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Asymptotic Properties of Predicted
Probabilities in Discrete Regression

J.S. Cramer *

december 1999

Abstract

The discrete outcome of a probability model is recorded as Y; = 1
while otherwise Y; = 0. y is the vector of observed outcomes, p the
corresponding probabilities,  a consistent estimate of p, and resid-
uals are defined as e = y — p. Under quite general conditions, the
asymptotic properties of p ensure that these residuals have zero mean
and are uncorrelated with p. These asymptotic results extend to the
multinomial case. They support certain measures of fit for discrete
models.

1 Introduction

Two well known properties of residuals of common linear regression are that
they have zero sample mean and are orthogonal to the regressor variables, and
hence to the predicted values of the dependent variable. This paper estab-
lishes closely similar asymptotic properties for discrete probability models.
The result is used in two other papers to justify a measure of fit: for the
binary model in Cramer (1999), for multinomial models in Cramer (2000).
Both papers provide empirical illustrations of the properties under review.

*Tinbergen Institute, Keizersgracht 482, 1017 EG Amsterdam, Holland; e-mail
Cramer@Tinbinst.nl. This is a revised version of discussion paper TI 97-044/4. I am
greatly indebted to Geert Ridder and Peter Boswijk for guidance and support.



Consider a single discrete variate that obeys a given probability regression
model with parameter vector . The model defines the probability that the
outcome Y; is 1 at regressor vector x; as

P = P(Y; = 1|z;) = P(x:,0). (1)

Consistent parameter estimates 0 have been obtained from a random sam-
ple of size n from a given population, for example by Maximum Likelihood
estimation. These estimates determine predicted probabilities

Outcomes and predicted probabilities are arranged in vectors y and p. Since
E(y) = p, it is natural to define crude residuals

e=y—p. (3)
These differ from the common linear regression residuals, but they do share

two major properties, if only asymptotically. First, with 2 the unit vector,
the zero mean property

Te/n 25 0. (4)
In terms of p and y this implies the equality of means; by
Tprly

the mean of the P is equal to the sample frequency a of the event Y; =1,

p=1"p/n~ly/n=a. (5)
Second, the orthogonality property is
pe/n 25 0. (6)

Since e has zero mean, this means that e and p are approximately uncorre-
lated. In terms of p and y (6) gives

pprPY. (7)

We establish these properties below. The major assumption is that the
pairs (z;,Y;) are a random sample from a given population, which is more
appropriate for analyses of survey data than for controlled experiments. But
there are no restrictions on the context of the single outcome Y;: it may
belong to a narrow binary model, where the only alternative is its comple-
ment, or it may be part of a larger or more complex model. The properties

therefore hold for each outcome of a multinomial discrete model and also for
the discrete arm of a mixed model like the Tobit model.



2 Practical relevance

Two issues determine the practical relevance of these asymptotic results,
namely whether they are approximately valid in finite samples, and whether
they are of any use.

The first question is easily settled, for it is readily verified in any particular
instance whether the sample mean residual ¢ and the sample correlation
r(p, e) are close to zero, as they should be by (4) and (6). In a bivariate logit
model (4) holds exactly, for the Maximum Likelihood estimates p; satisfy

X"y—p)=X"e=0, (8)

and (4) follows if the regressor matrix X contains a column of constants (as
it usually does). As for (6), the logit probabilities p, are often quite close to
a linear function of X, and then (8) ensures that r(p, e) is close to zero.

So far the usefulness of the properties is that they support a measure of
fit since they imply that the classical decomposition of sums of squares is
approximately valid for discrete outcomes. From (6) we have

yyx~p p+ee. (9)

By the zero mean property, y and p have a common mean, and upon taking
this out (9) can be rewritten in terms of sums of squares around the mean as

S8, ~ 88, + SS.. (10)

The observed variation of y is thus split up into two orthogonal components,
and the sum of squares of y is decomposed into an explained part and an
unexplained residual part. This immediately suggests

A=1-55./S5, (11)

as a measure of fit. This is identical to the R? proposed by Efron (1978), who
ensures that (10) holds by considering the special case of grouped data. This
has restricted the general adoption of his measure, as noted by Windmeijer
(1996). The present result vindicates a much wider use of R? or \.



3 Assumptions

We consider a random sample of n independent observations (z;, Y;), drawn
from a given population, and consistent estimates p of the P; of (1). Consis-
tency implies

b2 p. (12)

The P; are not independent, for they share 6 and satisfy side restrictions like
(8).

Amemiya (1985) has shown that for the models under consideration Max-
imum Likelihood estimation provides consistent parameter estimates. This
is the usual procedure. The parameter space © is then defined in such a
way that P; is a proper probability for any z; and any admissible § and 0.
The P, and P; are thus restricted to the open interval (0,1); its bounds are
excluded since the model (as well as ML estimation) breaks down at these
limiting values. The argument that follows makes use of the consistency (12)
and of the restriction of ¥;, P; and P, to the interval (0,1). Moreover, the
treatment of observed pairs (z;, Y;) as independent random drawings from a
given population ensures that all statistics for a given observation, including
131‘, have the same distribution for all ;.

These assumptions are met in a wide range of cases. The restrictions
on the parameter space are a standard matter and consistency is a common
property of estimates. The treatment of the (z;,Y;) as independent random
drawings from a given population may not be appropriate for controlled
experiments, but it does apply to survey data, under the pretense that the
observations have been drawn with replacement. The argument is thus valid
for analyses of such data in epidemiology and the social sciences.

4 A lemma
For the record we establish the following result: Let
S™ =1/n3 7™M (13)

where the Zi(") are identically distributed, restricted to the interval (0, 1) and
have probability limit zero,

Zm 2y 0. (14)



Under these conditions
sm 2. (15)

The proof starts from the probability limit (14). By its definition there
is for any 7 and d, however small, a n* such that for all n > n*

Pz >n) <. (16)

Note that, for given n and J, the same n* applies to all ZZ-(") because they
have the same distribution. In the sequel n is always taken to exceed n* so
that (16) holds.

Now consider the expected value of Zi("). With a probability density f(z)
this is

EZ™ = /01 z2f(2)dz = /On zf(2)dz + /nl zf(2)dz.
Obviously
/On z2f(z)dz <n
and, by (16),
/n1 z2f(z)dz < 6.
As a result
EZ™<n+6
and hence
ES™ =E1/nYZ" <n+6. (17)

Since the Zi(") are nonnegative so is S and Markov’s inequality applies, or

E|S™
P(s™) > o < ZI51,
€
or, with (17),
n+9




Hence
s 20,

which is the desired result.

This lemma will be applied to functions of Y;, P; and 151-; for the latter
estimates each Zi(") depends on the entire sample, and the upper index (n)
recalls this fact. Since all samples are drawn in the same manner from the

same population, the Zi(n) are identically distributed; but as the B depend

)

on a single set of parameter estimates, the Zi(" are not always independent.

5 Zero mean residuals

To show the zero mean property (1)
p=1/n3 (Y= P) 0
rewrite p as
p=1/ny (Y= P)—1/nY (P~ P) (18)

and take the two terms in turn.
First define

EY; = Ey, E (Yi|z;) = E P, = EP.
By the law of large numbers

1/n>Y; 55 EP, 1/nY P, -5 EP
so that

1/n Y (Y= P) 0.

This takes care of the first term.
For the second term first write

1/n> (P, = P) <1/nY (P — P)|
By the consistency condition (12) each element of the summation converges

to zero, and as the absolute values are moreover constrained to the interval
(0,1) the lemma of section 4 applies; consequently

1/nY (P - P) 0.

As both terms converge to zero, so does their difference, and this estab-
lishes (18).



6 Orthogonality

To show this property (2) or
v =1/ B(Y: - P). (19)
is rewritten in four terms as
v= 1/n2(pz —P)Y;+1/nd>_ PY,— 1/712(]512 —P?) —1/n)_ P}
For the first term
1/nY (Pi— P)Y, <1/nYy_|(Pi— P)Y,)| 250

since by (12) the conditions of the lemma apply.
For the second term

1/n>" PY; -+ E BY; = E P,E (Y;|P) = EP”.
For the third term
1/nYy (P} = P?) <1/nY (P - P?)
and
1/n Y|P = P2)| 250

since by Slutsky’s theorem and (12) the conditions of the lemma apply.
The fourth term at once satisfies

1/ny P} £ EP?
Collecting the four terms yields
v 250 (20)

which is the orthogonality property.



7 Multinomial Extension

So far the vectors p, y and e refer to a single event. This may well be
a particular alternative s among a set of S alternatives in a multinomial
model. The vectors then denote corresponding columns ps, ys and e; of
S x n matrices P, Y and E.

The zero mean property carries over at once to this larger set and reads

TE/n 250, (21)
with the right-hand 0 now a Sx1 vector. For the sample matrix P this implies
TPy, (22)

that is the equality of means.

The generalization of the orthogonality property is not so trivial and
yields a new result. As long as we consider a single event, (2) is interpreted
naturally as

ples/n 250
and (19) as

v=1/nY Py(Yis— Pi).
In fact there holds a more general form of orthogonality

e /n 250 Vs, t, (23)
and instead of (7) we have

PTE/n 25 0. (24)

This is so because with appropriate changes in notation the argument of
Section 6 applies line by line to

vt = 1/”2 pi,s(Y;,t - Pz',t)-
In terms of P and Y this implies
PTY ~ PTP, (25)



The matrix on the left occurs in sample enumeration where it gives the sums
of predicted probabilities over outcome categories; it is here seen that it
is (approximately) symmetrical. The sum of the estimated probabilities of
alternative s over observations exhibiting outcome ¢ is approximately equal
to the sum of the probabilities of alternative ¢t over observations exhibiting
outcome s. This is not intuitively obvious.
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