gives the following expression for the second-best

optimal congestion fees:
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which is again quite similar to (11).

Indeed, in general, the extension presented in this appendix is, from the analytical viewpoint,

only a minor one. The interpretation of the model’s solution as given in (A10) and (A11) is largely

analogous to the interpretation of the model with only link-specific congestion, with the main

differences being the generally increased number of path-flows that are affected by each individual

path-flow, and the fact that the congestion effects ∂cx/∂Nj need of course not be equal for each j (for

a given x), whereas in the simpler model only terms c′j played a role.

However, notwithstanding the modest extension from an analytical viewpoint, the generalized

results given in this appendix makes the model presented in the main text of course applicable to an

even wider range of network problems, which justifies the discussion just given.


