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1. Introduction

Since the pioneering work of Akerlof (1970) it is a commonplace in the economics
professon asymmetric information is an important source of market falures in
competitive markets. The dandard modd of adverse sdection consders a détic
market with atomistic agents whose vauations depend on qudity and a standard result
is that only low qudity goods are traded (if a dl) even if the buyers are willing to pay
more than the reservation price of sdlers for each individud qudity (see dso, Wilson,
1979, 1980). This so-cdled lemons problem affects a large spectrum of markets,
induding the cdasic example of second-hand car markets, insurance markets, labor
markets, financid makets and even the market for thoroughbred yearlings (Chezum
and Wimmer (1996). In many cases, the good under consideration is a durable good.

Durability introduces two complicating factors in the used goods markets goods
not traded in any period can be offered for sde in the future and, in addition, new
cohorts of potentid sdlers may enter the market over time. Janssen and Roy (1999,
1999b) have invesiigated some of the issues that arise when durability is explicitly
taken into account in a dynamic modd. Janssen and Roy (199948) address the issue
whether a given stock of goods can be traded over time. They show tha in any
dynamic competitive equilibrium al goods eventudly will be traded. The man idea
behind this result is that (due to a lower use vaue of the good) low qudity sdlers have
less incentives to wait (before sdling) compared to high qudity sdlers.  Once certain
(low) qudities are sold, only rdaively high qudities remain in the market. Consumers
can predict that sdlers of different qudities will sort themsdves into different time
periods and, hence, they ae willing to pay higher prices in later periods. The
equilibrium is thus ore in which higher qudities are s0ld in later periods a higher
prices.

Janssen and Roy (1999b) address the same issue in the context of markets where
identical cohorts of goods with uniformly distributed qudity enter the market over time.
In such markets, the infinite repetition of the static equilibrium under adverse sdlection
is an equilibrium in the dynamic modd. In fact, it is the unique dationary equilibrium
and dso the only equilibrium where prices and average quality traded are (weekly)
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monotonic over time. They show that there exidts & least one other equilibrium,
however, where all goods are traded within finite time after they have entered the
market. This equilibrium is cydlicd in prices and quantities in the sense that once dl
goods ae traded, prices and quantities will fal. Up to the moment al goods are sold,
prices and expected quaity monotonicaly incresse.

In this paper we extend the andysis of Janssen and Roy (1999b) in a number of
ways. Fird, we reax the assumption that in every period a cohort of uniformly
distributed qualities enters the market. Instead, we dlow for any arbitrary distribution,
which satisfies some mild regularity condition. Second, our results are sronger in the
sense that we show the existence of an infinite number of equilibria, where all goods are
traded within finite time after they have entered the market. Hence, there is a strong
sense in which a coordination problem is present in such dynamic markets. Findly, we
show the extent to which the uniform digtribution is specid. It turns out that for a set
of vaues of the modd's parameters and a st of didributions, which have rdatively
little probability mass in the neighborhood of the datic equilibrium, it is impossble to
condruct a dynamic equilibrium with monotonicdly increesng prices and quantities
up to the moment everything is sold. We provide an example where this is the case.
Hence, the equilibrium condruction for the uniform didribution does not extend
naturaly to the class of dl digtributions.

The man economic indght provided by this peper is to give a different
perspective on the adverse sdection problem. In the static Akerlof-Wilson modd, the
adverse section problem manifests itsdf in the fact that relaively high qudity goods
cannot be traded despite the potential gains from trade. In the dynamic market for
durable goods, the lemons problem is not so much the impossbility of trading
rdaively high qudity goods but rather that sdlers with rdively high quality goods
need to wait in order to trade! So, the cost of waiting becomes an important factor in

the wdfare loss aisng due to asymmetric information. Also, as there exigs an infinite

! There are certain situations in which the fact that a seller has waited for a long time might indicate low
rather than high quality. This would be true, for example, when the buyers can inspect quality - high
valuation buyers are more likely to inspect and select the relatively high quality houses- leaving unsold
goods of relatively low quality for later periods (Taylor, 1998). A paper with a similar spirit is that of



number of equilibria, there is a serious coordination problem present in dynamic
markets with adverse sdlection.

Our specific mode is as follows. We consder a competitive market for a
pefectly durable good where potentid sdlers are privately informed about the qudity
of the goods they own. Each period, a cohort of sdlers of equd dze and with an
identical, but arbitrary, didribution of quality enters the market. The demand side is
modeled in the following smple way. Buyers are identicd, have unit demand and for
any given qudity, a buyer's willingness to pay exceeds the reservation price of a sdler
for that qudity. As buyers do not know the qudlity, their willingness to pay in a period
equals the expected vauation of goods traded in that period. Moreover, there are more
buyers than sdlers in each period so that in equilibrium, prices equa the expected
valuation. Once traded, goods are not re-sold in the same market.?

The Akerlof-Wilson modd can be considered the static verson of our modd. The
adverse sdection problem implies that in equilibrium only a cetan range of low
qudities is traded. The infinitely repeated verson of a daic equilibrium outcome is
as an equilibrium in our dynamic modd. Hence, the issue of exigence of dynamic
equilibria is eadly resolved. In this dynamic equilibrium high qudity goods reman
unsold forever.

We concentrate on the exigence of other equilibria with more interesting
properties - where prices and average qudity traded fluctuate over time. We provide a
Characterizetion result saying that in dl such equilibria the range of qudity, which is
eventudly traded in the market, exceeds that in the dHationary (datic) outcome.
Moreover, <dlers of different qudities within each cohort of entrants separae
themsalves out over time.  As the use vaue of low qudity goods is lower than that of
high qudity goods low qudity sdlers sdl ealier than high qudity sdlers, the owner
of a good with lower qudity trades earlier, owners of higher quaity goods wait longer.
In order to highlight the waiting agpect of the adverse sdection problem and dso to

Vettas (1997). As stated earlier, our model is designed to understand the nature of the lemons problem
and so we do not allow for any technology which can directly modify the information structure.

2 Our analysis bears some resemblance to that by Sobel (1991) of a durable goods monopoly where new
cohorts of consumers enter the market over time. Unlike our framework, there is no correlation between
the valuations of buyers and sellersin his model.
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sharpen the contrast between the properties of equilibria of our dynamic modd with
those of the datic modd, the main part of the analyss is devoted to proving the
exigence of an egquilibrium where every potentiad sdler entering the market trades
within a certain finite number of periods after entering the market. We show in fact
that an infinite number of these equilibria exis.

There are three important intertempora factors in the market which determine the
market dynamics in dl the nongationary equilibria of our modd. Fird, once a certain
range of quaity is traded, only sdlers of higher qudity goods are left in the market,
which tends to improve the didribution of qudity of potentidly tradable goods in the
future. Second, the entry of a new cohort of potential sdlers with goods of al possble
quaity dilutes the average qudity of potentidly tradable goods - as they cannot be
diginguished by buyers from higher qudity sdlers left over from the past. Findly, as
time progresses and stocks of untraded goods accumulate from the padt, the new cohort
of traders entering the market in any period becomes increasngly less sgnificant in
determining the distribution of quality of tradable goods.®

Other recent literature* on adverse sdection has focused on various processes
(such as dgnding and screening) through which the difficulties of trading under
asymmetric information may be resolved and has emphasized the role of non-market
inditutions in this context (such as cetification intermediaries and leasing). The
present paper, in contradt, is motivated by a more basic issue which dso underlies the
origind Akerlof paper viz, the functioning of the price mechanism in a pefectly
competitive market when traders have private information. It is important to
understand the nature of market fallures due to adverse sdection before andyzing the
role of inditutions in mitigating these fallures

The paper is organized as follows. Section 2 sets out the modd, the equilibrium

concept and some prediminary results  Section 3 provides a characterization result.

% If there is no entry of sellers after the initial period, or equivalently, if buyers can distinguish the

period of entry of sellersin the market, then only the first factor is relevant. In that case, it has been
shown earlier for fairly genera distributions of quality (see, Janssen and Roy (1998)) that in every
equilibrium all goods are traded in finite time. Vincent (1990) analyzes a dynamic auction game with
similar features.

4 See, for instance, Guha and Waldman (1997), Hendel and Lizzeri (1999ab), Lizzeri (1999) and
Waldman, (1999).
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The main result of the paper relding to the existence of an infinite number of equilibria
where dl goods are traded within finite time after entry into the market are outlined in

section 4. Section 5 concludes. Proofs are contained in the Appendix.

2. TheModd

Congder a Wdrasan market for a perfectly durable good whose quality, denoted by
g, varies between q and (_q,where 0<g<q<¥. Timeis discrete and is indexed by

t=12,...¥ . Eachtimepeiod t aset of sdlers |, enters the market, | isthe set of all

¥
sdllers, | =( JI, and t is the period of entry of seller i |. Each sdler is endowed

t=1

with one unit of the dureble good of qudity . Let the total Lebesgue measure of

slers from the st 1, who own a good of quality less than or equa to g be a function
nlif 1 1.9 £0})° ng), which is independent of t. We assume that nfq) is strictly
increasing and absolutely continuous with respect to the L ebesgue measure.

The measure of dl sdlers who enter the market in each period is drictly postive,
so nfg)>0. Each seller i knows the quality ¢ of the good he is endowed with and
derives flow utility from ownership of the good until he sdls it. Therefore, the sdler's

reservation price is the discounted sum of gross surplus due to ownership and we

assume that it is exactly equa to g . Sthis implies that the per period gross surplus is
(1- d).

Each time period t a set of buyers, with measure larger than n(ﬁ) enters the
market. All buyers are identicad and have unit demand. A buyer's vaduation of qudity
g is equad to vq, where v>1. Thus unde full information, a buyer's vauation
exceeds the sdler's.  All buyers know the ex ante digtribution of the sdllers with respect
to qudities but do not know the quaity of the good offered by a paticular sdler.
When a buyer buys a good he leaves the market forever. All players discount the
future with common discount factor d, 0<d<1. They ae risk neutrd and rationd

agents.



We will denote expected quality of the good from sdler i conditiond on the fact
that he belongs to a certain subset 161 | as h({I§), this vaue is defined for al 1¢i |

such that nf{1 $)>0 and it follows thet

h(1go ﬁ_@dnﬂ@.

In order to have an adverse sdlection problem we assume VE(q)<q, where E(q)
is the unconditional expected qudity of dl goods E(g)=h({1})=h({1}). This
assumption implies that the datic Akerlof-Wilson verson of the modd hes a largest

enpilibrium quality, which wewill denoteby .1 (a,9):

a = madaph(fii 1.aT [a.a})=q}.

To samplify our andyss we introduce the following two regularity assumptions.
Throughout this paper, we assume thet these assumptions hold. Basicaly assumptions
2.1 and 2.2 assure that the didribution of qudity is sufficiently wel-behaved for some

left-neighborhood of g .

Assumption 2.1. The messure function rmrg) is sriclly incressing and absolutely

continuous with respect to the Lebesgue measure on [(Jls - qna] for some g, >0.

Moreover, there exist numbers mp, M 1, such thet for any qé¢qgé, g - €, £qd< qeEq:

pem <m0 |

% ad

Assumption 2.2. The measure function nfq) is a differentiable function & q=q and

)=t m,>o0

Given a sequence of market prices p ={p,}._, each sdller i chooses whether or not to

sl and if he chooses to s, the time period in which to sdl. If he chooses not to sl

his gross surplus is equa to g and therefore his net surplus equas zero, while if he

decidesto sall inperiod t 3 t hisgrosssurplusis



t-1

A (1-dgd " +d"ip =(1- d)q( )+d b =ql- d")+d"p,

t =t

and, therefore, his net surplus equals
s=qft-d)+dp-q =(p-q)".
The st of time periodsin which it isoptima to sdl for asdler i isgiven by
T (p)° argmaxiss * 0} =argmax{(p - a)d"((m - q)* 0.
If p-q <O fordl t3t then T (p) = £.
Each potentid sdler i chooses a time period t, 1 T in which to sdl. Let
6={t,},, be ast of dl sdling decisions We will denote a st of the sdlers who

choose time period t for trade as J,, and it follows that J,© T If, =t}. This

generdes a cetan didribution of qudities over dl time periods and the expected
quality of the goods offered for sdein time period t is h =h({J,}) when nf{J,}) >

In the sections that follow we will use the following additiond notation: We

denote by nfq_,.q ) the messure of sdlers from 1, whose goods are of quality from
the range [q..q]: r‘r(q_l,q):rr({ihi lalla.al). 1t folows tha

n(ﬂ-liQ):nh)' rrhl) and n(q ’q-l):_r]h-l’q)' Moreover, h(q-l'q) is used

for the expected qudity of goods from sdlers who belong to |, whose goods are of
quality from the range [q_,.q ]: h(q_l,q):h({i|iT 1,al [a..al). it follows tha

fordl o- € £q_,£q £q,

and h(q,q.,)=h(q .,q).

The following lenma assures that h(q _,,q ) is continuousin its arguments.



Lemma 21. For dl g.- e £q_,£q £q the funcion h(q_,,q) is a drictly

increasing continuous function. Moreover, $m,, M, , such that

hlg ,a)-hla...9.)
0< < 1 1 U eM
i @-a.)

h -

A dynamic equilibrium is an equilibium where dl players raiondly maximize
their objectives, expectations are fulfilled and markets clear in every period. On the
equilibrium path, buyers expectations of qudity in a period where a drictly pogtive
measure of goods is offered for sde must equd the expected qudity in tha time
period. As dl buyers are identica, we assume that their expectations of qudity in
period t are symmetric and denoted by E, .

Definition 2.1. A dynamic equilibrium is described in terms of a sequence of prices

p={p}.,, a st of sdling dedison 6={t},, and a sequence of buyers qudlity

expectations E ={E,}_ such that:

a) Sdler maximize: t,1 T,(p) for dlil I, i.e, sdler i chooses time period t, to
trade optimally.
b) Buyers maximize and market clear: If nf{J})>0 then p, =VE, i.e, if thereis

a drictly postive amount of trade in time period t, then each buyer earns zero net
aurplus so that he is indifferent between buying and not buying and market clears.

If nf{J,})=0 then p,3 VE, i.e, if zero measure of trade occurs in time period t

then each buyer can earn a most zero net surplus. Hence, not buying is optima

for himin that period.

c) Expectationsare fulfilled when trade occurs: If nf{J,})>0 then E =h,.

d) Expectationsarereasonableeven if notradeoccurs: Fordl t E 2 q.

Given the set-up described above, conditions (a)-(c) are quite standard. Condition
(d) is introduced for the forma reason that expected qudity is not defined when no

trade occurs. The condition says that even in periods in which (at most) zero measure
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of sdler intends to sdl, buyers should believe that the expected qudity is larger than
the gpriori lowest possble qudity. This condition assures that autarky, i.e, no trade in
any peiod, cannot be susained in an equilibrium of the dynamic modd. Given the
condition, the willingness to pay, hence the price in any period, is redricted from
bedow by vq and sHles with low enough qudities prefer to sdl againg this price
rather than not sell.

3. Characterization of equilibrium.

We dart the andyss characterizing the properties of any dynamic equilibrium. In the
Proposition 3.1 below we firgt argue that if a good of certain qudity sdls in period t,
then dl goods with lower qudlities that have entered the market in and before period t
will dso sl in that period. This fact dlows us to define for each period a margind
sler q asthe sdler of the highest qudity in period t. It dso dlows us to define s as

the surplus of the margind sdler in period t, i.e, s=p-q. This pat of the

Proposition 3.1 bascdly follows from the fact that the use vaue of low qudities is
lower than the use value of high quaities so that low qualities are more ready to sdl.

The second part of the Propostion 3.1 argues that the margind sdler in any period
makes non-negative net surplus.  This implies that the other sdlers in that period make
drictly postive surplus.

The third part of the Propodgtion 3.1 argues that the margind sdler in period t is
indifferent between sdling in period t and sHling in the firg future period in which a
qudity larger than his own qudity is sold. Prices in tha future period will be higher,
reflecting higher average qudity, but the discounted surplus is such tha the sdler is
indifferent.

The last part of the Propostion 3.1 says that if it exigs the highest qudity that will

ever be sold in any dynamic equilibrium is ether equd b a or it is such tha the sdler
makes zero surplus. It is clear that if a sdler makes zero net surplus, prices in dl

future periods cannot be higher as then this sdler will have an incentive to wait and
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&l in that future period. This pat adso says that if the highest qudity sold in a

dynamic equilibrium makes grictly postive surplus, then it must be equa to (_q
Proposition 3.1. Any dynamic equilibrium has the following properties.

a Fordl taddl gl bal it o1 Jp,then J, ={ilal [a.qlt £}, ie, in every
period t in which trade occurs the set of qualities traded is a range hq] where
q is the margind qudlity traded in period t. All sdlers who are in the market at

t and own goods of quality not larger than ¢, prefer to trade in that time period.

b) p3q.
o Le t(t)=minftlq >q}, ie, T(t) isthe first period after t where q >q. Then

p.-q =d“(py-q) ie, the magnd sdler in period t is just indifferent

between <dling in that period and in the fird next period where the margind
qudlity islarger than his own qudity.

d If ft)= rring%\rg maxq g then (pf(t) - qf(t)xa- qf(t)): 0,ie,if o) isthe firs

t>t
largest margind quality for al periods after period t, then ether this is the highest

possible quality (_q or the surplus of the corresponding margina sdler equas zero.

It is easly seen that the infinitely repested outcome of the datic mode is a
dynamic equilibrium of our modd. Hence exigence of equilibrium is not redly an
issue. In the next section, we will show that in the dynamic modd there are infinitely
many other equilibria, each ore dating from a cetan neighborhood of the largest
gatic equilibrium qudlity.

4. Equilibria Trading al Goods

We will now show that for any measure function rrg) which satisfies Assumptions
2.1 and 2.2 and for dl generic vaues of the parameters v, d, g and a there exist an

infinite number of dynamic equilibria covering dl qudities up to a As we dready
11



know that our modd has a least one equilibrium, a genera existence proof is trivid.

That is why we use a congructive proof showing how to find an equilibrium sequence

of magind qudities that is such that dl qudities up to a are traded. The fact that
there are infinitdy many dynamic equilibria follows from the fact that if there exids a

dynamic equilibrium covering dl qudities up to (_:| darting from some ¢ <q;, then we
can show tha there dso exists a dynamic equilibrium covering dl qudities up to (_:|

darting fromaq , with q <q <¢.

Before we will go into the detals of the analyss, we firg introduce an important
parameter. Assumption 2.2 dlows us to define a paameter a, which describes the
relation between the didribution of quaity over the range [gog] and the margind

distribution & ¢ itsdf:

Obvioudy, a is drictly podtive.  We will provide an economic interpretation of
the parameter a and argue that genericdly, it must be that a<1. To this end, consder
the surplus of the margind sdler in the static modd as afunction of q:

sa)° pla)- a=vh(a)- g n(q)cyﬁﬁh) q,and
)=y E et ) 1=a- 1

Hence, a-1 can be interpreted as the way in which the surplus of the margind sdler
changes in the neighborhood of the largest datic equilibrium qudity. Thus, the surplus

of the margind sdller can be written as

o da)+ S @ Ja- a)voa-a)= (a- Y- a)eola-a). @

12



Suppose then that a>1° This would imply that s(q)>0 in some right
neighborhood of ¢g. But this contradicts the assumption that g is the highest Static
equilibrium qudity.

6

In the uniform case, we have a=3v°. As in the uniform case adverse sdlection

implies that 1<v<2, the uniform didribution is a specid case of the case when

al (%1) In subsection 4.1 we will gtart with this sSmplest case, which generdizes the
andysis in Janssen and Roy (1999b). We show that one can congruct a "monotonic’
sequence of margind qudities q thet are drictly increasing over time until al goods
are sold. The main reason why the case al (%1) is to be distinguished from other
cases can be seen by looking at equation (1). If we choose ¢ =qg, then in the second
period, the measure of qudities above g that are not yet sold is two times as high as
the origind measure. If al (%1) the digribution of qudities in the second period is
such that a new "datic’ equilibrium emerges that is larger than g;. As in the second
period we can write s(q)=(2a- 1), - &)- alq - o) +ol(a, - as) (- ag)) it

possible to choose g, close enoughto ¢, suchthat g, >q, and s, >0.

If a<3, however, it may not be possble to construct such a "monotonic

equilibrium and we show this by example In subsection 4.2 we show tha dynamic
equilibria neverthdless exist if al (0,a(d)), where a(d) is some decreasing function
of d. The kind of equilibrium we obtain has margind qudities ¢ grictly decreasing
for some initid time periods after which they grictly increase until al goods are sold.
The generd theorem covering al vaues of a and d is provided in subsection 4.3. As
the equilibrium congruction here becomes quite complicated, subsections 4.1 and 4.2
are aso provided for didactical reasons.

The condruction of equilibrium uses an "equilibrium sequence® which is defined
below.

® Thecase where a =1 isanon-generic case.
® Thiseasily followsfrom the fact that ¢, = ,£.q and nfgg )= f (g - 9)-
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Definition 4.1. An equilibrium sequence QT(U) is a finite sequence of margina
qudities g as functions of ¢, the latter being defined over some range U 2(%@),

ie, Q(U)={alq).,, such tha dl equilibrium conditions in Definition 2.1 hold for

t=1"

dlt=1...,T-1. Moreover, fordl gl U:

a qlq) iscontinuousforal t=1,...,T;

b qlq)>qlq) fordl t=1...,T-1;

o p, =vh =nplqg),thepricein period t is continuous;

The above definition does not imply the exigence of an equilibrium sequence.

However, it easy to see that there exids a leest one equilibrium sequence, namey

Q((os - e,.a5))={a}, such thet &l mentioned above conditions are trivially satisfied.

The main property of an equilibrium sequence we use is that if there is a dynamic

equilibrium with margind queliies {q}’_, such that for t =1,...,T it can be described

t=1
by a certtan equilibrium sequence QT(U)={q(q1)}tT:l, then there is only one
indifference equation, namdy

CONpeey- o). ?)

Pr - O =d
which relates prices p and magind qudities g for t =T +1,...¥ to prices py and
margind qudities g for k=1...,T (this folows from (b) above). Intuitively, g,

summarizes dl the rdevant properties of the sequence of margind qudities up to time
period T. Our purpose, therefore, is to find an equilibrium sequence such that

0. (@q)=q forsomeT and q.

41 Thecasewherea> 1.

In this subsection we prove the exigence of an increasing sequence {q,}.,, where

g =g when a>1. As the uniform distribution is a special case, the result obtained in
this section shows to what extent the results obtained in Janssen and Roy (1999b) can
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be generdized to dlow for other types of didribution functions. The following

theorem contains a satement of the forma result.

Theorem 4.1. Forany al (%,1) and for any generic vaue of a there exig an infinite
number of dynamic equilibria such tha dl goods ae sold within T periods after

entering the market. The sequence {q,},, is monatonically increasing.

The proof conssts of three steps. In Proposition 4.1 we prove that it is possble to
condruct an equilibrium sequence of an abitrary length where margind qudities {q}

are drictly increesing and very close to the datic equilibrium qudity og. Under these
circumstances the main indifference equation (2) takes the following form:
p.-q =d(p..- ). 3
In other words, the margind sdler in period t is jus indifferent between sdling in
that period and in the next period. We will denote such monactonic equilibrium

sequences as QYU) and cadl a dynamic equilibrium, which is based on them, as

"dynamic equilibrium of typel".

Propostion 4.1. If al (%1) then there exist an infinite number of Q*(U). Moreover,

for " e 3 -1~ $T, suchthafordl t>T, $U° =|g’(t),gs) and $Q%(U?) such that:
< 0 0 t a S t

2a-1

a fordlt =1...t q(q) isdifferentisblea q =q; and q () = ;
b) fordlgql U’ 0<qg(q)- s <g3sa).

Proposition 4.1 implies thet if al (£,1), we can congtruct an equilibrium sequence
of an ahbitrarily long length t such that in period t+1 there will be more sdlers with
high qudity (g >qs) goods than the number of sdlers with low qudity (g <qg).
This dlows us to expand the equilibrium sequence Q, for some more periods.

Next, in Propodtion 4.2, we prove that when we are able to condruct an
equilibrium sequence of an ahitrary length where dl margind qudities bdong to a
certain neighborhood of ¢, then we can expand it in such a way that the surplus of the

15



last margind quelity g could be made any vaue between 0 and (v- 1)gq. More
precisdly, given any equilibrium sequence Q, with 0<q(q)- gs <€ 2s(q) we can
construct another sequence Q,., where t¢>t, suchthat Q, 1 Q. and p,(q) coversthe

whole intervd (g (g,).vq(q,)). The conditions under which the Proposition 4.2 holds

are the same as the concluson reached in Propostion 4.1. These conclusions are

replicated here as in later subsections we will also make use of it.

Proposition 4.2. If there exist € >0 and T, such that for al t>T, $U° =(q°(t).qs)
and $Q,(U?) such that for dl q T U qlq)- as <e+5(q), then for any e, >0 and

e >0 $T, suchthatforal t3 T, $US =(q8(t).q)1 UL and $Q,(US) such that

a forayql U’ jalq)- ad<s;:

0 s@)>v-ala) e

Proposition 4.2 tdls us tha if we could trade goods for many time periods and,
therefore, accumulate "high qudity sdlers’, then we can organize trade in such a way
that in the lagt time period of the equilibrium sequence "dmogt” dl sdlers who prefer
to sl in that period will have goods of qudity very closeto ¢ .

FHndly, in Propostion 4.3 we prove that if we are able to trade goods aong an
equilibrium path from a certain range of qudities such that the price in the last period
of the equilibrium sequence can be made any vaue between the margind quality and
buyer's vduations of the margind qudity, then we can expand tha equilibrium
sequence in such a way that wider range of qualities could be traded with the same

properties. Doing so, after a finite number of iterations we genericaly can condruct an

equilibrium sequence where g =q, i.e., al goods are traded by period T.
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Proposition 4.3. If $q*1 [osa) such thet for any €, >0 and € >0 $T such that
forall t>TH $UM = (a,(t,k).qs(t, k)7 and $Q,(UL) such that

g fordlqi UY (q)-a*|<e;

b 0£s(atk)<e;

0) s,(al(t,k))>(v- l)q(al(t,k))- e

then ether
a $e,>0 suchthatforany T $t>T, $ci(f) and $Q;@) such that qﬁ):a and

sf)>e o

b) for ay &>0 ad g >0 $qk*di (vq(k),a] and ST such thet for all

t> T guled = bl(t k+1),qu(t, k + 1)]] Uk and $Q, (Ut(k+1)) such that:

k+1)

<€;

fordl T U* g(q)- o
O£ s(ay(tk+1)<e;

sEtk+1)> - Dabk+1)- 5.

Proposition 4.3 bascdly says tha if we have condructed an equilibrium sequence
for a sufficiently large number of periods, then we can either make sure that after some
more time periods the next margind quality can be chosen reaively far from the
present margind quality and such that all desirable properties are kept (case p)) or we
canreach q (case (3)).

Propositions 4.1, 4.2 and 4.3 taken together give us a large part of the proof of
Theorem 4.1.

” Here we don't make a distinction between g, < and g, > q;. All weneed is U™ to be a nonempty
open set while g, and 51 are its boundary points.
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4.2 Thecaseof small a and d.

In this section, we congtruct an equilibrium sequence for the case when a and d are
gndl. We fird provide an example showing why the andyds of the previous
subsection does not continue to be vdid. The example shows that when a and d are
gndl there does not exis a g, >q such that s, 3 0 and such that ¢ is indifferent

between sdling in period 1 and sdling in period 2.

Example 4.1 Let us take v=1.2, d=0.1, =10, =13 and a measure function
mq) suchthat nfl0) =0 and

d 1101, if g<q<10.1
_n'h):i . —.
dg i1, if 101l<q<qg

The datic equilibrium qudity for this caseis unique and equals g, =+/151.5 »12.31.
In any dynamic equilibium we must have gl [g,qs] (otherwise we would have

s <0). The following picture 4.1 shows the greph of fundions X2 =gq,(X1) and

S2=5,(X1) where X1=q.

[
0 ;
i \\
1 \
0
—20IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
X1
10 10.5 11 11.5 12
—_—X2 Y Static quality
Figure4.l.

It is essy to see that for any vdue of ¢ we get qz(ql) above gy and the surplusin

the second period is negative. I

18



We will now prove that if a is relatively smal, particularly if af (0,(L- d)?), then
we ae gill ade to construct infinitedy many dynamic equilibria such tha dl goods
from the range [(_:16] are traded. The equilibrium sequence is non-monotonic. Note

that the parameter configuration andyzed here partidly overlaps with the parameter
configuration andyzed in the previous subsection. The result we will prove is formaly
dated in Theorem 4.2 below.

Theorem 4.2. Forany al (O,(l- d)z), and for any generic vadue of (_q there exig an
infinite number of dynamic equilibria such that al goods are sold in finite time after

entering the market.

In order to prove this theorem we only need to show that when al (0,(1- d)2) it
is dso possble to condtruct an equilibrium sequence of an abitrary large length t
where margind qudities {q} are very close to the static eguilibrium quality q,. We
will congtruct a sequence that is drictly decreasing for some time, ¢ ,, <q , and only
the last marginal qudity q, exceeds all previous ones. We denote such a sequence as
"equilibrium sequence of type 11" and write Q*(U ).

In this case our indifference equation (2) becomes the following system:

pe-q =d Y(p-q ), t=1..T. (4)

Propostion 4.4. If al (0,(1- d)?), then there exist an infirite number of Q*(U).
Moreover, for " @ >0 $T, such that for dl t>T, $U° =(q°(t).qs) and $Q% ()

such that:

a fordlt=1....t qlq,) isdifferentisblea q =g, and q () = ;
b) foralql U’ 0<qgla)-as<edsla).

Note that the conclusons reached in Propostion 4.4 ae identicd to the
conclusions reached in Proposition 4.1 s0 that we can make use of Propositions 4.2 and
4.3 to get the proof of Theorem 4.2.
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4.3 The General case.

Findly, we prove that for any vdue of a, we ae adle to condruct infinitdy many
dynamic equilibria such that dl goods in [gc_d are traded. The sructure of the
corresponding equilibrium sequences becomes a mixture of the equlibrium sequences

of typel and typell.

Theorem 4.3. For any generic vaue of a there exig an infinite number of dynamic
equilibria such that dl goods are sold in finite time after entering the market.

Agan, like in subsection 4.2, the only thing we need to prove is tha it is possble
to condruct an equilibrium sequence of an abitray lage length where margind

qudities {q} are very dose to the satic equilibrium quality ¢. This is the content of

Proposition 4.5.

Proposition 4.5. There exist an infinite number of Q(U). Moreover, for " g >0 $T,
and $k,, 3 1 such thet for all t>T, $US ., =[(tk, +1).05) and $Q, ..U ..) such

that:

a fordlt=1..tk +1qlq) isdfferentisblea q =g and q () = ;
b) forall qi Uy ., 0<q, (@) & <25, (@)

The main difference with the related Propostions 4.1 and 4.4 is tha here the
equilibrium sequence condructed aound ¢y is patly composed of increasing
subsequences and partly composed of decreasing subsequences. Therefore, we need

twoindices (t and k) to keep track of the whole equilibrium sequence.

Note that the conclusons reached in Propostion 4.5 are again identicd to the
conclusions reached in Proposition 4.1 so that we can make use of Propositions 4.2 and
4.3 to get the proof of Theorem 4.3.
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5. Condugons

In this paper, we have provided a different perspective on the way the adverse sdection
problem manifests itsdf in durable good markets, where entry takes place in the same
market. In the gatic Akerlof-Wilson modd, adverse sdection reaults in high qudity
goods not being able to trade despite the potentid gains from trade.  The infinite
repetition of this satic equilibrium is dso an equilibrium in the dynamic modd where
a durable good is traded in a competitive market. Our main result in this paper, is that
there are infinitdly many other equilibria where dl goods ae sold within finite time
after entering the market. In each of these dynamic equilibria, the margind qudity that
is sold in the firg period lies in a andl neighborhood of the daic equilibrium.  This
result holds true for al generic vaues of the parameters governing the behavior of
buyers and sellers and the digtribution of quditiesin the population of sdlers.
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Appendix.

In the gppendix we will use the following additiona notation.

_hla.,a)-hla.,q.,). 5
9K @-a,) ©

_nfg..q).
b) F = X 6
) FThal) ©
¢ Y% =9-9.; (7)
d zZ=Y- Y )
€ 9=3S;

}e%zla- vlaa)itata
) gla)=i im gf)=1- aif q=q;’ ()
9 gla)= %W_]|9(Q)|i
h jo=aalv-19-g.,. (10)
Proof of Lemma 2.1 ison request. 0

Proof of Proposition 3.1. We prove al statements of the proposition sequentidly.

a Let ustake any period t of postive amount of trade J, so that nfJ,)>0 and take

awy il J,. By the ddfinition of dynamic equilibrium we can write:

tT agmax{(p - a)d “|(p - )° 0.

tsti
Thisimplies (p, - q)d"" 3 (p - q)d'"" fordl t >t3 t. Nowtakeany q<q:

(p-a)d - (p - a)d " =(p,- q)d"" - (p -q)d " +(q-q)d - o 2
s (- alt- o >0

So, for dl sdlers with a good of qudity less then g who are dill in the market in

a certain period and have not yet traded it is optima to trade in that period. Thus,
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b)

d)

we can define q as qzwp{qi|if Jt} and then it is essy to see tha
3. ={ig1 [aalt £t}. Frdly,if ngJ,) =0 for some't, thenwe set g =q.

By the equilibrium definition, for dl t E 3q and p 3 VE so tha p, 3 \vqg.
Thus if nfJ,)=0, we have p 3 vg>g=q. If n{J,)>0, it is optima for the
margind sdler q to trade in period t and a necessary condition is p,-q, 2 O.

So, p, % q fordl t.

Suppose p, - g - d(?")(pt~ - q):s >0. Then, we can find a SHler 1 of qudity
g =q +3s suchtha q <q <qg and t, £, i.e, heisin the market by period t.
By definition of {q} he will trade in period T . But it can be shown that this is not
optimd:

d®p - [ +3s)- d“(p - (@ +is))=d"t] s +2sft- d) <o,

So, it is not posshletha p, - q >d(‘~(‘)'t)(pt-(t) -q). A similar agument shows
that it isimpossibleto have p, - ¢ <d™(p., - q).

Suppose - ¢ =s >0. We will show that in this case p; - g =0. Suppose not.
Then it mut be p.-g=e>0. Let us take a ol i of qudity
q =q +imin{ess} sichtha q <q <q and t, =f. By definition of {g} hewill
never trade because for adl t3t q £ ngallx{q} =q <q. If he, however, traded in

period £ hewould get

p-q=p-¢q-imn{es}=e- imin{es}s te>0,whichisacontradiction.

So, it must be the case that (pf(t) - q(t))(a- q(t)): 0. O

Proof of Proposition 4.1. Using the fact that q (g,) >q_,(q,) we express the expected

quality sold in period t intermsof nfg_,.q ) and h(q_,.q ):

h (q .9 ) :th(q 17qt)$11,§))::8:311))n(g’q -1)’ t31,¢q°g. (11)
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Now we congder the indifference condition (3) with p =vh, . It can be written

for t 3 2ash(q—l’q)-h—l(q-27q—l):%$—l' (12)

The main pat of the proof is by induction. At fird we will prove that if al

conditions to be proved (except q(q)>os) ae true for some t>2, then
$q.,(q) >q(q) such that those conditions are aso true for t +1. Next, we will show
that there exit q and q, such tha those conditions are satisfied. Findly, we will
show that for some T, we get g (q,) >0 and, therefore, ¢(q)>q for dl t>T, and

dlgT Ul Ug.

Suppose that for some t>2 $U?, =(@(t- )a.). a @)l and {n @k’

suchthat fordl g1 U?,:

3 qla)>a.@) sl)>0;al)=a. s(@)=0;
b) g and 5 aecontinuous functions differentiable & g, =g o that we can write:

q =a.+gha)a- a)roa-a) ad s = 2 fa)a - ) ol - o)

0 gela)<o ghla)<o. Ga)<o,

d fordlt=1...t-2p-q=dp.,-q);

e fordlt=1...t-2 d(s (;qbﬁ- )(qS)EO where b = 22&-d),

We will prove that then $U° = (q°(t).qs)1 US, such that for al q T U? equation

(12) determines aunique value of g, asafunction of ¢ and

a qla)>q.,@). s@)>0;ala)=a, sla)=

b) q and s arecontinuous functions differentidble & ¢ =qg so that we can write:

Q=0+ gor{oe)a - @) ola- o). ond s = 3 al - o)+ ofa- i)
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9 Bg)<0, Xg)<o

&
doy " dg, " dg,

) <0;

d - a- (1-
9 %(qs)m,where b=2%9 andqlq)- o <sa)s2s-

Let us fird condder the left-hand dde of the equaion (12) as a function
G(@.a.49,)°h@.a)-h.(q,q,). Itisesly sen tha & q,%q.,°9
evduding Glq.9.49, & q=q, vydds Gl.q.,q9,)£0. o
Gla.@)a(a)a @) eo<tts \(q) for ay qf UY,. Alw, for ay sl
e>0 sch tha o+e<q, Gla+eq.,(a)a.,s))>0. As

G (0s teq.,(4)a..(@s)>5s ,(a)=0 ad & Glg) ad s.(q) ae both

continuous functions, there must exist a neighborhood  U° :(qf(t),qs)i U®, such tha
for ay qT U Glos+eq. (a)a..(a)>%Ls (@) Fndly, Gla.a.q.,) isa
drictly increasing continuous function w.rt. ¢ .

Teking dl these facts together and gpplying the intermediate point theorem we can
draw the following condusion. For dl gl U_t0 there exits a unique continuous

function gq) such that g ,(q)<qla)<as+e.  s(a)=vhiq.,q)-q is d
continuous functionand q (0 ) = ¢, § () =

To prove the rest of step () of our induction step, we will now show that q(q)
and s(q) both ae differentisble functions & q =q;. For dl t=2...t the
indifference condition (3) can be written as h(q ,.q)=2h ,(q ,.q .)- %iq ,.

Taking the firdt differentids of thisidentity w.rt. q a q =qs, and usng (11), we get:

4 &hla.,.9)ra..q)+haqg..)maq.,)o_
¥ tn.,a)vria.) 5

adt - In(qg. zq Jnfa...q.,)+hl@a.,)naq.,)é .,
~a g - Dk ,q.)+mlaa L) £ dd

where d.g =dq |q1:q5 . Taking the derivatives explicitly into account yidds

o.|p
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t(fa,dg - fosdsq.l)+fogdsq.1_h( os)t(fdsq- fdg )+ fdg , _
trrﬁqs o) + g0 ’ tmige, o)+ na, G )

:Flg} dSq ( 'Z)dsq-z_ fh[-l( , )(t'l)dsq ( )Sq O

&)+ nfa.q) S Db+ o) 5

1d
T dSq-l'

Rewriting gives
Cb(tdsq - (t - 1)dsq-1):a((t - 1)dSCL1' (t - Z)dsq-z)' (1' d)dsq—uand
tlg =g, ((1+d)t - 1)- 22)- (t - 2y . (13

Lra)t-9-22dq., ) t-2dq.
td dg, td dq

So we can write 3q (@s)= Q). As by

assumption, q_, and q_, both are differentidble & ¢ =g, 2 is qlg). Also, as

surplusisdefinedby s = p, - q =vh(q.q.,)- q, § isdso differenticblea g, =q;.

Next, we prove part €) of the induction argument. To this end, we can rewrite
(13), usng (7) and (8) in thefallowing way:
todgy, =dgy, ,ft - 1- d- &4)- &dlralg g and

tdjSZt :dszt-16: - 3+il__d);(1ﬂ)+dsyt-2ﬂ)£ﬂl- (14)
: . . . dy, , dy, ,
Usng the induction assumptions we have E(qsko, E(qS)«) and

%(ﬂs)<0 o it folons from (14) tha 3—3(06)<0, and

dy, ()= Wis dz,

Smilaly, we can ge the following expressions for the firg differentids of the

surpluses d. 5 :
ds§ :a(t B 1)dSyt B (1' a)dsq ,and (15
ds(st -3 -1) =dsz (at - 1)+dsyt-1(2a' 1)' (16)
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‘221(%)@ and it follows that

A sdg)<o,am 8 (a) - Bafg) + L8 Slig <o

The only pats of the induction argument we dill have to prove are

d(st(;qlbﬁ.l)(os)<o ad for dl t $Uf’:(ql°(t),qs)i U_f such that for al g1 U?

s(c) > bs_;(cy), where b = 2,L4),

Subtracting (15) for t - 1 from (15) for t we can write

des - ds§; = aft - Jdgy, - alt - 2)dgy, - (L- a)dg - dg ), or

ds§ - ds§ ., = (at - Ydgy, - alt - 2)dsy; ;- (17)

We can write the indifference condition (3) as §_,=d§ +d(q - q_,), the firs
differentials of which wrt. g a q =g becomes dd.y, =d.§ ,- dd.§ . Subgituting
it into (17) yields d§ - dsg_, =(at - 1)(dss ., - g )- aft - 2)(dss ., - He§ ).
Rewriting gives

tatlys =t - )rd) + E2X=ds - (¢ - 2)ds (19

We can express the above equation in terms of d (s - bs ) instead of d.§,

where b = ﬂl—dz It can be shown that

ctlo(s - by.,)=(t - 2dels., - e )fo+ ) el tinlg g ]
By our induction assumptions we have M(qs) £0, and &(qs) <0
dg dg
<0 it follows that d(s[d—oﬂbsl)(%) <0, and, therefore,
ds ds., vt 0 £ p-rds
dq(qs)< b L(as)£--£b OIC]ﬂ(qs)ﬁ £b dq( 5)<0. (19)

Now again let us consider the indifference equation (3) as d(g - q _,)=5.,- ok .
Summingitupfromt =2 tot =t and rewriting gives
t
q=q+i(s-s)+&* s
2
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Taking thefird differentid w.rt. g at ¢ andusng (19), we get:

dg _ & ds
s § =1+ ip—L :
)=t i) S
1040 B ) Saller A bR

] 2

=103 9 o- o ) B g )

q
) d d
=1 Bl - ) ) 12 k- () =
2a- (1-d)- 2a+1 d d d
:1+dl(%)£(qs):1+ St ( s) 2a- 1d31( s)-

Asq and 5 aedifferentiablea g =q they can be written asfollows:

(@)= %(05)-2:1 :o(q ) +ola - a).

al@)- a- 25 i %

The above inequality impliesthat $U° = (q(t),qs )i U suchthatforall T U

ala)- .- 23.13(0n)<-6+£(%)(0h a)+olg - a;) <0, or
q(a)- o <gsla) where g =515

Now we will show that dl induction assumptions are velid for t=1,2. Let usfirg

congder the function g(q) =p-q :vh(g,q)- q,- Interms of the function mr it can

be written as s(q)= mq. s(@) is a continuous function over
Tl

Uo(g.- e,q;) and differentiable & q =q,. From the definition of a it follows

that 3—2( ) =-(1- a) and s(q)=-(1- a)(g - gs)+0(q - qs). Hence, there exists a

neighborhood, namely U? = (q°(1),qs)1 US, such that for adl g1 U? s(q)>0.

Obvioudy, ¢ itsdf is continuous and differentisble & ¢ =qs. Then, usng the

d d Jd)-a
definiions of y ad z, we get d_é(os):d%(%)'lz'(l%(; <0, and

dz, \_ @ )i
dc;l(%)_ 1<0
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Fndly, usng (13), (15) and (16) yidds M(os):-%w and,

consequently, —=(g;)<0 and =0. Tha ends the proof of the
gz‘zl (@) (Squltﬁl)( )

induction argument.

We finish the proof by showing that for some T, we must have g, (q)>0s,

hence, for dl t>T, ad dl qT U’1 Uy: q(q)>q. To see this consider the
< d ¥

sequence i%( S)g . The first term of this sequence equals 1. Moreover, the
| =1

sequence is decreasing with grictly negative increment as

dq (. dg..(,y_ay dy, (-a)(xa)
dq|_( S) dq1 (OG)_ dql(%) dqi( S) 2da <O

Thus, there exists a first negative term of idi qs)ﬁ , which can be denoted by
|

qu (@)<0, where T, £ & +1LI Itimpliesthat for all q1 U} o <q, (q). O

W

Proof of Proposition 4.2.
In case when ¢ >q_, we have fgt -18=t and our indifference equation (2) can be
writen & (3), or p =¢q.,+i(p.,-q.,)=%s.+q,.  Rewitlng yidds
vh(a.,q)=4s.,+q.,.
Function h(q.,,q) srictly increases wrt. q for dl q,, 0 there exists an
inverse function which determines g as a function of q.,(g) and s.,(q),

q=a9(d.+s.). This function is defined for dl ¢ a long as

vh (g, (@).a)° 2s.,(@)+q.(@). Usng (11) we can wiite

h(q.,, »4)+th _ —1
Jtha. qt):&lg)) ”82 ))”(@lq Jog +q, wheeg =15

Then
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i) o, va )R (LBl )8
yt
mMaq.,)

(g[—l + g(q—l)(q—l - qs)) :

y.(vh(a.,.a)- a..-g.,)= S

where g and F, weredefined in (9) and (6) correspondingly. Then we get:

.h(g.,.q)- q‘1+y((v )q.,-g.,)= rr(gq )(

Y, gt g(Q-l)(Cl-l - Cls)) ) and

vy,”

na.q ,)

tR

VYK + Y - (@ +9a..)a.,.- a)=0, (20)

where K, and j , , weredefined in (5) and (10) correspondingly.

Now let us teke any e, >0 and any %I (Ornn{eg (a qs)}). Then we take a

smdl e>0 such that e<%rrin:'l a smdl >0 such tha
|

& _ 1oV
17 2v-19"3 '
g <imn{e, (v- 1o}, and a large T such that
T>(1+ge9)njg’q)maxj|[ 1 4VM( 1), —29-9 y By the assumption of the

7Y

m, foes @’ ma-a)p

Proposition 4.2 for thet T there exist corresponding U2 = (°(T),qg) and Q. (U2).
Now let us take the subset U2 :(df’(T),qs)i US suchthat foral g1 U2:
9 o-o+isla)<ie;

b) o -a<e§;

0 ma(iwp s @) <%~

tEh T g U9

(1- d)(T 1)
d j.@)>e (tisawaysposibleasi ,(qs)=(v- Jas > ).

Now we will prove that if for adl g1 U? and some t3T+1 j _,(q)>e, then
there exis well-defined funcions qfq) and s(q) such tha y,=q-q., is

determined by (20) and s(q) > 5.,(% - €)> 0.
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At firs we prove the exigence of qfg) showing tha
vhlo,(@)a)® 2s.@)+a.@) ifj @) 0adq, <q +e:

vhig.,.0)- +s.,+q., =vhla,a)+i ., - va.,® vihla..a)- a.)=

_ @l gk a)rhaa)raal) o o)

PR &

. Jmmg-a.)- (q 9)”(9_)> STmm, (G- o f - (a g)n(gﬁLO
tnfo,.q)+ i tnfoy )+ nf ’

thusthere exist q (q) and s(q) suchthat y, =q - q._, isdetermined by (20).

Using thefact that for t =T +1 j ,_,(q) > & wecan solve (20) w.rt. y, 2

s n 0
=i 1 \/1+M(gu+g(q_l)(q_l-qs))g. (21)
2vK, FJ 1 ¢

It can be shown tha the expresson under the sguare root above is postive and,

therefore, 'y, isuniquely defined by (21).

Now we will show that s >5 (- €). Using the well-known inequaity thet for

dl x>0 1+ x<1+3x weget

1JH“WFQNQ ola)a. @P

)(g.1+g(q Ja..-a) —ﬁ\;)(“geg)g <dgg ,,

and, therefore, § =45.,- v, >45,- &.,=5,(3- €.

Y =

@) ('D) (0N

K

..Q

Jtl

Now we will prove that $Ts>T, $U; = (cf(TS),qs)i U and $Q;, such that for
dlt=T+1...,T;- Landfordl qT Uy s>(2-€)s,, j.,>€ ad]j TS_l(qf):el.

Suppose not, then for al t3 T+1 and for dl q1 U° j _,(q)>e. Butin this

case we hae an induction: for dl t3T+1 $q(q1)T(t_l(q1),q) and

$s(q)> (- €)s..(@)>0. Let fix ay g U and consider the following sequences

d

8 Another solution is always negative and doesn't satisfy q>q,-
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of numbers {q}_,,, and {s}.,.,. The former increases and is bounded, o
$imq =q, £q. Thelater dsoincresses and $lims =+¥ as
s> (- es, > (- S)s, = (0 tlal)s .

d

But if wetakealimit of j , , we get acontradiction:

imj  =lim (v- Do, - +5.,)=(v- L, - $lim s, =-¥,

t® ¥

asj,,>efordl t3T+1.

So, it must be the case that $T,>T, $US =(g°.q5) and $Q,. such that for all

S

t=T+1...,T;- Landfordl qT U7 §>(2-€)s.,>0,j,,>e and] TS_l(ql):el.

Now we will prove by induction that for al t3 T, $US =(q(t).a)i U2, and

$Q EQ., sch tha j ,(q°(t)=e ad s(q)>(-é€)s,(a) for dl qi U

Suppose that for some t3 T, $UZS =(g°(t).q.)i U. and $Q, such tha for dll
t=T+1l..t-1 ad for dl qT U j,,[)>e. s@)>@E-es.,(a)>0 and
j L@(t)=e. Itimpliesthat
(V' 1)Ot(qls(t))' Sl(qs(t))z(qt-l"'yt)(v' 1)' ( -1° yt):(v' 1)q-1' Q.. Ty =
=g +vy, <ie +vedy, =ie +ved((v- 1o, - j ) =1e +ved(v- 1., <
<je +vedv-lo<ie +ie =a.
S0, s6°)> (v- Ya(e)- e
Summing up the indifference equation (3) in a fom d(q - q_,)=5.,- &5 from

t=2tot =t wegetdlg,- q)=Q4 _,5..-da._s =(s- §)+@-d)a _s .or
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d :
- a)- ) max{aps - a5 (- o) 59<

I N Y S L St TER
~d-de i 1
<2e +%_g  =2e +2_((v- Jq,-j ) <2e +e(v _h .

g _, 19 _, 0> _
3eq+e(v_)q- iv(v—)qy g +¥H <zg +1q =6,

So, q - ¢ <g fordl T US.
Finally, let us consider j (° t)):
i et)=(v- talat)- +sb°0)= .+ vv-9- Ho.- W)=
=j ot Y- 1+3)- 50g, <q+day (v- 1+3)- 39 ,(L- d)<

<g+(de- (1- d)ig,<g+(die- (1- d))ig , =8,

0 j (oS(t)<e. On the other hand j ,(gs)=(v- 1)as > and j ,(q,) is continuous, so

$°(t+1)T US =(g°(t)qs) suchthat j (o (t +1)) =€, that endsthe induction.

But if j (o°(t+1)=€ then we have s.,(@°(t+1)>(v- 1q..(@%(t+1)- e s

was shown above, and let ustake US, =(qS(t+1),q5)1 US sothat g, - g <e, for al

T U3, that ends the proof. O
Gl Y

Proof of Proposition 4.3.
So far we were consdering q as a function of q, g =q(g,). Now we will consider

q & a funcion of ¢, ad g, G=q(q.,9.), whee g,=g.q) ad
q.,=9.,(q). Wedeinethe following limit function:

ale.6)=lma la,6). (22)

t®¥

In the same oirit as before we introduce functions yl(

5)=a,
36.6)=6- %.0.6). 66.6,)=2316.6). I G)=(v- 26, - &



Teking the limit (22) explictly’ yidds tha the limit actudly exiss for dll

_ ad g1 (e,vh(ci),a)-ci)-e) where e>0 is an abitraily smal

number. Convergence is uniform, hence ci : ,QO) Is continuous and it follows thet

)l g )=o) -
Then we define G,(,.6,) on a boundary vhere G, =0, G, =vhid,.q)- G, or ¢ =q
by teking corresponding limits of the function GlG,G,) when e® +0, that yidds
al60)=a, al.vhla,a)- 4)=a ad qla.a)=

Fnelly we define q,,(G,.G,) for dl t>1 as follows If for some q,1 fas.q],
&1 [0.26,] and for all t =0,....t there exist functions G {d,.G,) and G (G,,@) such

that 0£g £vh(q ) q andq(q) gO)Eq thenwetekeqﬂ(q) go):c;ﬂ(q g).
It can be easly seen that if 0<g <vh(q q) q and q(A,QO

ciﬂ(ci),g)) has the following limit representation®:

A

dulaa)=ima..b.l aa)a.l-las))
The man use of tha trick is to subditule complex functions
aa.(..(a..g.)).9.(..la..g.) by thers limit andogs for very large t when
the measure of "low qudity goods' becomes negligible compare to the measure of
"high quality goods’. Limit fundions ¢ (G, G,) would have been exactly the same s

a@q_,(..(a..g..)).9.(..a...g_,) if there had been no entry of new sdlers'.

® This can be done by considering two cases, namely i3 0and j5, £0. The former yields

im y; =0  while the later yields lim VK; 11¥i+1=j"g- The fina result then is
t® ¥ t® ¥

straightforward.

12 The expression (g, 6, ) isdefined only if j°, 2 0,i.e, G, £ (v- 1)q,-

11 ~ (2 A A (2 A “r AN o2 A ~lr A\ .
If g(q),go):o, g(q),go):vh(q (qJ,gO)q)-q(q),g)) o q bn,go):q for some t the function

61 +1(éo,g)) is not alimit function any more, but after all derivations have been made those functions will

never be evaluated at such points.
12 No entry caseis described in Janssen and Roy (1999a).
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Now let us fix ¢, =q* and takeany G, (052q™®)). If for some t 3 O we have
obtained the functions ci(ci)(jo):ci (&) and g (éo,go):g (G,), and a the same time
0<g £vh(ci a)d then thee exigs the net function,  namey

~

A.(6)=a[06).a (6)) st q.,(@6)1 6 3] forar 6,7 0520¥).

We will show that $t2 0 and $gT (0,452q") such that either G(§)=0, or
6(0)>vhlg(6)a)- & (6).
Suppose not, that means that for any t3 0 and ay Gl (O,Vd;lq(")) $ci(@0) and
$6(G,) suchtha 0<g £vhig.a)- G ad q¥ £q £q. Letfixay gi (0:2q¥)
P ~ 1A\ ¥ ~ [ A\)¥ . . .
and get infinite sequences {q (g)}t=0 and {G(g)}_,- The former is weekly increasing

and bounded so $tlgr§1‘oi :(i £q. But this implies that the later has a limit dther

img =lm{vhlq.4..)- a}=vhia, .4.)- G, =(v- 14, >0. Taking a limit of the

® ¥ t® ¥

A A

indifference equation d,, =g - (q+1- q) givesrise to a contradiction:
dv- 9, =im g, =imla - .- af=1mg = (- ..
So, only two possibilities are l€ft:
8 Cael $f and $g7 (0,%q") suchthat fordl t=1,....f-1anddl § T (0,9)
g >0, Vh((i-ra)g q.+38 .., G >0 while vh(ci_l(é),a)<6k.1(@)+Qf.1(@): and
b) Case 2 $f and $g1 (0,%2q™) such that for dl t=1..f andal G 1 (0,9)
6 >0 and vh{ )2 4., +G., while () =0.
The detailled proof of the Cases is on request. We prove that in the Case 1
$e, >0 such that for any T $t>T, $al(f)T (qg- em,qs) and $Qt-ﬁ) such that

qﬁ)za and stﬁ)>€. In other words in this case there exig infinite number

equilibrium segquences such that all goods are traded in the last period.
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In the Case 2 we define g9 as g9 =q(g). We show that q*i (vq("),(_q].
Then we prove that either we have the same result as in the Case 1, or for any é >0
and g >0 $TY >TW sich  tha  for t > T

$UL =(g,(tk +1)qa(tk +2))1 UK and $Q,(UE™) such that for dl g UK

k+1

<g,0£s(a)<e ad sla)>(v- Jala)- e 2

la(a)- o

Proof of Theorem 4.1.

Consequently applying Propositions 4.1 and 4.2 we get the following result: for any
e >0 and € >0 $T, suchthat for al t3 T, $US =(gS(t).qs) and $Q,(US) such
thet for any 1 U qlq)T (@.as+€) and slg°)> (v- Ja(a®)- e;. Now we can
see that we are under the conditions of Proposition 4.3 if we take g% =g, <q. Here

we digtinguish three cases.

a Casel Forany k=1..¥ there exits q**V1 (vq K q) such that for any e, >0
and g >0 $T such tha  for t > Tk

$Ut(k+l) = [(—le(t, K+ 1),C_1|1(t’ k+ 1)]' Ut(k) and $Q, (Ut(k+l)) such that:

k+1)

forall o U™ fg(qt) <g;

0£s(g,(tk+1))<e;

sEulk+D)> (- dautk+1)- o
But in this case we get irfinite sequence {q®}, where g9 >vg®, that
contradicts with q(k)<a as ll(i(ggéq(k) =+¥ . SO after some steps k we must meet

ather the Case 2 or Case 3.

b) Case 2. There exidts q(kA) such that there does not exist q("+1) (vq ,q] In

accordance with Proposition 4.3 we can make a condlusion: $e, >0 such that for
ay T $t>T, $d(f) and $Qt-ﬁ) such that qﬁ):a and stﬁ)>§. In other
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words there are infinite number of equilibrium sequences such that dl goods are
s0ld in the last period and the last margind surplus is drictly postive and

separated from zero, st(ri)>€>0.
In this case we can condruct infinite number of dynamic equilibria by

concatenating equilibrium sequences, eg. we take Q, ={q}'

-, ad let a dynamic

equilibrium be the fdlowing sequence of magind <dleas {at }il such that

g =q if tEtandqg =q_, if t >t.

c) Case3. Thereexists q(kA) such that there exists q(k+1) = a .

Note here that q(k+l) Is determined in terms of the previous point q(‘z), the

measure function mfg) and parameters g, v and d. In other words

q(kﬂ):\/\,(q(k),nh),g,v,d), where V\/(q(k),nﬂiq),g,v,d) is some operator.

Therefore the case when V\r(q(k) ,nfa).qa. v,d) =q is non-generic. O
Proof of Propostion 4.4.
We begin with solving the system of indifference equations (4) w.r.t. p :

p - q(]_- dt't): Py c(ljgl-l dt_l), t=1...t-1 (23)

We will look for such a sequence of functions {q (g )}, stisfying (4) that q,, <q

fordl t =1...,t- 2. In this case we have p{(q)=n‘!+q)qéqjm and g%( <) =a.
' q

)=t 1- a- av?)

L o . dq
Subdtituting thisinto the first differentid of (23) we get —— = )
ng ( ) g dt—l(l_ a- dt—t)

dg
Hence, we can write q (q) and s () s q (o) =as - —-(c)las - @) +olat - &)

and 5 () =- (1- a)‘;%(os)(q- a)+0(, - Gs). Then
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® -a-d- -a-d g
A8 g ) g T e g A o a)=

@ - a)+ola - o)

Td-a-d Jira-d)
It follows thet if a<1-d then (le%(qs)>l. Thus there exists a neighborhood,

nemdy U?, =(q°(t - 1),q5), such that for all g U°, q <q and, therefore, q,, <q ,
and § >0. Therefore there exists a sequence of functions {q(q )}~ such tha all

t=1

conditions to be proved are satisfied except the last one and we only have to show that

if al (0,a(d)) then there exists qlq) and UC =(q°(t).q)i U2, such tha for all

al U’ 0<qgla)-as<g+sla).

Given the structure of {q (@)}, ., we can write:

t

—_
=

tqt((c‘;ll)ﬂm té.lq (c;ﬂm
pa)=pa@)a@)...al)=v e

tma.q(@))- a ma.a @ )

i)

and, consequently,

dsp = ﬁdsq adsq agtdsq dsqa : 1(1_'61

1ad“‘a1 d 9
d* Z1-a-dj

= agtdsq - dg

Substituting thisinto the firgt differential of (4) yields

dg, y_1-a-d‘'as d
dq(cs)_ atd'* §a§11- a-d

and, therefore,

q= quj—ﬁﬂ( o)ct - o) +olg - o).

This implies that there exists a neighborhood U? :@J(t),%)i U?,, such that for

R t-1 t ¥ t
dl gl U® q>qs aslong as ag _<1. Sothe condition ad t
w1l-a-d w1l-a-d

£1

actudly isasufficient one. Note here that
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§ ad § ad _ ad & .., _ ad
AT ad 21-a-d 1- a-df’}ld “Ma-di-d
_q,_a-(-df
e ab-a)

t

soif a£ (1- d) then ag

t=1-+"

_<land a£ (L- ) isasufficient condition.
Then we check whether s > 0:

1- a dtl 1 '
d.s =dsp, - dg =- ——— e @ o tl 4 )—d

t=11-a-d'

ds 1- a-d"! 16 : ds
H . <-——— ¢I- —= ad it follows thaa —- <0 when t>1%.
ence, aq (o) P gi — dq (c) a

So there exidts T=O:[§]+1 such that for Al t>f $U=f’:

(t

v

[o}
—IU d
O an

$Q% @wwchthafordl al U afa)>a. s(a)>0. qla)=as ad 5()=0

fordl t =1,...,t by congtruction.

Findly we will prove that if t is teken sufficiently large than $e, >0 such that

0<q(a)- as <qsa).

Le us condder the ratio ﬂ It can be written as
qla)- o

(@) - a)+olo- ) _at+ofq - CE)O) 1. Therefore

(o )loy - o) +oloy- o) 1- 28!

mn
o]
~
|
:LQQ_
EREE

:Ladl

ima fim ﬂg M —— - 1= 4%,
e¥gea-og(a)-asa *¥1- ad)

1ad‘

This implies thet we actually can toke ay € >0 such that $T, >T, such that for

dl t>T, $U° =(q°(t).qs) and $Q%(U?) suchthat 0<q(q)- s <e,+5(a)- O
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Proof of Propostion 4.5.

Suppose we have obtained an equilibrium sequence le(U,fl), where U,/ =(q1°(k1),qs)

such that for dl t=1..kk q ad § <can be represented as

q=os+j%( Ja - a;) +olg - 5), and s=j—§h(os)(q-os)+o(q-os) where

dqg,

d ]
3 do (@) >0, andforal q T Ug q(a)<aq (@) <as.

a(ck)<0 and

We introduce the following new variable:

o _ dskl —_ @qﬂ 91 dsKl
d% (CIS) - gﬁ(qs)# (qs) >0. (24)

5 dq,
In terms of a,_, surplus s, can be represented as s (@) =a, (q, - ds)+ola, - &)

a,

There exists & |east one of such a sequence, namely {q},where k,=1.

Now we will congruct a new equilibrium sequence Qt(le) in the following way.
We will repest the whole dructure of Q, t times In other words, for all
t=L..t-1 ad for dl I1=1..k-1 we put O py ..0h)<O . (@) if
g.,(a)<qlg) ad viee vesa  Ancther rue is tha for dl t=2...t
qkl(q1)<q(t-1)kl(q1)'

Having done this we can see that each of the sequences {q(q )}z, ., for @l
t =1...t is an equilibium sequence Q. Now we have to find ¢,,(0,) such that
for dl t=1...,t dtkl'l(gkl-qkl):dtkl(ptklﬂ- qkl), in other words, the sdler of
qudity ¢, must be indifferent between sdling in time period tk, and tk +1. Loosey
spesking we try to congruct a sort of equilibrium sequence of typell using Q, as

sngle componentsinstead of ¢ .
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(t-1)kg+1
We will show that if a, >d and akaLd(t—lF£l then it can be done for

ay t andif t>32 then s,,,>0. Applying the same procedure as in the proof of the

Proposition 4.4 we get the following indifference equations.

t 1k1(nk1 (1' d(t_t)klﬂhkl): pk1 - (1+d(t—l)kl+lhk1- (25)

Taking thefirgt differentids of (25) at q =g and using definition of a, (24) we get:
d“ (- a,da, +d" g, )=-adq, +d g, .
Usng the fat tha a, =a, vidds (g, - di-))

qul ( )_ 1 akl _ d(t-l)k1+l
qul S d(t-l)kl akl _ d(t—t Ty +1

Hence, we canwrite g, (@) and s, (q) as:

) ) - @) + ol - ) e

dq,, dqg,
“dqg, dg

5. (@) =2, (a, - @)+ ofa,, - a)=a ~(0s)(@ - as) + olq; - ). Then

E ) ) e a)rda-a)-

qt +l)k1 - qkl :é- dq< ql

a d(t 1 k1+l dkl dq
- dtkl(ikkl_ d(t t - 1k1+2(xa _ )at t k1+1) dc:: (CE)(QS - ou)+0(0q' qs).

%(

It follows thet for any t =1...,t aq a)? 1 aslong as a, >d™. Thus there
ki

exists a neighborhood, namely U2 = °(t|<1),q5)i U°, suich that for al qf US
q,, <0 and, therefore, ¢ ., <q, ,and §, >0. Therefore there exists a system of
funtions {q(q )} -* which stisfies dl the indifference eguations (25) such that dl
conditions of Qt( kl) ae sdisfied except the last one and now we have to find

(@) . (@) suenthat s..(@) > 0.

13 Note that this condition istrivially satisfied for t =1.
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Given the structure of {qj(q )} we canwrite:

Qi+ +(01) t Oty (a1)
(tk, +1) cﬂjm k1a oim
k@), @) ) ol

- ol A v, o))

and, consequently,

$ o
dS gk1+1 = a(gtki + 1)dSOIk1+1 - kla dsqkl ;:
t=1

kl(ak - d(t’l)kl+l)é d(t - kg +1 0
=agltk +1dq, ,,- d L =
g k1 ) sqkl 1 sq1 dtkl ta:.l akl _ d(t-1)|<1+16
Subdtituting thisinto the firg differentid of (25) yieds
d . a - d(t-l)k1+l e d(t 1)k, +1 o)
(?kl L(as) = (tkl +1)d(t-1)k1+1§ aQ 2 gt 1z,
q<1 a kl t=1%% 4]
and, therefore,
do,. dq,,
qk1+l =0 t d(;kll (OS)vdql (qs)(ql - QS)+ O(ql - qs)'
This implies thet there exists a neighborhood U, ( O(tk, +1), qs) US, such
akd(t Dk +1 akd(t 1)k +1
that q, ., >Qs aslong as a_lkﬁﬁw<1 So the condition %w£1
actudly isasufficient one. Now we will check whether s, ,, >0
d &, - a2 1+la:" 1 %ak g dbt-dar 0 Od
+ =- - + 1 1_+ 1_ 1!
s St +1 d(t e+t 88‘ tki +1§ 1§1W B B Ok
and, therefore,
dSk +1 d(t Dt 1 Oqu
1 < - .
dq (qs) d(t oot gi (,[k1 +1) dg (Os)

dSk +1 1-a
It followsthat — <Owhent>——.

Now we will congruct the desred equilibrium sequence Q and our objective is to

(- 1)km+1
get Q, such that akmaLd(t—lF£1 We dat from k, =1 and Q, =Q,.
tl
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Suppose that a, £d and we cannot take t>1. In this case we take t=1, in other
wordswelook for g, ,, > . It followsthet

dqw( )< akd- a, +d _akd+(d-a,)
dg, *  alk+1d  alk +1)d

ad g, <q, hence s, >0, in some left neighborhood of ¢ . We take

>0,

Q,° Ql(le), where k, =k +1, as an initid equilibrium sequence and repeat the

described procedure again.

Now we will prove that after some n stepswe get a, >d. To do so we take a

a ne ¥
lower limitof —L with n® ¥ . Inthiscase k, ® ¥ ask_ ., =k +1 and we have
a,
® a -d& ® 0 00
PoSg FoacdE 1 ok 2,8
a, _¢1 dg - ¢ d Gak+Jg, -d G
lim — =|im o n . =l|im G- =
ne¥ & n®¥§akn qun+1 ne ¥ G a aknd-akn+d =
do, 7 W alk +1 H
A4 o § (k, +1)d -
& 01-
1+ d _1?1 a
= lim (d_ akn )(1- a)+aknakn = i akn ﬂak"
_kn®¥ akn(aknd'akn +d) _m d+d'akn
ak

Suppose @, £d forany n, then

. a . 1 1
lim —L > lim ==>1.
¥ 8, kevd+l- d

But thisimplies thet Ii(gr;éakn =+¥ that contradictswith a, £d.

Hence, there exigts some number n such that we get Q, ={q(q )} "

., and

a_>d.



{ - Dk, +1
Then we check whether § ak”—({j(t—l)k—+£1 or not. If it is then we are done. In

=18,

t-1)k,+1
the case ade(t—lF>l we will show thet it is possble to find t, such that in

=18y,

eqilibrium sequence Q, = Q (Q, ) weget g, ., <ck.

_ . dg . _ :
Wetake t, =1 and if d—( .)>0then Q. =Q(Q, ) and q_ ., <q insome
Q.

n

d
neighborhood of . If M(qsﬁo for some t, then it follows tha

dq
TN t - Dk, +1 o t (t-1kq+1
dcy, .x a, -d & akd 0 4 akd
-17<0, or . <1l
dq, ()= (tkn +1)d(t T, 11 éa a, - o R = f%llﬂ—lm
g ak dt -k, +1
On the other hand we have made an assumption that g —d(t—l)k—+ >1. Therefore
t=1 k
tlakdjlk+1 2," akdjlk+l

there exigs t,, such tha a—d(ﬁW<1 while alak—_(J_l)k_+3 1, and we
J

j= 1

havefor Q.. =Q Q. ):
akn - d(t ket Byl aknd(j-l)knﬂ 9+ akn ~

dann+l - -
qun(qs)— alt Kk +1)dtr ‘é@la T 15 alt k, +1)
1 R - d(tn'l)k "1l tyl gk d j-1k, 0 o a_kn
= . ey
I e gy

In other words, q_<q, . =q , ,<gs and 5 =5, ,, >0, and we can continue with

ka-l :Qtn( kn)'

a-kmdt lk +1
Now we will show that & some stage m we will ga a—d(t—l)k—+
t=1 k

akrndt 1k +1
Suppose not, that means that for adl m a —(t—l)w >1. Then we can evauae

t=1 k

=a, , ., takinginto accountthat &, >d:

n +1
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e ot e
o dsfn_knmﬂ( ) ) a, - dlr ket aknd(l D1 1; 2=
dai, alt kn+1 dt- 1k+1§, L, - di et T
:1+t6'1 aknd(i-l)knégtnkn +1)aknd(‘ sk akngﬁ:kﬁk"”
{:}lakn T I g e a, - d
:1+tn i d(tn-l)knﬂ) >1+ a"" - d >1.

gtn-Ykntl gt Dkt
So, fordl lage n a, >1>d, and, therefore

( -d k+1)> n(l dt 1k+1)+dt -1)k,+1

akn+1 :1+ d( Ik, +1 d( )k, +1 > (26)
t -(t _1)dt 1k+1_(tn_1)_(tn_ )d(tn-l)kn+1+1 1 )
gkt = e T 7 gk
Then, it follows thet limt ' 1 because otherwise we would have t, =1 for dl
n® ¥
large n and, consequently,
& 0
1+ °d 1—1 a 1- 1-a
a a, &K ak 1
lim —* = [im d a > lim " . =3’
n® ¥ akn K, ® ¥ d+ Kn K, ® ¥
and findly,
-k +1 ¥ t-Dkqu+1 ¥
fim & Ko e £ima L L
I® ¥ _1an+l-d n e a, -d I®¥akn+|-dt=l
g o
- - - a -
=lim + %, d o 2k, d v =1lim kel = chalim Kye =0,
|®¥(ak I_dxl_dm-l) I®¥(an+|'d) % d lo¥ a,
akn-¢-|
akmd(t Dk +1
that contradicts with our assumption that for all m a —(t_lﬁ >1.
28y -d

1® ¥
So, limt, * 1 and there exists a subsequence ny such that n ® ¥ and t 3 2

n® ¥

Taking an upper limit dong that subsequence yidds.
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by ak d (t l)knl atl 0 ¥ (t 1)K1| 1 O %ak d ¥ O
imed e £ el 08 = E g g
gt-lak " -d g 8 -1akn ‘d . ga ‘ﬂ‘dt:O g

&ak .d 0 __ ak,d _at +1
Simeona® 1 c g Kol ( )j

nexCa, -d 1- d"m1+ neva, - d n®¥ a

Usng theinequdity (26) we get:

& d(t'l)kq+1+l 9 ( 1b _ a(t k )j
Ilgg({‘ n|+1a t-1)ky g1 == "m
(=1, - d n T N®¥ a, - n®¥ d
n+1 %] n+ a(—l)m
(tn -1)ky +2
T a& n k”l )d ) )

_ 2 T (t l)k _
=ad llgn¥(tnlknl +1)d N

th32

n|®¥ 1- dl Tky +2

= ad2 r@ ((t o " 1)kn| + ]}j(tr\ '1)kr1 + adZ r@ knld(t ne l)knI £

th32 th32

2 im kn' 2 n — a2 _
£ ad (tq_lllkn®¥(( J )kn +1)d +ad I|m hd =ad lxlgl(“l)d —0.
Thus, we have proved the following statement: $m and, therefore $k, 2 1, such

d(t 1k +1
that akma —d(t_lﬁ £1. Butthisimpliesthet for any t:
t 1

qum+l( )_ a, d(t kntl o d dt - Dkm+1
S

o0 S A g g <0,
d a - d(t—l)km+1

S (qS) =< T g 1 9<O aslongast>1—a,
qum dv (tkm ) ak

=elau

So there exiss T, = ak LJ+1 uch thet for al

,.
\Y
|

tfk’m+l:gg110(tkm+1),qsgl ue  and $Qt§Jt‘;ﬂg sch tha for al gl US

Cha(®)> sy Siul®)>0. qlas)=c and 5(05)=0 for al t =1..tk,+1 by

congtruction.
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Findly we will prove that if t is teken sufficiently large than $e, >0 such that

. o Seala)
G (@) as<egls, .(q). Let us consider the ratio m It can be

written asfollows

(qs)(on' qs)"'o(on' C]s) _ a(

dsy, .1
Stkm+1(q1) _ dq1 tkm +1)+0((q1- qS)O) -1
t d(t Lk +1 )

q +(q1)-q _dqtkm+1 .
B I

Therefore

€ . u_ altk, +1
[ggé (I»;T-o Stkm(l(;:lf) @:!'@Q t(Kﬂd(t-)l)kmu -1=+¥.
g o0k, @) kg Y _

t=1 Km

This implies that we actudly can take any € >0 such that $T, >'I?0 such that for
al t>T, $U =tk +1.qs) and $Q, ..(US ) such that for dll qi UL

0 <0y~ Os <€ § Sy~ 0

48



