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Abstract

Large data sets in �nance with millions of observations have become widely

available. Such data sets enable the construction of reliable semi-parametric

estimates of the risk associated with extreme price movements. Our approach

is based on semi-parametric statistical extreme value analysis, and compares

favorably with the conventional �nance normal distribution based approach. It

is shown that the e�ciency of the estimator of the extreme returns may bene�t

from high frequency data. Empirical tail shapes are calculated for the German

Mark - US Dollar foreign exchange rate, and we use the semi-parametric tail

estimates in combination with the empirical distribution function to evaluate

the returns on exotic options.
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1 Introduction

The size of available data sets in economics and �nance has grown rapidly.
Initially, most empirically oriented economists worked with data sets smaller
than a few hundred observations. During the seventies the size of available data
sets in �nance and marketing grew into the thousands, and nowadays millions of
observations per series are commonplace. For example the Olsen & Associates
company has over ten millions observations of screen quotes for the DM-USD
contract. In this paper we discuss some of the exiting statistical and economic
issues that can be dealt with given such voluminous data sets.

We are concerned with the return, i.e. percentage gain or loss, on either a
single �nancial asset or on a portfolio (linear combinations) of di�erent assets. In
�nance it is often assumed for convenience that returns are normally distributed.
For certain questions this assumption is harmless and expedient. But it is also
well-known that the empirical distribution of asset returns exhibits many more
tail realizations than could be expected on the basis of the normal model. This
so called heavy tail feature of the return data has become a stylized fact among
applied researchers, see Ballie and McMahon (1989, p. 135) and Campbell,
Lo and MacKinlay (1997, ch. 1). Since the normal model leads to an under-
prediction of tail events, for applications in areas like risk management (which
focuses on the probability of bankruptcy), it is more prudent to work with the
heavy tailed distributional assumption.

It is a fortunate coincidence that all heavy tailed distributions exhibit, to a
�rst order approximation, the same hyperbolic tail behaviour. Due to this prop-
erty it su�ces to use a semi-parametric analysis for questions concerning tail
risk, where only the tails of the return distribution are modeled parametrically.
In the theory section it is argued that the mean-squared error (MSE) property
of the semi-parametric estimator of the hyperbolic tail coe�cient bene�ts from
an increase in the frequency of the data . We also argue that the estimation
procedure requires a large number of observations to begin with, because it re-
lies on bootstrap resamples which have to be of smaller order than the original
sample size, but still contain a su�cient number of extreme realizations.

In the empirical section we �rst demonstrate the bene�t of an increase in
the frequency of the returns on the hyperbolic tail shape parameter estimates.
Secondly, we show how a sizeable data set can be exploited to compute the
returns on derivatives conditional on the underlying returns being heavy tailed
by a semi-parametric method. Conventional analysis uses a small number of
observations and proceeds on the basis of normality. Here the size of the data
set allows us to use the empirical distribution in the middle and the parametric
tail estimates at the two ends of the distribution itself. The e�ects of non-
normality are shown to be important for pricing of an exotic option. While the
�rst part of the paper is a review of existing results, the analysis of the exotic
option is new.
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2 Theoretical Bene�t of High Frequency Data

It is a stylized fact in �nance that asset returns are fat tailed distributed. This
can be modeled by assuming that the return distribution has regularly varying
tails. Formally, a distribution function F (x) varies regularly at in�nity if

lim
t!1

1� F (tx)

1� F (t)
= x��; � > 0; x > 0 (1)

where � is called the tail index. The tail index indicates the thickness of the
tails and equals the number of bounded moments.

From (1) it follows that to a �rst order approximation at in�nity all heavy
tailed distributions have the same Pareto tail shape a x��, where a is a scaling
constant, see Feller (1971, VIII.8). Hence, if one is only interested in the tail
behavior such as in the question of the bankruptcy probability, one does not
need to model a speci�c distribution F (x). Instead, one can proceed semi-
parametrically by estimating a x�� only.

The tail index can be estimated by the Hill (1975) estimator

b1
�
=

1

m

mX
i=1

log
X(i)

X(m+1)
(2)

where the X(i) are the largest descending order statistics X(1) � X(2) � � � � �
X(m) � X(m+1) � � � � � X(n), pertaining to the sample X1; : : : ; Xn. The
Hill estimator is motivated by the maximum likelihood estimator for the hyper-
bolic coe�cient of the Pareto distribution: Above an appropriately chosen high
threshold X(m+1), the tail of a regularly varying distribution function F (x) is
approximately in conformity with the shape of the Pareto distribution, see also
De Haan (1990).

Once the tail index has been estimated, large quantile estimates can be ob-
tained as follows. Consider two tail probabilities p and t. For example take
p < 1=n < t � m=n. Let xp and xt denote the corresponding quantiles.
Hence, p � a x��p and t � a x��t . Combining these two expressions yields

xp � xt (t=p)
1=�. Replace xt by X(m+1) and use the empirical distribution

function for t � m=n. The quantile estimator reads

x̂p = X(m+1)

�
m

np

�d1=�
(3)

see, e.g. De Haan, Jansen, Koedijk and de Vries (1994). Note that the statistical

properties of x̂p are in essence determined by the properties of d1=�.
The theory for the statistics d1=� and x̂p is derived under the assumption

of independence. Typically, �nancial returns exhibit the fair game property.
The reason is a simple arbitrage argument. If one knew that the asset price
was going to be high tomorrow, one would buy today. But this already raises
today's price and quickly eradicates pro�t opportunities, leaving the expected
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net return equal to zero (net of the growth rate of the �rm or the economy).
Hence, returns data typically do not exhibit dependence in the �rst moment.
The second moments, however, do display dependence. Markets happen to
have periods of quiescence and turbulence. A popular model for this feature
is the class of ARCH processes, see Engle (1982). The ARCH model relates
current variance to the past squared realizations. Kearns and Pagan (1997)
considered how this second moment dependence might inuence the properties
of the statistics (2) and (3). De Haan et al. (1989) showed that the stationary
distribution of the ARCH process varies regularly at in�nity; and Resnick and
Starica (1998) proved the consistency of the estimators under the assumption
of ARCH.

Both estimator (2) and (3) depend on a judiciously chosen threshold index
m. To tackle this issue, consider the following second order tail expansion

F (x) = 1� ax��
�
1 + b x�� + o(x��)

�
; as x!1 (4)

with � > 0; a > 0 and b 2 <. This expansion applies to a large subclass of the
heavy tailed distributions, see De Haan and Stadtm�uller (1996). For example the
Student-t, the symmetric sum-stable distributions with characteristic exponent
� 2 (1; 2) and type II extreme value distributions, all admit (4). For this class of

distributions the bias and the variance of d1=� are straightforward to calculate.
The asymptotic mean squared error (AMSE) is then found as

AMSE

 b1
�

!
= E

24 b1
�
� 1

�

!2
35 =

1

�2
�2 b2

(�+ �)2
a�

2�
�

�m
n

� 2�
�

+
1

�2
1

m
(5)

In the AMSE sense, it is optimal to have the bias and the variance vanish at the
same rate as n!1, otherwise one of the two will dominate the other, and this
brings down the rate of convergence of the AMSE below the best obtainable
rate. Hall (1982) �rst showed that this optimal rate determines the optimal
number of order statistics as follows

m = c n
2 �

(2 �+�) ; c > 0 (6)

where c depends on the parameters a; b; �; � (this follows from equating the

partial derivative of the AMSE(d1=�) with respect to m to 0). Hall(1982) and
Goldie and Smith (1987) showed that when m = m(n), the rescaled Hill esti-

mator
p
md1=� is asymptotically normally distributed. A similar result applies

to the quantile estimator x̂p.
We will now give an example of how an increase in the frequency of the

data improves the e�ciency of the tail estimators. The example is based on
Dacorogna, M�uller, Pictet and de Vries (1995). Suppose that the data are
generated by a symmetric sum-stable distribution with characteristic exponent
� 2 (1; 2); note that the characteristic exponent equals the tail index when
� 6= 2. For the stable distributions � = � in (4), the scaling constants can be
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easily obtained from Feller (1971, ch. XVII.7). In this case the expression for
the AMSE in (5) at m = �m becomes

AMSEn =
3

�2

�
b

4a

� 2
3

n�
2
3 (7)

Instead of considering single period returns, now consider w-period returns. A
w-period return is simply the sum of w consecutive individual returns. For
the w-convoluted data, by using the additivity property of stable variables, the
AMSE reads

AMSE n
w
=

3

�2

�
b

4a

� 2
3 �n

w

�
�

2
3

(8)

It follows that the time aggregated data yield less e�cient estimates of 1=�.
Another bene�t from large data sets is that these allow one to locate the

optimal m in a statistical satisfactory way. While the theoretical expression for
m was given in (6), we did not explain how this number can be obtained in
practice such that the asymptotic normality is preserved. This problem was re-
cently solved by Dan��elsson, De Haan, Peng and de Vries (1997) and Dan��elsson
and de Vries (1998) by means of a bootstrap procedure. The idea is to construct

the bootstrap expectation of (d1=�� 1=�)2, and to minimize it with respect to
m.

Two hurdles have to be crossed before this procedure can be used. The �rst
problem is that the benchmark 1=� is unknown. A solution to this problem
is to replace 1=� by an alternative estimator, with the same rate of conver-

gence as d1=� but di�erent multiplicative constant, in the minimization of the

AMSE(d1=�). The second problem is that the bootstrap procedure applied to
the entire sample generates a threshold m which only converges in distribution
to the optimal level. To achieve a convergence in probability, a subsample boot-
strap technique must be employed. To be able to implement such a procedure
one needs to construct subsamples which are, on the one hand, an order of
magnitude smaller than the full sample size. On the other hand, because the
outliers are rare by their very nature, one needs subsamples which are still quite
sizable. Hence the use of large data sets, as the Olsen & Associates data set,
allows one to exploit the subsample bootstrap procedure. As Dan��elsson et al.
(1997) and Dan��elsson and de Vries (1998) suggest the sample size n needs at
least to be in the order of about 1500.

3 The Empirical Bene�ts of Voluminous Data

Sets

We provide two applications of extreme value theory to �nancial data, where
the size of the data set is in some sense critical. First, we examine the prop-
erties of some foreign exchange (forex) contracts. It is shown how an increase
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in the data availability a�ects the tail estimates. Subsequently, we calculate
hypothetical price returns on plain vanilla and exotic options. By using a large
set of observations on the underlying we can break away from the parametric
normality assumption, and study the implications of heavy tailed innovations
on the derivative pricing process.

3.1 Forex Data Analysis

The �rst application focuses on the spot foreign exchange rate contract between
the US Dollar and the German Mark (USD-DM). This contract is traded world
wide over the telephone between a number of the larger banks. These banks
maintain regularly updated buy and sell quotes at which they are willing to
trade. These quotes are transmitted, via an information re-seller as Reuters,
directly to the screens of currency traders. To give an idea about the size of
the market, the daily turnover in the foreign exchange markets exceeds 1012 US
dollars.

For a number of years the Olsen & Associates company has been collecting
all the bid/ask quotes, and has made their data from October 1992 to September
1993 available to researchers. Over a 1.5 million quotes were given in the USD-
DM contract during the year. In Dan��elsson and de Vries (1997a) these data
were transformed into returns by using the logarithmic di�erence in the average
of the bids and asks quotes. Subsequently these data were used to calculate
standardized quote returns on a ten minutes basis. From the ten minutes data
base Dan��elsson and de Vries (1998) and Dan��elsson et. al. (1997) took a number
of di�erent subsamples. They calculated the Hill estimate of the tail index for
these subsets. Their results are reported in Table 1. The tail index is between

Table 1: Tail Indexes for USD-DM spot contract

# Observations d1=� Gap

First 2000 10 minutes returns 0.10 0.25
Last 2000 10 minutes returns 0.35

First 5000 10 minutes returns 0.30 0.07
Last 5000 10 minutes returns 0.37

First 20000 10 minutes returns 0.27 0.03
Last 20000 10 minutes returns 0.30

52000 all 10 minutes returns 0.25

Estimates based on the Hill estimator (2) for the �rst and last subsample of the ten
minutes aggregate returns and their di�erences. The number of order statistics is
based on the subsample bootstrap technique from Dan��elsson and de Vries (1998)

3 and 4. This is fairly typical for �nancial return data. For most assets only
the �rst few moments of the return distribution are bounded, a feature of the
heavy tail property of the data. It implies, for example, that considerable care
must be exercised in using statistics which have high moment requirements. In
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the column labeled "Gap", the di�erence between the �rst and last subsample
estimate is given. The value of increasing the sample size is shown by the decline
in the Gap-size as the sample size increases.

3.2 Option Returns

We evaluate the return on an option contract written on the S&P500 stock in-
dex. The S&P500 index tracks the changes of an hypothetical portfolio of 500
di�erent stocks listed on the New York Stock Exchange. The index is recalcu-
lated over the day as the underlying share prices change. Tradable options on
the S&P500 are widely used in portfolio management.

Dan��elsson and de Vries (1997b, 1998) examine the properties of the S&P500
index with special attention to the tail properties. The last 5000 daily returns
from the daily S&P500 index, i.e. the period from 1984 to 1997, are used in
the present analysis. Table 2 shows that a well diversi�ed portfolio of American

Table 2: S&P500 return properties, Hill and quantile estimates

Mean S.D. Skewness Kurtosis
10.0% 14.7% -3.13 77.96
d1=� Minimum X̂1=n X̂1=3n

0.35 -22.8 -8.62 -12.6
(0.31, 0.36) (-7.82, -10.9) (-11.4, -15.9)

The numbers between brackets give the 95% con�dence band, with annualized percentages.
Sample size n = 5000.

stocks yields an annualized return of about 10%, but this mean return carries
quite a bit of uncertainty. The minimum daily return was -22%; this was the
October 1987 Black Monday mini-crash. Combining the estimator (2) and (3)
we calculate two quantile estimates. The borderline sample quantile estimate,
i.e. the quantile that carries a probability of 1/5000, is less dramatic than the
minimum referring to the Black Monday. The -8.62% and the -12.6% estimates
show that -22.8% was a rare event indeed. Note that the estimate for the tail
index is close to the estimates for the foreign exchange data.

We use the S&P500 return data to construct the expected daily return on
two options. A plain vanilla put option gives the owner the right to sell at a
future point in time T the S&P500 index for a pre�xed price X , where T is the
expiration date or maturity and X is the strike price. At maturity the value of
the put option, referred to as the payo�, is

PF � max(X � ST ; 0) (9)

where ST is the value of the S&P500 index at time T . Here T is equivalent
to T TD, the number of trading days. The present value of the payo� can be
obtained through discounting

PV = PF exp(�r � TCD=365) (10)
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where r is the annual risk-free rate of interest and TCD is the number of calendar
days until expiration. We note that the number of trading days T TD is usually
less than the number of calendar days.

Because ST is unknown, one needs to compute the expected value of PV for
pricing the option. This can be done in at least two ways. The �rst method
is based on the assumption that the S&P500 returns are normally distributed.
This is the standard way of evaluating options in the �nancial literature, see e.g.
Hull(1997). Under this assumption we estimate the mean and variance from
the S&P500 return data, and subsequently generate pseudo normal random
numbers. From these generated data we calculate the Monte Carlo expectation
of PF . This is merely a computer intensive way of evaluating the Black-Scholes
formula (see Black and Scholes, 1973 and Boyle, 1977). In order to investigate
the e�ect of non-normality, we generate bootstrap re-samples of the S&P500
returns vector and again compute the Monte Carlo expectation of PF 1. The
assumption of normality is very convenient for two reasons. First, it permits
one to express the value of the option in terms of elementary functions. Second,
the method can proceed with few observations as only the mean and variance
need to be estimated. A possible drawback is that one misprices the option
because the frequency of the tail events is underestimated. Our procedure does
not start from the assumption of normality, and therefore adequately captures
the tail events. The drawback of this approach is the necessity for a large data
set, because of the subsample bootstrap estimation procedure and the required
presence of outliers. The sizeable S&P500 data set is su�cient to implement
our procedure of �tting together the parametric and non-parametric parts of
the distribution of the underlying.

Speci�cally, the bootstrap procedure is as follows. We create bootstrap one
day S&P500 returns by re-sampling from the non-tail section of the empiri-
cal distribution and by drawing from the �tted tails outside the middle range.
This procedure was proposed by Dan��elsson and de Vries (1997b), where it is
described extensively.

Let the one day return be denoted as yij ,with i = 1; : : : ; T , j = 1; : : : ; N ,
where N is the number of bootstraps. Hence the T day bootstrapped return is
given by the sum of the single day returns

yj =
TX
i=1

yij (11)

Conditional on one simulated T -period-return yj , the simulated value of the
S&P500 at the expiration date T is

ST = S0 exp(r � T=365)exp(yj)=(�y
T ) (12)

1The validity of this approach hinges on the assumption that the market prices the deriva-
tives as if agents were risk neutral, or alternatively that the derivatives can be priced by a
dynamic risk neutral hedge strategy. Our procedure is as in Boyle (1977), except that we also
allow for non-normality.
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and

�y =

 
1

n

nX
k=2

Pk
Pk�1

!
(13)

where T = TCD, n is the sample window size, Pk is the S&P500 index price
on day k and S0 is the current value of the S&P500 index at the beginning
of the option life time, see Boyle (1977). By construction the factor exp(yj)=�y
has bootstrap expectation E[exp(yj)]=(�y

T ) = 1. Thus the factor generates the
distribution of ST centered around the futures price.

The present value of the expected option payo� is then estimated by aver-
aging over the number of bootstraps

OP � 1

N

NX
j=1

PV (14)

Denote the expected present value of the option as of tomorrow by OP �. To
obtain OP �, �rst update S0 by a randomly drawn single day return yij . Sub-
sequently, repeat the above procedure for the time to maturity T � 1. Then the
one day option return is

yOP = ln

�
OP �

OP

�
(15)

Apart from this put option, we also investigate the return on an exotic
option. Speci�cally, we considered an up-and-out put barrier option, with a
discrete barrier H > X , such that if at any time � 2 (1; T ) we have that
S0 exp(r � �=365) exp(y�j)=(�y

� ) � H with y�j =
P�

i=1(yij), the option expires
and its payo� is zero. Otherwise its payo� is de�ned in the same way as for the
put option.

The two options were evaluated by using S0 = 930:87, the S&P500 index
value on September 4, 1997. The strike price X was set at 950. The number
of calendar days to maturity was TCD = 105, while the number of trading days
to maturity was T TD = 76. We took as the annual risk-free interest rate the
3 months US Treasury-Bill rate, which at that time was 5.5%. The number
of bootstraps is indicated by N. We also limited ourselves to consider only the
last n = 1500 observations of the S&P500 data set, from September 30, 1991
to September 4, 1997 (where P1 = 387:86), in order to strike a balance between
frequent updating, as is commonplace in option pricing, and the data demands
by the bootstrap estimation procedure. The 1500 is about the minimum number
of observations we need for the bootstrap procedure. We considered two possible
barrier levels for the exotic option. One was H = (1 + 20%)X and the other
was H = (1 + 15%)X . We also evaluated the options by using a data set of
normally distributed random variables with the same mean and standard error
of the S&P500 data set.

The results of our simulations are collected in Table 3. The Table 3 gives the
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Table 3: One day options' returns

Options Normally Distributed Data S&P500 Data
Put 0.0116 0.0179

(0.0034) (0.0034)

Barrier 20% 0.0086 0.0162
(0.0034) (0.0034)

BB 175,409 158,249

Barrier 15% 0.0092 0.0169
(0.0034) (0.0034)

BB 1,668,616 1,504,574

We used N=105 with the total number of calculation equal to 15 � 107 for
each simulation. The table gives the one day return on the options. The
numbers between brackets are the standard errors of the mean of the one
day option returns, and BB indicates the number of breaches of the barrier.

bootstrap average of the daily return yOP , the standard error of the mean and
the number of times the barrier was breached. From Table 3 we see that the one
day option returns are all quite similar, which is not so surprising given the time
scale of a single day. The returns based on the normally distributed data set
are, however, somewhat below the S&P500 based returns. This may be due to
the di�erence in the tail shapes, but at this stage we have no good explanation
for this phenomena. We plan to investigate this result further in future research.
The Table 3 also shows that the introduction of a barrier has no a�ect on the
one-day option returns which is due to the imposed risk neutrality. But, there
is a di�erence in how often the barrier is breached. As expected, the closer
the barrier is to the exercise price, the more frequently the barrier is crossed.
Moreover, the number of times the barrier is crossed is higher for the normal
based data than for the S&P500 based returns. The reason for this apparently
counter-intuitive result follows from the properties of extremes. Recall that ST
is calculated by using the T -day return yj on the S&P500. This T -day return is
obtained by summing T one day returns yij . Under normality a convolution of

T i.i.d. variables enlarges the scale of the single day return by a factor
p
T . For

heavy tailed distributions we can rely on Feller's (1971, VIII.8) theorem on the
tail shape of a convolution of i.i.d. heavy tailed variables. If the single heavy
tailed variable has the tail probability

P fY > qg = aq�� (16)

then for the T times convolution

P

(
TX
i=1

Yi > q

)
= T aq�� (17)

Hence, in the tails the scale of the quantiles is increased by a factor T 1=� if we
hold the probability level constant. Now note that we �nd � > 2, and hence
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the scale increase is less pronounced if the return data exhibit a heavy tail than
if these were normally distributed. Thus, the stock price is more likely to be
above the strike price at the expiration date, or will more likely hit the barrier
H , under normality than if the returns were heavy tailed. Hence, for both
barrier options, the normal based put options hit the barrier 10% more often
than the heavy tail based one. It may sound counter intuitive that the heavy
tailed model has less chance of crossing the barrier, since the tails are heavy. If
the barrier were very high, one would �nd indeed that the heavy tailed data do
have a higher chance of hitting the barrier. But for more moderate values, the
aggregation e�ect dominates over the hyperbolic tail shape e�ect.

4 Conclusions

There are at least two advantages in using large �nancial data sets. First,
such data sets enable a precise study of the risks on extreme losses (and gains)
through semi-parametric tail estimation. In an application to exotic options
pricing, we showed how the tail based method uncovered that the normal based
pricing technique has a bias to hitting the barrier. Without a sizeable data
set this bias would have been hard to detect. We also found that the options
returns from the normal based data set are somewhat below the returns that
are computed with the heavy tailed S&P500 data set. Whether this is a robust
result that can be explained on the basis of the tail shape di�erences, requires
further scrutiny. Second, if the size of the data set can be enlarged, then the
AMSE of the tail procedure is enhanced. We illustrated this by estimating the
tail index of a foreign exchange rate return for di�erent sample sizes. In the
future we plan to extend the option pricing application to a high-frequency data
set as well.
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