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Abstract

Since the 1950's economists applied game theoretical concepts to a wide variety of
economic problems. The Nash equilibrium concept has proven to be a powerful
instrument in analyzing the outcome of economic processes. Since the late 1980's
economists also show a growing interest in the application of evolutionary game the-
ory. This paper discusses the main concepts of evolutionary game theory and their
applicability to economic issues. Whereas traditional game theory focusses on the
static Nash equilibria as the possible outcomes of the game, evolutionary game theory
teaches us to model explictly the behavior of individuals outside equilibrium. This
may provide us with a better understanding of the dynamic forces within a society
of interacting individuals.

Key words: Noncooperative symmetric bimatrix game, Evolutionary Stable Strategy,
Replicator Dynamics, Metastrategy, Stable Population.
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1 Introduction

Starting with the famous Nash equilibrium for noncooperative games, in the 1950's
game theory became a popular �eld of research. The general feeling was that it would
be possible to solve a lot of previously unsolvable problems using game theory. Al-
though game theory indeed was applied to a wide variety of problems, attention for
game theory diminished throughout the 1960's and the early 1970's. In the late 1970's
and the early 1980's game theory boomed again, especially after Ariel Rubinstein's
1982 article in which he proved that a particular noncooperative bargaining model
has a unique subgame perfect equilibrium. At the end of the 1980's however, there
was a general feeling of discomfort about the use of the notion of Nash equilibrium to
predict outcomes. The mode of research at the time was to use a di�erent and very
speci�c notion of Nash equilibrium for every problem and players were assumed to be
hyperrational. The number of Nash equilibrium re�nements had grown enormously
and it was not clear in advance which re�nement best suited which situation. What
was clear was the fact that in the real world people did not act in the way behavior
was postulated in the models. Before a new decline in interest in game theory could
take place, game theorists picked up the idea of evolution from biology. In retrospect
the 1973 article by the biologists Maynard Smith and Price in which they de�ned the
concept of Evolutionary Stable Strategies, was the most important in transferring
evolutionary thinking from biology to game theory. The book `Evolution and the
Theory of Games' by Maynard Smith [29] explicitly introduced evolutionary selec-
tion pressure in a game theoretic setting. The notion of evolution of strategies in a
repeatedly played game closely resembles certain models in which players learn from
past behavior, thus facilitating the shift of attention in the �eld towards evolutionary
models.

In recent years evolutionary models have become increasingly popular in game
theory and other �elds of economics. Special issues of leading journals have been
devoted to the subject, e.g. the issue of Games and Economic Behavior vol. 3
(1991) introduced by Selten [43], the issue in Journal of Economic Literature vol. 57
(1992) introduced by Mailath [26], and the issue in Journal of Economic Behavior and
Organization vol. 29 (1996). Also at many conferences in the �eld of game theory
or economics special sessions are devoted to the subject, see for instance the session
introduced by Van Damme [12] as reported in the European Economic Review vol.
38, 1994.

In this survey article we start by reviewing the technical basics of the standard
(Nash) equilibrium theory in section 2. This theory will be linked to the notion
of Evolutionary Stable Strategies in section 3. In section 4 the set of di�erential
equations specifying a biological evolutionary process, the replicator dynamics, will
be discussed. Following that we discuss the economic signi�cance of the ESS and
the replicator dynamics in the section 5, 6 and 7. It turns out that ESS is no more
than just another Nash equilibrium re�nement and that although replicator dynamics
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seem to describe certain biological (non-rational) evolutionary processes very well, in
economics these dynamics do not do as well, since they do not take into account
that economic subjects posses some form of boundedly rational behavior. In section
8 we draw attention to what we believe to become a fruitful alternative branch of
modelling, the local interaction models. In these models players only interact with
a small subgroup of all other players and the spatial distribution of the players is
crucial. Finally we pose some concluding remarks in section 9.

2 Nash equilibrium

Noncooperative game theory has become a standard tool in modelling conict situ-
ations between rational individuals. Such a model describes the set of strategies of
each individual or player and the payo� to each player for any the strategy pro�le,
the list of strategies chosen by the players. The concept of Nash equilibrium is the
cornerstone in predicting the outcome of a game. In a Nash equilibrium each play-
er's strategy maximizes his utility given the strategies played by the other players.
In many situations it appears that the Nash equilibrium is not unique. Therefore
many papers in game theory have been devoted to the issue of equilibrium selection.
Re�ning the concept of Nash equilibrium allows to discard certain Nash equilibria
as not satisfying certain type of rational behavior. In this section we review some
of the standard Nash equilibrium theory and its re�nements. This enables us in the
next section to show how the basic concepts of evolutionary game theory �t into this
framework.

The basic model in noncooperative game theory is known as the n-person
game in normal form and is characterized by a 2n-tuple � = (�1; : : : ;�n; bu1; : : : ; bun),
where for each j 2 f1; : : : ; ng, �j denotes a nonempty �nite set of mj pure strategies
of player j, indexed by (j; 1); : : : ; (j;mj), and buj: � ! IR with � = �n

j=1�j denotes
the payo� function of player j, assigning a real number to each strategy pro�le � =
(�1; : : : ; �n) 2 � of pure strategies. In the following we denote In = f1; : : : ; ng. A
mixed strategy for player j, j 2 In is a probability distribution over the set �j of
pure strategies and can be represented by a vector xj 2 IRmj , with its kth coordinate
xjk the probability assigned to pure strategy k by player j, k 2 Imj

. The set of all
mixed strategies of player j is the (mj � 1)-dimensional unit simplex Smj de�ned as

Smj = fxj 2 IR
mj

+ j
mjX
k=1

xjk = 1g:

The kth unit vector in IRm
j is denoted by ekj and is the vertex of Smj in which player

j plays pure strategy k with probability one. The set bS = �n
j=1S

mj is the mixed
strategy space of the game. We now de�ne for each player j 2 In the function
uj: bS ! IR as the function assigning the expected value of the payo� for player j at
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any mixed strategy pro�le x = (x1; : : : ; xn) 2 bS, i.e.,
uj(x) =

X
�2�

x(�)bu(�);
where x(�) = �n

j=1xj�j denotes the probability with which the pure strategy pro�le

� = (�1; : : : ; �n) 2 � is played under the mixed strategy pro�le x 2 bS. We also
denote by uj(yj; x�j) the expected payo� of player j when he plays his mixed strategy
yj 2 Smj and the other players k 6= j play the mixed strategies xk 2 Smk . The value
uj(ekj ; x�j) is the expected marginal payo� for player j at x 2 bS when j plays his kth

pure strategy. Clearly, for any x 2 bS and any j 2 In we have that

uj(x) = uj(xj; x�j) =
mjX
k=1

xjku
j(ekj ; x�j);

saying that uj(x) is the weighted sum over all expected marginal payo�s.
We denote the noncooperative n-person game in mixed strategies by G =

(In; bS; u). For n = 2 this game reduces to a so-called two-player bimatrix game
denoted by G = (A;B), where A (respectively B) is the m1 � m2 payo� matrix of
player 1 (respectively 2), i.e., aij (bij) is the payo� to player 1 (2) when player 1
plays his pure strategy i and player 2 plays his pure strategy j. Clearly for x 2 bS =
Sm1 � Sm2 we have that u1(x) = x>1Ax2 and u2(x) = x>1Bx2.

Within this framework it is assumed that each player behaves rational and
searches to maximize his own payo�. This is expressed in the equilibrium concept
due to John Nash [34], together with John Harsanyi and Reinhard Selten awarded
with the 1994 Nobel Prize in economics. The Nash equilibrium concept is the most
fundamental idea in noncooperative game theory. A strategy pro�le x� 2 bS is a Nash
equilibrium if no player can gain by unilaterally deviating from it. This means that
in the Nash equilibrium concept it is implicitly taken as given that the players make
their choices simultaneously and independently.

De�nition 2.1 (Nash equilibrium)

A strategy pro�le x� 2 bS is a Nash equilibrium for the game G = (In; bS; u) if
uj(ekj ; x

�

�j) � uj(x�) for any j 2 In and k 2 Imj
:

According to the linearity of uj(yj; x��j) in the variables yjk the de�nition implies that
there is no (mixed) strategy yj 2 Smj that gives player j a higher payo� than x�j , given
that all the other players h 6= j stick to their equilibrium strategy x�h. Any player
plays a best reply to the strategies of the others. The best reply correspondence of
player j assigns to any mixed strategy pro�le x 2 bS the set of mixed strategies of
player j yielding the highest payo� given the strategies of the other players.
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De�nition 2.2 (Best reply correspondence)

The mapping �: bS ! Smj de�ned by

�(x) = fyj 2 Smj j uj(yj; x�j) � uj(byj; x�j) for all byj 2 Smjg

is the best reply correspondence of player j. Any mixed mixed strategy yj 2 �(x)
is a best reply for player j given the strategy pro�les x 2 bS.
Observe that �(x) does not depend on xj. Clearly x 2 bS is a Nash equilibrium if and
only if xj 2 �(x) for all players j 2 In.

The elegance of the Nash equilibrium concept and the underlying rational be-
havior of the agents has inspired many economists in formulating economic problems
as a noncooperative n-person game. Since the 1970's the Nash concept has been ap-
plied to a wide range of problems. However, in applying the concept game theorists
became aware of a serious drawback of the Nash equilibrium, namely that a noncoop-
erative n-person game may have many Nash equilibria. So, one particular arbitrarily
chosen equilibrium does not make much sense as a prediction of the outcome of the
problem. However, in many cases not all outcomes are consistent with the intuitive
notion about what should be the outcome of the game. Therefore, from the seven-
ties on several game theorists have addressed the problem of equilibrium selection by
putting more requirements on the rational behavior of the players. Assuming highly
rational players may eliminate the less intuitive outcomes. Several results have been
obtained along this line of research. For an excellent survey on Nash equilibrium re-
�nements we refer to Van Damme [11]. Here we only consider the concepts of perfect
and proper Nash equilibrium for normal form games. The notion of `trembling hand'
perfect Nash equilibrium of a normal form game has been introduced by Reinhard
Selten [41] and is one of the most fundamental results in the theory of Nash equi-
librium re�nements. For some real number 1 > � > 0, a completely mixed strategy
pro�le x 2 bS, (i.e. xjk > 0 for all j and k), is a �-perfect Nash equilibrium if xjk � �

when ekj 62 �(x). So, at a �-perfect Nash equilibrium each pure strategy is played with
a positive probability, but only pure strategies in the best reply set can have a higher
probability than �. So the players are allowed to make errors, but the probability
that a non optimal strategy will be played is bounded by �. A perfect equilibrium is
now de�ned as the limit of a sequence of � perfect equilibria when � goes to zero.

De�nition 2.3 (Perfect Nash equilibrium)

A strategy pro�le x� 2 bS is a perfect Nash equilibrium for the game G =
(In; bS; u) if for some sequence �r > 0, r 2 IN, converging to zero, there exists

a sequence of �r-perfect Nash equilibria converging to x�.

From the de�nition it follows immediately that any Nash equilibriumwith completely
mixed strategies is a perfect Nash equilibrium. Furthermore, Selten [41] proved that
any game G = (In; bS; u) has a perfect Nash equilibrium, even if the game has no
Nash equilibrium in completely mixed strategies.
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Theorem 2.4 (Selten Theorem)

Any game G = (In; bS; u) has at least one perfect Nash equilibrium. Moreover, the

set of perfect Nash equilibria is a subset of the set of Nash equilibria.

Although the notion of perfect equilibrium wipes out Nash equilibria which are not
robust with respect to small probabilities of mistakes by error making players, Myer-
son [32] argued that the probability with which a rational player plays a strategy by
mistake will depend on the detrimental e�ect of the non optimal strategy. More costly
mistakes will be less probable than less costly mistakes. To further re�ne the set of
perfect Nash equilibria, Myerson introduced the notion of proper equilibrium. For
some real number 1 > � > 0, a completely mixed strategy pro�le x 2 bS is a �-proper
Nash equilibrium if for any player j 2 In, xjk � �xjh if uj(ekj ; x�j) < uj(ehj ; x�j) for
all k; h 2 Imj

. Again, at a �-proper Nash equilibrium each pure strategy is played
with a positive probability. Moreover, if some pure strategy k is a worse response
against the strategies of the other players than a certain strategy h, then the proba-
bility that strategy k is played is at most � times the probability with which strategy
h is played.

De�nition 2.5 (Proper Nash equilibrium)

A strategy pro�le x� 2 bS is a proper Nash equilibrium for the game G =
(In; bS; u) if for some sequence �r > 0, r 2 IN, converging to zero there exists a
sequence of �r-proper Nash equilibria converging to x�.

Again it follows immediately that any interior (i.e. completely mixed) Nash equi-
librium is a proper Nash equilibrium. Moreover, each proper Nash equilibrium sat-
is�es the conditions of a perfect equilibrium, because the notion of properness fur-
ther restricts the set of allowable mistakes. Myerson [32] proved that any game
G = (In; bS; u) has at least one proper Nash equilibrium.

Theorem 2.6 (Myerson Theorem)

Any game G = (In; bS; u) has at least one proper Nash equilibrium. Moreover, the
set of proper Nash equilibria is a subset of the set of perfect Nash equilibria.

The concepts of perfect and proper Nash equilibrium are nicely illustrated by a well-
known example of Myerson [32]. Let the two-person bimatrix game be given by

A = B =

2
64 1 0 �9

0 0 �7
�9 �7 �7

3
75 :

This game has three Nash equilibria in pure strategies, namely each strategy pro�le in
which the two players play the same pure strategy. However, the Nash equilibrium in
which both players play the third strategy is very unlikely. This equilibrium is ruled
out by the notion of perfectness, which only allows for the two equilibria in which
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either both players play their �rst strategy or both players play their second strategy.
The latter equilibrium is ruled out by the notion of properness. So, properness selects
the equilibrium in which both players play the �rst strategy as the unique outcome
of the game. This equilibrium is e�cient and gives both players a payo� equal to
one.

3 Evolutionary Stable Strategy

The theory of re�nements has been proven very helpful to eliminate inadequate out-
comes of the game. However, this theory also has its drawbacks. Not only many
di�erent concepts of re�nements have been developed, the theory also assumes that
players are acting according to a very high level of rationality. This leads Ken Bin-
more in his foreword to the monograph `Evolutionary Game Theory' of J�orgen W.
Weibull to the following conclusion:

However, di�erent game theorists proposed so many di�erent rationality de�nitions

that the available set of re�nements of Nash equilibria became embarrassingly large.

Eventually, almost any Nash equilibrium could be justi�ed in terms of someone or

other's re�nement.

He then continues with:

As a consequence a new period of disillusionment with game theory seemed inevitable

by the late 1980's. Fortunately the 1980's saw a new development. Maynard Smith's

book Evolution and the Theory of Games directed game theorists' attention away from

their increasingly elaborate de�nitions of rationality. After all, insects can hardly be

said to think at all, and so rationality cannot be so crucial if game theory somehow

manages to predict their behavior : : : the 1990's have therefore seen a turning away

from attempts to model people as hyperrational players.

This brings us to the question what economists can learn from evolutionary game
theory, introduced by biologists in studying the evolution of populations and the
individual behavior of its members. Where has evolutionary game theory brought us
and where might it be applicable?
Evolutionary or biological game theory originated from the seminal paper 'The logic
of animal conict' by Maynard Smith and Price [30], see also Maynard Smith [28]
and [29]. Maynard Smith considers a population in which members are randomly
matched in pairs to play a bimatrix game. The players are anonymous, that is
any pair of players plays the same symmetric bimatrix game and the players are
identical with respect to their set of strategies and their payo� function. So, for any
member of the population, let m be the number of pure strategies and S = Sm the
set of mixed strategies. Furthermore, the payo� function u:S � S ! IR2 assigns to
any pair of two players the payo� pair (u1(x); u2(x))>, x 2 S � S. The assumed
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symmetry of the bimatrix game states that u1(x; y) = u2(y; x) for any pair (x; y) 2
S � S, which states that the payo� of the �rst player when he plays x 2 S and his
opponent plays y 2 S is equal to the payo� of the second player when the latter
plays x 2 S and the �rst player plays y 2 S. So, any pair plays the symmetric
bimatrix game G = (A; A>) with A an m � m matrix. Observe that it is not
assumed that A is symmetric. In the following we denote with v(x; y) = u1(x; y) =
u2(y; x) = x>Ay as the payo� of a player playing x 2 S against an opponent playing
y 2 S. In this way all members of the population are symmetric, except in their
strategy choice. In the biological game theory it is not assumed that the members
(or animals) in the population behave rationally. Instead it is assumed that any
member is preprogrammed with an inherited, possibly mixed, strategy and that this
strategy is �xed for life. Now, let x 2 Sm be the vector of average frequencies with
which the strategies are played by the members of the population. So, xj is the
average probability or frequency over all members of the population that strategy
j, j 2 Im, is played. Assuming that the population is very large, the di�erences
between the expected strategy frequencies faced by di�erent members are negligible
and the average expected payo� of an arbitrarily chosen member of the population
when paired at random with one of the other members is given by v(x; x) = x>Ax.
However, now suppose that a perturbation of the population occurs and that at
random a (small) fraction � of the population is replaced by individuals which are all
going to play a so-called `mutant' strategy q. Then the vector of average frequencies
becomes

y = (1 � �)x+ �q

and hence the average expected payo� of the incumbent individuals of the population
when matched at random with a member of the perturbed population becomes

v(x; y) = x>A[(1� �)x+ �q] = (1 � �)v(x; x) + �v(x; q) (1)

and the expected payo� of a mutant individual becomes

v(q; y) = q>A[(1� �)x+ �q] = (1� �)v(q; x) + �v(q; q): (2)

Now the population is said to be stable against mutants if for all q 6= x there exists
an �(q) > 0 such that for all 0 < � < �(q)

v(x; y) > v(q; y), where y = (1� �)x+ �q: (3)

The reasoning above allows for several viewpoints. Originally the stability condition
was only applied for monomorphic populations, i.e., populations in which all individ-
uals are endowed with the same strategy x. In this framework the frequency xj is
the probability with which any member of the population plays pure strategy j. So,
any incumbent individual plays x and hence the expected payo� of an incumbent is
equal to the average expected payo�. A strategy x satisfying (3) for any q 6= x with
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some �(q) > 0 is called an Evolutionary Stable Strategy (ESS) and is the central
equilibrium concept in the biological game theory about monomorphic populations
as introduced by Maynard Smith and Price [30].
From another (opponent) viewpoint the stability condition can also be applied to a
polymorphic population in which each member is preprogrammed with one of the
pure strategies. Within this framework, originated from mathematicians like Taylor
and Jonker [47], see also Zeeman [56], the frequency xj is the fraction of members
preprogrammed with the pure strategy j. Of course, also intermediate cases are
possible in which multiple mixed strategies are present in the population.
Although both viewpoints are allowed, for the moment we restrict ourselves to the
case of the monomorphic population. Now, suppose that x 2 S satis�es v(q; x) �
v(x; x) for all q 2 S. Clearly, this a su�cient and necessary condition for the strategy
pair (x; x) to be a Nash equilibrium for the symmetric bimatrix game (A;A>). In this
equilibrium both players play the same strategy x. So, (x; x) 2 S�S is a symmetric
Nash equilibrium and we call x a symmetric equilibrium strategy. It is well-known
that any symmetric bimatrix game has at least one symmetric equilibrium, see e.g.
Weibull [55]. It should be noticed that a symmetric bimatrix game may also have
non-symmetric Nash equilibria in which the two players use di�erent strategies. Now,
suppose that for a symmetric equilibrium strategy x 2 S the stronger condition
v(q; x) < v(x; x) holds for any mutant strategy q 2 S. Then it follows from the
equations (1) and (2) that there exists some �(q) > 0 such that equation (3) holds
and the strategy x 2 S is also ESS. However, if the symmetric equilibrium strategy x

is a completely mixed strategy, then v(q; x) = v(x; x) for any q 2 S. More precisely
we have for any mixed strategy x 2 S that v(q; x) = v(x; x) for any q 2 S such that
for any j it holds that qj = 0 if xj = 0. So, when x is a mixed equilibrium strategy,
v(q; x) < v(x; x) does not hold for all q 6= x. However, in case that v(q; x) = v(x; x),
it follows from the equations (1) and (2) that equation (3) still holds if v(q; q) <
v(x; q), i.e., if the incumbent strategy x performs better against the mutant strategy
q than the mutant against itself. This gives the following formal de�nition of ESS as
originally formulated by Maynard Smith and Price [30]

De�nition 3.1 (Evolutionary Stable Strategy)

A strategy bx 2 S is an Evolutionary Stable Strategy of the symmetric bimatrix
game G = (A; A>) if it satis�es the two inequalities

i) q>Abx � bx>Abx for all q 2 S;

ii) q>Aq < bx>Aq if q>Abx = bx>Abx for all q 6= bx:
Clearly, x 2 S satis�es the conditions of De�nition 3.1 if and only if for any q 2 S, x
satis�es equation (3) for some �(q) > 0, see e.g. Weibull [55]. Furthermore, condition
i) of De�nition 3.1 shows that (x; x) is a Nash equilibrium for the bimatrix game
G = (A; A>) if x is ESS. However, the reverse is not true. If (x; x) is a Nash
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equilibrium, then x is ESS only if x satis�es condition ii). So, not any symmetric
equilibrium strategy is ESS. In other words, the ESS condition gives a re�nement on
the set of symmetric Nash equilibria. More precisely we have that if x is ESS, then
(x; x) is a symmetric proper Nash equilibrium, see e.g. Van Damme [11], page 224.
According to Weibull [55], page 42, we can say that an ESS satis�es the equilibrium
condition and is `cautious', i.e, is robust with respect to low-probability mistakes such
that more costly mistakes are less probable than less costly mistakes. Again, the
reverse implication is not true. When (x; x) is a symmetric proper Nash equilibrium,
then x is not necessarily an ESS. Even stronger, not any symmetric bimatrix game
has an ESS (for instance the unique symmetric equilibrium strategy of the Rock-
Scissors-Paper game is not ESS, see Weibull [55], page 39), while it has been proven
recently by Van der Laan and Yang [25] that any symmetric bimatrix game has
a symmetric proper equilibrium. To summarize the above results let �NE denote
the set of symmetric Nash equilibrium strategies, �PE the set of symmetric proper
equilibrium strategies and �ESS the set of Evolutionary Stable Strategies. Then we
have that

�ESS � �PE � �NE and �PE 6= ;:

For further characterization results on the set of Evolutionary Stable Strategies we
refer to e.g. Bomze [4], Van Damme [11] or Weibull [55]. In these references many
results can be found with respect the structure of the set of ESS, the relation be-
tween this set and other re�nements of the Nash equilibrium and with respect to
conditions guaranteeing the existence of ESS. For instance, any nondegenerate sym-
metric bimatrix game with two pure strategies has at least one ESS. In this paper
we also skip the discussion about other (weaker) evolutionary stability criteria. We
only mention the weaker concepts of neutral stability introduced by Maynard Smith
[29] and robustness against equilibrium entrants introduced by Swinkels [45]. Setwise
evolutionary stability criteria have been given by e.g. Thomas [48] and Swinkels [45].

4 Replicator dynamics

Evolutionary game theory combines the static concept of Evolutionary Stable Strat-
egy with the dynamic concept of replicator dynamics, a notion formalized by Taylor
and Jonker [47], see also e.g. Zeeman [56], Bomze [4], Van Damme [11] and Weibull
[55]. In the framework of replicator dynamics or population dynamics, we depart from
the viewpoint that all individuals are preprogrammed to play a pure strategy. So, a
strategy vector x 2 S has to be interpreted as the state of the population with xj the
proportion of individuals playing strategy j, j 2 Im, when paired with an opponent
to play the symmetric bimatrix game G = (A; A>). Within this framework indi-
viduals are assumed to be paired at random and each member of the population is
assumed to be engaged in exactly one contest at the time. Furthermore, the payo� to
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an individual is assumed to represent �tness, measured by the number of o�spring.
So, more succesful individuals get more o�spring. Finally it is assumed that in this
asexual world the individuals breed true, so that each child inherits its single parent's
strategy. Then in the next generation the fraction of more succesful members in the
population will be higher and the fraction of less succesful members will be lower.
Modelling this process in continuous time results in di�erential equations known as
the replicator dynamics.

Given a population state x = x(t) 2 S at time t, the expected payo� of a
member playing strategy i, i 2 Im, is given by ei>Ax. The growth rate _xi

xi
of the

share of i players is given by comparing the payo� or �tness of their strategy with
the average �tness of the population x>Ax. This gives the system of di�erential
equations

_xi = (ei>Ax� x>Ax)xi, i 2 Im: (4)

Taking for granted the theory of di�erential equations this system has a unique so-
lution x(t; x0), t � 0, for any initial point x0 = x(0) 2 S. Furthermore, summing up
the equations (4) over all i 2 Im we get that

Pm
i=1 _xi = 0 because

Pm
i=1 xi = 1 and

hence we have that S (and all its faces) is invariant, i.e., any trajectory starting in
(a face of) S stays in (the same face of) S. So,

Pm
i=1 xi(t) = 1 for all t and xi(t) = 0

for any t � 0 if xi(t̂) = 0 for some t̂ � 0. The latter property says that if at a certain
time the fraction of members playing strategy i is equal to zero, then it will always
remain zero and it has always been zero. On the other hand xi(t) > 0 for all t � 0 if
x0i > 0, so a strategy will survive for ever if it is available at t = 0. Of course, this
does not exclude that xi(t) converges to zero if t goes to in�nity, i.e., it may happen
that a trajectory starting in the interior of S converges to the boundary. Now, a Nash
equilibrium strategy x 2 S (of the monomorphic population in which all members
play x) is said to be asymptoticallly stable for the polymorphic population (in which
xj denotes the fraction of members playing j), if there exists a neigbourhood X of
x, i.e., an open set X in S containing x, such that any trajectory of the replicator
dynamics starting at x0 2 X converges to x. The following result is due to Taylor
and Jonker [47], see also Hines [19] or Zeeman [56], and can be seen as the basic
result relating replicator dynamics and Evolutionary Stable Strategies.

Theorem 4.1

Every Evolutionary Stable Strategy x 2 S is asymptotically stable for the replicator

dynamics given in equation (4).

The theorem says that for any ESS there is a neighborhood such that any trajectory of
the replicator dynamics starting in this neighborhood converges to this ESS. However,
the reverse is not true. The replicator dynamics may converge to a strategy not being
ESS. Moreover, a trajectory does not always converge to some limit point x� if t goes
to in�nity. It may happen that the trajectory path is a cycle on S or moves outwards
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toward a hyperbola. For other properties of the trajectories, for instance that in the
limit the replicator dynamics wipes out all strictly dominated strategies if initially
all strategies are present, we refer the interested readers to e.g. Weibull [55] or Van
Damme [11]. In these references many results are stated about the relation between
(asymptotically) stable equilibria of the replicator dynamics and re�nements of the
Nash equilibrium, for instance that any asymptotically stable strategy is a perfect
Nash equilibrium strategy. For a further discussion about the replicator dynamics
see also Mailath [26] and Friedman [16].

Here we want to restrict ourselves to a more detailed discussion of the results
for 2� 2 symmetric matrix games. Let the payo� matrix A be given by

A =

"
a b

c d

#
:

It is well known that the set of Nash equilibrium strategies is invariant with respect
to adding the same constant to the payo�s of one player for a given pure strategy of
the other player. From this it follows that we can distinguish three types of 2 � 2
games (see also e.g. Weibull [55] or Friedman [17]).

Type I: a � c < 0 < d � b. In this case the second strategy strictly dominates
the �rst strategy and hence (e2; e2) is the unique Nash equilibrium of the symmetric
game. Moreover, x = e2 is ESS and it can be shown that the replicator dynamics
converges to e2 for any strict positive initial strategy x0. In case d < a (and hence
c > b) this type represents the well-known Prisoner's Dilemma Game (PDG) and the
Nash equilibrium yields the non-e�cient payo� d for both players. So, in this case
the replicator dynamics lead to a non-e�cient stable state and starting from a state
x0 close to e1 the average payo� or �tness of the population is decreasing along the
trajectory from almost equal to a at the starting point to d at the limit point. The
case d � b < 0 < a� c is similar with the �rst strategy as the dominant strategy.

Type II: a � c > 0 and d � b > 0. This class of games is known as Coordination
Games (CG) and has three symmetric equilibrium strategies, namely the two pure
strategies e1 and e2 and the mixed equilibrium strategy x� = ( d�b

a+d�b�c
; a�c

a+d�b�c
)>.

The highest payo�s are obtained in the pure strategy equilibria. Although all three
equilibrium strategies are proper, only the two pure equilibrium strategies are ESS
and are asymptotically stable. The replicator dynamics converges to e1 (resp. e2) if
x01 > (<) d�b

a+d�b�c
.

Type III: a � c < 0 and d � b < 0. A typical example of this class of games is
the classical Hawk-Dove Game (HDG) of Maynard Smith and Price [30]. Taking
d = 1

2
b > 0, a < 0 and c = 0, a member of the population gets in a contest with his

rival a payo� of a < 0 if he �ghts (plays hawk) and 0 if not (plays dove) when his rival
plays hawk, while the payo� is equal to b > 0, respectively 1

2
b when his rival plays
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dove. In this case there are two asymmetric equilibria, namely (e1; e2) and (e2; e1).
Furthermore there is one symmetric equilibrium (x�; x�) with x� as given under Type
II games. So, x� is the unique symmetric equilibrium strategy. This strategy is also
the unique ESS and the replicator dynamics converges to this strategy for any strictly
positive initial strategy vector x0.

Observe that for type I and type II games the replicator dynamics converges
to a pure evolutionary stable equilibrium strategy, whereas for type III games the
dynamics converges to a mixed ESS. So, in this case the dynamics converges to a
population in which a fraction x�1 plays hawk and the others play dove. In such
a stable population two types of individuals can be distinguished. Of course, in
equilibrium both types have the same average �tness. We have also seen that for
2 � 2 games the replicator dynamics always leads to an ESS when starting at an
interior point of the strategy space. So, for the 2 � 2 case the replicator dynamics
always converges.

Until now we have discussed the notion of Evolutionary Stable Strategy and
the concept of replicator or population dynamics. We now come to the question where
this biological game theory has brought us. What is the meaning of this theory for
economics? This question will be addressed in the next sections.

5 The economic meaning of Evolutionary Stable

Strategy

We have seen that the concept of Evolutionary Stable Strategy is nothing less but
also nothing more than another re�nement of the Nash equilibrium concept. If an
ESS exists, then it is a proper equilibrium strategy and therefore ESS is cautious
and robust against trembles. Moreover, an ESS is stable against mutants and is
asymptotically stable with respect to the replicator dynamics. This latter result shows
that rational behavior is not necessary to obtain such a sophisticated equilibrium. A
population of genetic players inherited with the behavior of their parents is able to
reach an ESS when the o�spring is determined by the �tness of the players. However,
it is not easy to apply this result in economics.

First of all, the replicator dynamics always lead to Nash equilibria. Unfortu-
nately, Nash equilibria often reveal bad outcomes for the society as a whole. They may
su�er from the tragedy of the commons. This is nicely illustrated by the PDG. The
Nash equilibrium yields the worst outcome, both players can obtain higher payo�s
by playing the dominated strategy. In contrast, in empirical prisoner's dilemma-like
sitations cooperative behavior can be observed rather frequently. This has inspired
many authors to develop game theoretic models in which the players cooperate by
playing the dominated strategy. Many papers on repeated games are devoted to this
topic. Unfortunately, evolutionary game theory is not very helpful in sustaining coop-
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erative behavior. Even worse, in the Hawk-Dove game the Nash equilibrium selected
by the ESS outcome is the worst possible Nash equilibrium. Taking a = d = 0 and
hence b > 0 and c > 0, it can easily be seen that both players obtain more payo� in
either of the two equilibria in pure strategies. So, ESS does not sustain cooperative
behavior in type I or type III 2�2 games. This might explain that several theoretical
papers on evolutionary games in economic journals have been focussed explicitly on
coordination games. Indeed, for such games coordination is sustained by ESS. Even
better, the most e�cient outcome has the largest region of attraction, which means
that to bring the population from one of the ESS outcomes in coordination games
to the other, considerably less mutants are needed to go from the worst ESS to the
best ESS than vice versa and therefore the most e�cient outcome is very likely to
occur. For further results on this topic we refer to e.g. Kandori, Mailath and Rob
[21], Ellison [13] and [14], Young [54], Robson and Vega-Redondo [37] and Bergin and
Lipman [2].

For type I and type III 2� 2 games we may conclude that the replacement of
the usual assumption of rationality in economics by the biological �tness criterium is
not of any help sustaining cooperative behaviour, because basically both assumptions
lead to best reply strategies and therefore the only possible outcomes are the Nash
equilibria, all of which are Pareto ine�cient. Other ideas have to be exploited to
model the sustaining of cooperation. Recent literature in the �eld of sociology and
psychology o�ers a way out by replacing the economic rationality approach by proce-
dural rationality, see e.g. Simon [44], specifying a rule of behavior. The `Tit-for-Tat'
strategy, well-known from repeated game theory, can be seen as an example of such
a rule of behavior. We return to this subject in section 8.

6 Learning and imitation as replicator dynamics

Even if we adapt the basic idea of replicator (population) dynamics and consider this
as a useful tool to select one out of the set of Nash equilibria, the application to
economics of the biological concept of �tness driving the dynamics is not straight-
forward. The genetic mechanism of natural selection has to be replaced by a social
mechanism of learning and imitation. Here we encounter several problems.

Firstly, natural selection by �tness results in a dynamic process in which fre-
quencies of the strategies played by the members are adjusted through di�erences
in the number of o�spring. Members with more more succesful strategies get more
o�spring. So, the adjustment of the frequencies is an autonomous process. Individual
members of the population do not make (rational) choices. But adjusting of behavior
on an individual level and hence rational behaviour is an essential feature of learning.
The implications of replacing the �tness mechanism by individual learning have been
discussed in e.g. Crawford [7]. Crawford [9] considers the repeated play of coordina-
tion games and addresses the question whether experimental results reported by for
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instance Van Huyck, Battalio and Beil [50] and [51] can be explained by a learning
process for adjusting the strategies.

Secondly, in the replicator dynamics the strategy frequencies in the popula-
tion are adjusted according to their �tnesses. As a consequence the frequencies of
all strategies with a �tness above the average level are increasing, also when these
strategies are not a best reply. Within a framework of learning and imitation this is
not very realistic. We may expect that rational players in a process of learning or
imitation will replace their strategies by best reply strategies. So, in such a process
only the frequencies of the best reply strategies may be expected to increase. This
raises the question whether a learning or imitation process can justify the replica-
tor dynamics as de�ned in equation (4). The research on this topic has gone into
several directions. A number of authors have addressed the form of the replicator
dynamics. In the orignial system (4) the growth rate of the frequencies is given by
the average expected payo� of the strategies. It has been shown that the weaker form
of monotonicity of the growth rates in the expected payo�s is su�cient to preserve
most of the results. Results along these lines have been obtained by e.g. Nachbar
[33], Friedman [16], Matsui [27], Samuelson and Zhang [38] and Bj�ornerstedt [6]. On
the other hand, on the same issue research has been done addressing the question
whether it is possible to formulate a learning or imitation process resulting in the
replicator dynamics as given in equation (4), see e.g. Bj�ornersted and Weibull [5],
Gale, Binmore and Samuelson [18] and Schlag [40]. In the latter paper the players
follow an imitative behavior, never imitate an individual that is performing worse
than oneself, and imitate individuals doing better with a probability proportional to
how much they perform better. It is shown that this behavioral rule results in an
adjustment process that can be approximated by the replicator dynamics.

Finally, we would like to mention a third problem when replacing the genetic
mechanism by a story of learning or imitation. To formulate this problem, we quote
Mailath [26] when he discusses the problem of the often assumed bounded rationality
of the players. He then states:

Players in these models are often quite stupid. For example, in evolutionary models,

players are not able to detect cycles that may be generated by the dynamics. The

criticism is that the models seem to rely on the players being implausibly stupid.

Why are the players not able to �gure out what the modeler can? Recall that in the

traditional theory, players are often presumed to be computationally superior to the

modeler.

Here we come to the question that when frequencies are adjusted by a learning pro-
cess, why players are going to adapt their strategies according to a nonsophisticated
process as the replicator dynamics? As we have seen before, convergence of the repli-
cator dynamics can not be guaranteed. In fact, the replicator dynamics is equivalent
with the Walrasian tatonnement process in general equilibrium theory and su�ers
from the same weaknesses. In general equilibrium theory several globally convergent
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price adjustment processes have been designed, based on the well-known simplicial
method introduced by Scarf [39]. In e.g. Van der Laan and Talman [23] and [24]
and Kamiya [20] path-following globally convergent processes have been proposed.
In these processes tatonnement-like rules are followed, but cycling is prevented by
taking into account the starting price vector. In Van den Elzen and Talman [15],
see also Van der Laan and Talman [22], the path-following technique is modi�ed to
a strategy adjustment process for noncooperative games in normal form. This ad-
justment process always converges to a perfect Nash equilibrium. In Yang [53], see
also Yamamoto [52], such a process has been designed converging to a proper Nash
equilibrium. It might be interesting to apply these results to the framework of a
monomorphic population and to search for an interpretation of such sophisticated
processes as learning or imitation processes.

7 Evolutionary stability in nonsymmetric games

Applying evolutionary game theory to economic situations we often encounter the
problem that the conditions of a single symmetric population and pairwise random
matching are not met. In many economic situations we have to deal with interac-
tion between more than two individuals and/or with interaction between individuals
from several distinct populations. Nevertheless, as argued by e.g. Friedman [17],
evolutionary game theory can easily be adapted to model these features.

First, instead of pairwise matching, we consider the case that all players are
interacting together, i.e., all players are `playing the �eld'. Now, the payo� to a
player is determined by his own strategy and the strategies of all other players.
However, we can still consider the payo� function as a �tness function and apply
the replicator dynamics to this population. As an example we take a simple model
of a pure exchange economy consisting of a large (in�nite) number of agents and a
�xed number of m commodities. Suppose that initially each individual is endowed
with one unit of just one of the commodities. This endowment can be seen as the
strategy of the individual inherited from his parents or obtained by education. Let xj,
j = 1; : : : ;m, be the fraction of individuals endowed with commodity j. Furthermore,
the utility of an agent obtained from a vector y 2 IRm of commodities is given by
u(y). So, all agents are identical except for their initial endowments. Now, for this
economy, suppose there is a unique Walrasian equilibrium price vector p(x) 2 IRm,
i.e, at this price vector for each commodity j the total consumption equals the total
initial endowment, so the average consumption of commodity j equals xj, and each
individual maximizes his utility given his income. Clearly, the Walrasian price vector
p(x) depends on the distribution x of the endowments. Within this framework the
income pj(x) of an individual of type j, i.e., an agent endowed with commodity
j, can be seen as the payo� to a type j individual. This payo� depends on his
own endowment and the endowments of all others. Allowing for the adjustment of
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endowments, for instance because agents die and are replaced by new born agents,
we can apply the standard replicator dynamics by stating that the distribution of the
endowments develops according to the system of di�erential equations

_xj = [pj(x)�
1

m

mX
k=1

pk(x)xk]xj; j 2 Im;

so that the fraction of individuals endowed with commodity j will increase (decrease)
if pj(x) is above (below) the weighted average of the prices. By taking the weighted
average 1

m

Pm
k=1 pk(x)xk we have that the system satis�es

Pm
j=1 _xj = 0, so that along

the solution trajectory the sum of the fractions xj, j 2 Im, remains equal to one.
Assuming that initially all commodities are available and that the process will con-
verge, the economy develops to a situation in which all prices are equal. If initially
a commodity has a very high price, there is a relatively shortage of this commod-
ity and more agents are going to adopt this commodity. On the other hand, less
individuals are going to adopt a low-priced commodity. It can be shown that the
stable state in which all prices are equal maximizes social welfare. This result is in
line with the observation of Nelson [35] in a recent survey article on evolutionary
theory of economic change, that evolutionary economics should be seen as a dynamic
generalization of conventional optimization and equilibrium theory. Analogously to
the above evolutionary theory can be applied to the optimal choice of technologies.
Crawford [8] considers �tness functions playing the �eld in stag-hunt games.

The second topic mentioned above is the assumption of a single symmetric
population. In many situations interaction takes place between individuals from
distinct populations. In biology, we may think of contests between the owner of a
territory and an intruder; the analogy in economics is a market situation in which
the incumbent has to compete with an entrant �rm. An other example is a market
with buyers and sellers. In a evolutionary setting this can be modelled by multiple
(large) populations, where each population represents an (economically) distinct role.
For detailed results on this topic we refer to e.g. Van Damme [11], Friedman [16]
and [17], Cressman [10], Samuelson and Zhang [38], Swinkels [45] and Weibull [55].
Here we restrict ourselves to the basic ideas in a framework with only two distinct
populations.

Let P i denote the set of individuals in the monomorphic population i, i =
1; 2. In each contest a randomly chosen member of P 1 meets a randomly chosen
member of P 2 to play the bimatrix game (A;B). We �rst discuss the notion of
Evolutionary Stable Strategy within the multiple population framework. As in the
single population case, an ESS must be at least a Nash equilibrium. So, let (x1; x2) 2bS = Sm1 � Sm2 be a pair of Nash equilibrium strategies, i.e.,

i) x>1 Ax2 � q>Ax2 for all q 2 Sm1 ; (5)

ii) x>1 Bx2 � x>1 Bq for all q 2 Sm2 : (6)

To be evolutionary stable the Nash equilibrium strategies must be immune against
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any mutant strategy in one or both populations. Suppose that some mutants play-
ing strategy q 2 Sm1 appear in population P 1. Analogously to equation 3 a Nash
equilibrium (x1; x2) is said to be stable against q if the incumbent strategy x1 per-
forms better than the mutant strategy q. From the discussion in Section 2 we have
seen that this condition holds if the incumbent strategy performs better against itself
than the mutant stategy against the incumbent strategy or if the incumbent performs
better against the mutant than the mutant against itself in case both strategies per-
form equally well against the incumbent strategy (see De�nition 3.1, conditions i)
and ii)). However, in the multiple population framework a mutant player in popula-
tion P 1 only meets players from population P 2 and therefore cannot meet a collegue
mutant in its own population. This implies that the second condition becomes re-
dundant and hence for evolutionary stability the Nash equilibrium strategies must
satisfy the stronger condition that the incumbent strategy of a population performs
better against the other population than any mutant strategy. Hence we have the
following de�nition.

De�nition 7.1 (Evolutionary Stable Strategy Pair)

A strategy pair (x1; x2) 2 bS is an Evolutionary Stable Strategy Pair of the

asymmetric bimatrix game G = (A;B) if it satis�es the Nash equilibrium conditions
(5) and (6) with strict inequality.

It has been noticed already by Selten [42] that an evolutionary stable strategy
pair is not only stable when mutants appear in one of the populations but also if
in both populations mutants appear simultaneously. More precisely, if (x1; x2) is
evolutionary stable, then for any q = (q1; q2) 2 bS there exists an �(q) 2 (0; 1) such
that for all � < �(q) we have that either x1 performs better against y2 than q1 does, or
x2 performs better against y1 than q2 does, or both, where yi = (1��)xi+�qi, i = 1; 2.
So, if mutants appear in both populations at the same time, the incumbent strategy
performs better in at least one of the populations and hence within this population
the mutants will die out in the limit. As soon as the fraction of mutants within this
populationis small enough, it follows from De�nition 7.1 that in the other population
the incumbent strategy performs better than the mutant strategy and that therefore
also in the latter population the mutants will die out.

A Nash equilibrium satisfying the conditions of evolutionary stability is known
in the traditional game theory as a strict Nash equilibrium and has the property that
xi, i = 1; 2 is the unique best reply against xj, j 6= i. As discussed already in Section
2 this property implies that an evolutionary stable equilibrium is an equilibrium in
pure strategies. This shows a serious weakness of evolutionary game theory in case
of multiple populations. At any nonstrict equilibrium the populations are not stable
against mutants playing alternative best replies. However, for a large class of games
a Nash equilibrium in pure strategies does not exist and therefore evolutionary game
theory fails to make any prediction about the outcome. For weaker stability concepts
we refer to Swinkels [45].
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There are several possibilities to generalize the replicator dynamics from the
single population case to the multiple population case. The most common general-
ization has been proposed by Taylor [46] and is in case of a two-population given
by

_x1j = [(e1j � x1)
>Ax2]x1j; j 2 Im1

;

_x2j = [x>1B(e
2j � x2)]x2j; j 2 Im2

;

with eij the jth unit vector in IRmi, i = 1; 2. Clearly, this is a straightforward gener-
alization of equation (4) and the solution path of these dynamics has about the same
properties as in case of the replicator dynamics for single populations. In particular
we have that every strict (evolutionary stable) Nash equilibrium is asymptotically
stable and that strictly dominated strategies vanish along any interior solution path.
However, since strict Nash equilibria often do not exist, the concept of asymptotic
stability in asymmetric games is much less useful than in symmetric games. This
has motivated Samuelson and Zhang [38] to search for more robust stability results
by specifying alternative formulations for the dynamics. Unfortunately, even if the
dynamics are requested to be payo� monotonic, i.e., a strategy with a higher payo�
has a higher growth rate, a strictly dominated strategy may survive along the so-
lution path if it is not strictly dominated by just one other pure strategy but only
by mixed strategies. This brings Samuelson and Zhang to the conclusion that to
get reasonable outcomes additional structure has to be placed on the evolutionary
selection or learning process and that therefore theories of learning are an important
area for further research.

For some illustrating examples of the application of the replicator dynamics
to two player games we refer to Weibull [55] and Friedman [16]. The properties and
weaknesses of the dynamics are very nicely demonstrated by the Entry Deterrence
Game given by the payo� matrices

(A;B) =

"
(2; 2) (0; 0)
(1; 4) (1; 4)

#
:

Player 2 is a monopolist on a market and wants player 1, the intruder, to stay out,
which gives him a payo� of 4. In case player 1 enters, player 2 can yield in which
case the market is shared (with payo� 2) or �ght with payo� 0 to both players. This
game has a unique strict Nash equilibrium, namely x1 = (1; 0)> (player 1 enters) and
y1 = (1; 0)> (player 2 yields), giving both players a payo� of 2. Moreover, there is a
continuum of Nash equilibria, namely any (x1; x2) 2 bS with x11 = 0 (player 1 stays
out) and x22 �

1

2
(player 2 will �ght with probability at least equal to 1

2
). Observe

that for player 2 the strategy `�ght' is weakly dominated by `yield'. For most of
the initial states the replicator dynamics converges to the unique strict equilibrium.
However, for initial states with both x11 and x21 close to zero the replicator dynamics
converge to a Nash equilibrium out of the set of equilibria in which player 1 stays
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out. At such an equilibrium the evolutionary selection procedure does not wipe out
the weakly dominated strategy `�ght'.

To conclude this section we like to stress that random matching of the players is one of
the basic assumptions of evolutionary game theory. Although this assumption might
be appropriate within a biological framework, in a economic setting an agent often
only interacts within a small subset of the other agents. Therefore opposite to the
random matching, some authors have also discussed the implications of local match-
ing rules in which each individual only interacts within a small group of friends or
neighbors. Learning under local interaction has been studied for coordination games
by e.g. Ellison [13] and [14] and Berninghaus and Schwalbe [3]. Ellison concludes
that under local matching evolutionary forces are much stronger, that is that the
system adjusts much faster. While under random matching convergence times are
often incredibly long and therefore of little help for useful predictions on the outcome,
under local interaction convergency may appear early in the process. Berninghaus
and Schwalbe [3] show that the smaller the neighborhood group, the higher the prob-
ability to reach an e�cient equilibrium. Nevertheless, in all these models we are still
con�ned to the Nash equilibrium outcome and hence the worst possible outcome in
Prisoner's Dilemma Games. In the next section we will see that under sociological
strategy adapting rules cooperation may emerge in Prisoner's Dilemma Games with
local interaction.

8 Cooperation in Prisoner's DilemmaGameswith

local interaction

Local interaction models are interesting because they often have some relationship to
real world interaction situations and therefore have a nice economic interpretation.
In every day (economic) life, typically not everyone will interact with all the other
individuals present in a certain environment. Each individual has a (small) number
of others with whom (s)he interacts consisting mostly of colleagues, friends, relatives
and business associates, or in the case of �rms other related �rms. These colleagues
and friends in their turn interact with their respective groups of relatives and friends
and since these groups usually overlap, but are not identical, there is an indirect
interaction through their respective groups of friends and colleagues between people
who do know each other and who never actually meet.

Local interaction is typically modelled in a spatial way in which the people
with whom one interacts are located nearby. The individuals with whom a member of
the population interacts is called one's neighbors. As stated above, in local interaction
models there is an indirect inuence on behavior of individuals by people that are
not one's neighbors via (a series of) other individuals. In real life the size of group of
neighbors will vary across individuals. For reasons of simplicity however, the group



{ 20 {

size is taken �xed in most of the models in the �eld. Modelling the spatial environment
as a discrete 2-dimensional torus, it seems very plausible to think of every individual
as having four (adjacent) or eight (adjacent and diagonal) neighbors, see e.g. Ellison
[14]. In local interaction models a large number of games is played. At the beginning
of every game an individual is selected and this individual is called the subject. This
subject plays the game with (one or some of) his neighbors. A neighbor is either
picked at random or there is some selection criterion in the model. On the basis
of the payo� obtained from the game and further obtained information the players
decide whether to change the action the next time they get to play the game, giving
the individuals ample opportunity to learn. The speci�c way in which learning is
modelled di�ers a lot between the models, but most modelers use some form of
rational behavior with bounded recall (best reply dynamics). Most of the time these
models are used to either select amongst Nash equilibria or to explain features of the
emergence of cooperative behavior while this cooperative behavior is not one of the
Nash equilibria of the game. However, to explain emergence of cooperative behavior
the majority of local interaction models face a problem, since they need to expect
too much rationality of the individuals. In other words, most models incorporate
learning dynamics that are far more complicated than those used in every day life. In
our opinion in general people do not optimize in most situation in which interaction
takes place.

Based on literature in the �eld of sociology and psychology, in Tieman, Van
der Laan and Houba [49] a fundamentally di�erent approach has been chosen. In this
paper the social environment has been modelled a 2-dimensional torus as described
above. The dynamics is modelled as an adaption process on the level of the individual,
as has Ellison [14], but instead of using best-reply dynamcs, a sociological perspective
has been chosen. This has been implemented by introducing a decision heuristic or
metastrategy for all individuals on the torus, according to which they adapt the action
they are playing. This metastrategy is an augmented version of the strategy Tit-for-
Tat. Tit-for-Tat is a strategy speci�ed for a game in which an individual can play
one of two (pure) actions, cooperative or defective, and prescribes an individual to
start the �rst game by playing the cooperative action. In the remainder of the game
individuals simply play the action the opponent has played in the last interaction. So,
an individual that uses the Tit-for-Tat strategy punishes an opponent who chooses
the defective action, by playing defective in the next encounter. Tit-for-Tat is also
a forgiving strategy: as soon as the opponent decides to play the cooperative action
again, the Tit-for-Tat player will start playing cooperative again in the next game
both players play. The Tit-for-Tat strategy became very popular after a tournament
organized by Robert Axelrod [1], in which he invited a large number of scientists
from di�erent disciplines to send in computerprograms to take part in a competition
of playing Prisoner's Dilemma Games. In the competition Tit-for-Tat turned out to
be the winner by far and did better than far more complicated strategies.

In the model discussed in [49] the players play one of k + 1 possible actions,
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which can be ordered from completely defective to completely cooperative. The
metastrategy determines how players will play in the next game they participate in,
based on their current action and the payo� they got from that action in comparison
with the payo�s their neighbors got the last time they played the game as subjects.
It is postulated that when a player obtains a payo� that is higher than the average
payo� his neighbors got the last time they played the game as subjects, he feels as if
he is in a `win' situation. On the other hand, a player with a payo� lower than the
average payo� of his neighbors feels as if he is in a `lose' situation. Clearly, we have
de�ned win and lose situations relative to the group of people one interacts with,
mainly because we think this is what is happening in real life. People compare their
own situation with the situation of their relatives.

Now, following Messick and Liebrand [31], it is assumed that a player in a
win situation is going to play more cooperatively in the next game he participates in,
whereas a player in a lose situation will play less cooperatively in the next game he
is in. Since there are k + 1 possible actions in the game, playing more cooperative is
incorporated as switching from action i, i = 0; : : : ; k � 1 to action i + 1: If a player
in a win situation already plays fully cooperative (action k), he does not change his
action. Analogously, a player in a lose situation will change his action i; i = 0; : : : ; k
into i� 1; whenever i > 0: When i = 0; his action will be left unchanged. The action
of a player who is neither in a win, nor in a lose situation will also be left unchanged.
Apart from this strategy resembling a multi-action version of Tit-for-Tat, there are
also arguments of fairness, as described in Rabin [36] amongst others. Fairness is a
concept in which people have ideas about what they should be getting out of a game
(an aspiration level). If they reach this level, they are satis�ed and are willing to
cooperate. If they do not reach this level however, they feel they are being cheated
on by the other players and they will act accordingly by not cooperating as much as
they used to do.

The above described metastrategy is incorporated in a model in which the
players are producers of heterogeneous, but substitutable goods. In this game the
actions are the prices the producers set for their product. Every producer will com-
pete against the neighbor who sets the lowest price in the neighborhood. This model
results in a stable state of the population in which a high degree of cooperation (up
to about 97% on average) is present, that is most producers set a price that is very
near the price they would set would they form a cartel. Ofcourse these results depend
on the exact speci�cation of the metastrategy, but the general idea that cooperative
behavior can be explained by interaction models incorporating sociological adaption
rules is illustrated nicely here. Another interesting result of this model is the emer-
gence of price wars. In the stable state of the population sometimes a producer starts
lowering his price. Other producers in the neighborhood of this producer start los-
ing customers and therefore are in a lose situation whenever they play against this
producer with the lower price. Thus other producers in the neighborhood of this
producer with a lower price also start to lower their price. In this manner a local
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price war can emerge. After some time the general prices in such a neighborhood
have declined considerably and more producers get to be in win situations again and
convergence to the same stable situation the population was in before starts again.
So, the model may explain the emergence of cooperation, even although cooperation
is not a Nash equilibrium. We think that local interaction models with sociological
learning rules are an important �eld for further research.

9 Concluding remarks

Evolutionary game theory puts the static Nash equilibrium concept in a dynamic
setting. This dynamic framework may provide us with a better understanding about
the stability of equilibria and selection mechanisms. However, the standard replicator
dynamics has limited applicability in economic models and has to be replaced by a
process of learning and imitation to be fruitful within the �eld of economic theory.
In this way evolutionary game theory forces us to think more thoroughly on the
behavior of players outside equilibrium and the game they are playing. As long as
individuals are supposed to play best replies, at best sophisticated Nash equilibria
will emerge. This may deepen our understanding on coordination problems, but
does not provide us with a better insight in cooperation problems. To explain the
emergence of cooperative behavior in the society as a whole, we have to allow for
more elaborate strategies reecting social rules in the behavior of individuals in an
interactive environment.
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