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Abstract:

In this paper the Burtless and Hausman model is used to estimate water demand in Salatiga, Indonesia.
Other statistical models, as OLS and IV, are found to be inappropiate. A topic, which does not seem to
appear in previous studies, is the fact that the density function of the loglikelihood can be made arbitrary
high if observations are located exactly on a kink of the budget constraint. To avoid this problem, a
discretization technique is used to work with genuine probabilities. The unconditional distribution of water
demand is explored with parametric and semiparametric techniques. An important conclusion is that the
distribution of water demand is not unimodal and that data are clustered around kinks. Main estimation
results are a price elasticity of approximately -1.2 and an income elasticity of 0.05. Price and income
elasticities are mutually dependent. The estimated model is finally used to investigate consequences for
social welfare when a uniform price level is chosen. It is argued that without loss of total welfare, the
complex rate structure can be replaced by a uniform marginal price.
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1. Introduction

Understanding the nature of demand for goods or supply of hours of work can be

complicated by nonlinear tax systems or varying marginal prices. In this class of problems

the value of the combination of micro-economics and econometrics is widely recognized in

the literature. Several authors prefer a statistical model, introduced by Burtless and

Hausman (1978) which is a direct extension of some micro-economic analysis in the

presence of piecewise linear budget constraints. During the last decades, several authors

have followed the same approach. A review can be found in Moffitt (1986, 1990). In these

reviews and also in Blomquist (1996) it is argued that standard estimation models as OLS

and IV are not appropiate.

Hewitt and Hanemann (1995) review the problem of dealing with systems of block prices in

water demand. Such systems lead to a divergence between the average and marginal price paid.

From a theoretical viewpoint one would prefer the use of the marginal price when estimating

demand functions; however, this entails the use of a 'difference term' to account for the impact

on income available for other goods. Examples of such studies of urban water demand are

Chichoine and Ramamurthy (1986), Billings (1987), and Nieswiadomy and Molina (1989).

However, a limitation of these studies is that they only model water demand directly; they leave

unmodelled the choice of the block in which to locate water consumption. As indicated by

Hewitt and Hanemann (1995), the Burtless and Hausman model can be used to overcome this

limitation.

In this paper the demand of water in Salatiga, Indonesia will be estimated. The nonlinear

budget constraint is due to the rate structure. For the first ten cubic meters the marginal

price is twice as cheap as the marginal price for more than thirty cubic meters. The

marginal price rises when the size of demand crosses the limits of ten, twenty and thirty

cubic meters, so there are four different marginal prices.

The organisation of this paper is as follows: In section 2 a short overview of the underlying

micro-economic theory will be given, followed by some statistical models that can be used

to estimate the demand function. Here special attention will be given to the Burtless and
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Hausman model, which will be used for estimation. Section 3 gives a description of the

dataset. Also, the empirical distribution of water demand will be studied. The loglikelihood

for our purposes will be derived in section 4. A modification of the two-error Burtless and

Hausman model is used. The main reason is the unboundedness of the loglikelihood of the

standard Burtless and Hausman model. As far as we know, this property has not been met

before and is due to the presence of data lying exactly at a kink. To avoid this problem a

discretization technique is used. Estimation results and some tests can be found in section

5. Section 6 applies the estimated models to study welfare effects by changing the rate

structure. Section 7 concludes.

2. Micro-economic and econometric theory

In this section, the micro-economic theory in the case of a convex budget set will be briefly

summarized. More about this subject (for instance, other forms of the budget set) can be

found in Moffit (1986,1990). Consider an utility-maximizing consumer with a budget set

as in figure 1. For simplicity it will be assumed that the consumer's utility will be based on

the amount of the good of our interest (for instance: water) and of the total amount of other

goods, and that there is only one kink. The ideas discussed below can be simply

generalized for more goods and more kinks.
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figure 1: Budget set of a consumer

The consumer's decision problem can be stated as follows: The consumer's utility function

U is a function of the amount of the good of our interest, denoted by q1 and of other goods,
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generically denoted by q2. Assume that good q1 is normal and that prices of good q1 are

given:

P(q1) = p1 (q1 ≤ k)

P(q1) = p2 (q1 > k)

Here is k the value of q1 at the kink point (k = 2 in figure 1). p1 and p2 are the prices of q1,

with p2 > p1. The price of q2 is normalized at 1. The consumer wishes to maximize U(.)

with respect to its budget restriction. The consumer's budget constraint is nonlinear in q1:

(1) min(k,q1) p1 + max(q1-k,0)p2 + q2 ≤ y

y is the consumer's income. Expression (1) can be rewritten into

(2) q1 p1 + q2 ≤ y (q1 ≤ k)

q1p2 + q2 ≤ y + k(p2  - p1) = yv (q1 > k)

yv is called the virtual income of the consumer on the region {q1 > k} and corresponds with

the intersection of the extrapolation of the steepest line in figure 1 with the Y-axis

(remember that the price of q2 is normalized at 1). The indirect utility function of the

consumer is denoted by V=V(y,P(q1)) = U(g(P(q1),y) , y-g(P(q1),y)), with g the standard

demand function. Now the demand of good q1 (simply denoted by q1 ) is equal to:

(3) g(p1,y) if g(p1,y)  ≤ k and V(y,p1) > V(yv,p2)

g(p2,yv) if g(p2,yv) > k and V(yv,p2) > V(y,p1)

k else

It can be verified that the latter conditions in the first two cases are redundant. Thus, the

demand of q1 can be written as (Moffitt, 1986):

(4) q1 = d1 g(p1,y) + d2 g(p2,yv) + (1-d1-d2) k
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d1 = I {k> g(p1,y )}

d2 = I {k < g(p2,yv)}

with I{.} the indicator function of the expression between brackets. The tedious expression

(4) has a simple graphical interpretation, see figures 2 and 3. Both figures show two

graphs. One graph is a combination of two standard inverse demand functions1, the other

graph represents the marginal price as a function of demand. The intersection between

these two graphs takes place at the amount q1 as in expression (4). The situation in both

figure 2 and 3 is a marginal price of 200 for the first ten units and a marginal price of 400

for a demand of more than ten units. In figure 2 demand lies in the first segment, while the

demand in figure 3 sticks at the kink.
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figure 2: Illustration of demand in a segment
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figure 3: Illustration of demand sticking at a kink

                                                       
1one for y (the left part) and one for yv
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The behaviour of q1 when it is equal to k follows from the comparative statics of q1, which

can be obtained by taking the first derivatives of q1 with respect tot p1, p2, and y. It can

easily be shown2 that both dq1/dp1 and dq1/dp2 are nonpositive and dq1/dy is nonnegative.

New is the possibility of zero effects in the case q1=q*. When both d1 and d2 are zero, it is

of course possible that their value remains unchanged after a perturbation of (p1,p2,y).

Therefore, the choice of a consumer may stick at a kink. Consequently, the output value

q1=k corresponds to some region of input variables. This can have important implications

for a distribution of water demand: a kink will generally correspond with a mass point (this

will be shown below). Note that the value of q1, when it is on segment 1, is completely

unaffected by any change in p2 and vice versa. Note that all these observations can also be

interpreted graphically. For instance: a small perturbation of the demand function in figure

3 does not change the fact that demand sticks at a kink. Finally: the jump of the standard

demand function is caused by a rise in virtual income of q*(p2-p1).

Statistical models

When we take the micro-economic model and its properties into account, one can expect a

nonlinear relation between the demand for water and other input variables as income and

marginal price. Furthermore, one might expect a concentration of data around a kink.

Consider the following specification for the demand equation, ignoring the micro-

economics leading to expression (4):

(5) q = βX + γpm + δyv + ε

In (5), X is some vector of other explanatory variables, The variables β, γ and δ are

unknown parameters. ε is the error term. Equation (5) seems linear in both pm and yv , but it

is not since both pm and yv are functions of q3. For a set of realisations of the variables in

(5), ordinary least squares (OLS) could be used, ignoring the nonlinearity. The advantage

of this method is its simplicity. The disadvantages are however:

• pm and yv are functions of q and are therefore correlated with the disturbance term ε.

Additionally, in our case, pm is globally positively correlated with q, so OLS would lead

                                                       
2Under the assumption that good 1 is normal
3For example, take pm in figure 3: pm = 200 if q≤10 and pm = 400 if q>10.
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to a positive price elasticity. However, it makes more sense that the price elasticity is

negative.

• An implicit assumption is that the observed demand lies on the same segment or kink as

the true demand. Therefore, OLS is not a flexible setting

• The OLS setting ignores the possibility of concentration of data around a kink.

The first disadvantage could be removed by applying an instrumental variable technique

(see Hanemann (1995) and Blomquist (1996) for a discussion), but the second and the third

argument cannot be solved in this way. Results of these estimation methods can be found

in the appendix.

The Burtless and Hausman model (Maximum likelihood)

The Burtless and Hausman model is an extension of the micro-economic theory as

presented above. Starting point of the model is equation (4), which will be extended with

two error terms:

(6) q = d1 (g(p1, y) + α) + d2 (g(p2,yv ) + α) + (1-d1-d2) k + ε

d1 = I {k > g(p1, y) + α}

d2 = I {k < g(p2, yv) + α}

The error term ε is a common measurement error term. To take account of  heterogeneity

of preferences an extra error term α is added4. An important consequence of this setting is

the notion that d1 and d2 are now unobserved, hence it is allowed that the location of the

observed demand is not the same as the location of the utility-maximizing kink or

segment5. When the (joint) distribution of α and ε is specified, the likelihood for one

observation can be derived, which will be done for our (special) case in section 4. The

formulation stated above will be referred to as the two-error model. When α is omitted (6)

reduces to the one-error model and leaving ε outside (6) is called the heterogeneity-only

model.

                                                       
4More general, a stochastic demand function g'(P,M, α) is introduced. In our case g'(P,M, α) = g(P,M)+ α.
5This idea is presented in Burtless and Hausman (1978)
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What happens with the concentration of data around k ? The equation q = k (ignoring ε),

holds when both d1 and d2 are zero. This is equivalent to:

k - g(p2,yv)  <  α  <  k - g(p1, y)

So, for a given realisation of ε, demand sticks at k for an interval of realisations of α. The

same insight can be archieved by looking at figure 3. A small perturbation of the demand

function does not change the x-coordinate of intersection, while it does in figure 2. This

property of the Burtless and Hausman model gives some flexibility for the case of a

concentration of data around a kink.

Another specification, which appears to be useful is

X = (d1 g(p1,y) eα + d2 g(p2,yv) eα + (1-d1-d2)k)eε

d1 = I {k > g(p1, y) eα }

d2 = I {k < g(p2, yv)eα }

This specification can be simplified by taking logarithms:

ln(q) = ln(d1 g(p1,y) eα + d2 g(p2,yv) eα + (1-d1-d2)k) + ε

Now observe that exactly one of d1 , d2 and 1-d1-d2 is equal to one (and both others are

zero).

This allows us to write

(7) ln(q) = d1 (ln(g(p1, y )) + α) + d2 (ln(g(p2,yv )) + α) + (1-d1-d2)ln(k) + ε

d1 = I{ln(k) > ln(g(p1, y )) + α}

d2 = I{ln(k) < ln(g(p2, yv)) + α}

Note that after replacing in (6) q, k , and g() by their logarithms, one obtains (7). This

alternative specification appears to be useful in the case when g(p,y) is of the form: a pb yc.
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This reduces to a linear specification for ln(g(.)):  ln(g(p,y)) = ln(a) + b ln(p) + c ln(y).6 The

derivation of the likelihood is similar for both expressions.

Before applying the Burtless and Hausman model to our observations in section 4, we

discuss some properties of the data in section 3.

3. Description of the data

The dataset that is used in this study is part of a survey carried out in 1994 about demand

for urban facilities in Indonesian medium sized cities (Supramono and Wijayanto, 1995).

In a survey among 951 households in the Central Java city of Salatiga (population about

100.000 persons) it is found that about 50% has a private connection to the piped water

system of the regional water company. In addition, about 6% gets water from a neighbour

who has such a connection, and about 8% gets water from a public terminal serviced by the

same company. In the present piece of research we only focus on those households having

a private water connection. The number of useful  observations is 220.

This section presents some descriptive statistics of relevant variables, and examines some

relationships between these variables. The empirical distribution of water demand is

examined. An important related question is the presence of local maxima in the distribution

at the kinks. This would give an extra justification of using the Burtless and Hausman

model.

Some descriptive statistics of the 220 observations and mutual correlations of three

important variables can be found in tables 1 and 2.

                                                       
6Note the similarity with ordinary least squares: Obtaining nonlinear least squares estimators for a, b and c
when g(p,y) = a pb yc is rarely done because this specification is nonlinear in the parameters b and c. After
taking logarithms the least squares problem becomes trivial (however, the original problem is not solved).
An interesting question is which of  the specifications (6) and (7) works best (in a computational point of
view) in the case g(p,y) = a pb yc.
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demand/month (m3) income/month (rupiah7) size of household

mean: 18.70 166872 4.827

standard deviation: 10.69 105998 2.121

coefficient of variation: 0.571 0.635 0.439

median: 17 150000 5.0

0.25 quantile: 10.0 100000 3.0

0.75 quantile: 22.0 200000 6.0

minimum: 10.0 30000 1.0

maximum: 100 650000 15.0

skewness: 3.411 1.738 0.914

Table 1: Descriptive statistics of demand related variables

demand  income size of household

demand 1.000 0.060 0.438

 income 0.060 1.000 0.114

size of household 0.438 0.114 1.000

Table 2: Correlations between demand related variables

One can see that the distributions of water demand and income are highly skewed to the

right. The correlation between demand and income is low.

Some results about water demand that cannot be found in the table are of interest. About

37 percent of the data (82 observations) is equal to ten, twenty of thirty, and are thus lying

on one of the kinks. This fact may be due to rounding errors, but gives some extra support

for use of the Burtless and Hausman model. To get more insight into the distribution of

water demand, a kernel estimation of the density will be performed. A kernel density

estimator, for observations x1,...,xn has the following form:

z(t) = 
1

1nh
K

t x
h

i

i

n

( )
−

=
∑

The function K, a density function with zero expectation and variance equal to one, is

called the kernel and h is a scale parameter called the bandwidth. For large values of h, one

                                                       
7One dollar is about 2000 rupiah
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gets a smoothed estimator. Figure 4 shows the kernel estimator of the density of water

demand. The normal kernel (that is, for K the standard-normal density function) is used

with h=2  8.
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figure 4:Kernel estimator of density water demand

Clearly the distribution is not unimodal. Local modes are clearly around ten and twenty

and maybe also around thirty. This observation is consistent with the micro-economic

theory as in section 2. A parametric estimator of the density can be obtained by estimation

of the parameters of a  lognormal distribution or a pareto distribution (of course, other

distributions are also possible). The pareto distribution provides the best loglikelihood with

a place parameter of 10 and scale parameter 1.98. To take the multimodality into account, a

mixture of standard density functions can be used. A convex combination of two pareto

distributions has the following density:

f(x) = I{x ≥ xa} p θ xa
θ x -θ-1 + I{x ≥ xb} (1-p) µ xb

µ x-µ-1 θ, µ > 0 0 ≤ p ≤ 1

                                                       
8Under the assumption that the true distribution is normal, the (according to the minimum mean integrated
square error) optimal bandwidth is about 3.3, however the true distribution is clearly not normal and a band-
width of 3.3 was found too big. For a discussion about various types and properties of Kernel estimators,
see Härdle (1993).
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Taking xa = 10 and xb = 20 and applying maximum likelihood estimation gives the

estimation result p = 0.605, θ = 4.42, µ = 3.80. The gain in loglikelihood compared with a

single pareto distribution is 36 points, enough to reject the standard pareto distribution in a

Likelihood Ratio test. In particular, we can reject unimodality since the density function is

not unimodal.

4. A discretized modification of the Burtless and Hausman model

The results in the previous section give some extra support in applying the Burtless and

Hausman model, more particular the incorporation of an error term representing

heterogeneity of preferenes. The  two error model will be applied 9 with expression (6) in

section 2 as a starting point. We assume that both the heterogeneity error α and

measurement error ε are normally distributed and that their correlation is zero10 For this

case, derivation of the likelihood for one observation is straightforward.

In our case the likelihood  consists out of nine components, which can be divided into two

groups. First, we extend the model in section 2 to the presence of three kinks. While the

demand is bounded from below by zero and bounded from above by the budget constraint,

the distribution is censored11, which is equivalent to adding two kinks at zero and at the

maximum possible consumption of water (denoted by max). This results in four segments

and five kinks. Table 3 shows those segments and kinks and the corresponding marginal

prices:

                                                       
9Since so many observations are lying at a kink, the heterogeneity-only model can also be chosen. For a
discussion see Moffitt (1986). However, we will see later dat measurement error is certainly not
degenerated.
10See Hewitt and Hanemann(1993) for the generalized case. Moffitt (1986) notes that there is no a priori
rationale for the two different kinds of error to be correlated - and we agree. Correlation between the two
errors is omitted in most of the previous studies (Moffitt 1986)
11A truncated distribution is also possible, for a discussion see Pudney (1989)
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segment marginal price (rupiah) interval kink value

1 0

1 215 (0,10) 2 10

2 280 (10,20) 3 20

3 370 (20,30) 4 30

4 430 (30,max) 5 max12

Table 3: Kinks, segments and marginal prices

The loglikelihood can be written as the sum of densities of nine disjoint events:

(8) L(θ | q,X,y) =  S q X yi
i

( . , , )θ θ +  K  ( , q, X, y)j
j=1

5

∑∑
=1

4

Si and Kj correspond to the contribution to the likelihood of the event that the true demand

lies at segment i or kink j given the observed data and the parameter values, summarized

with θ. Expressions for Si and Ki can be derived in the same way as expression (7) in

section 2. Denote the density functions of α and ε with fα and fε , the value of the demand

in the k-th kink with qk and the j-th marginal price with pm,j. Then:

(9) Si = f q g pm i
a

b

i

i

α εα θ α α( ) ( ( ), f , y , X,  )  dv,i− −∫ (i=1,...,4)

Kj = f q q f x dxi
b

a

j

j

ε α( ) ( )−
−

∫
1

(j=1,...,5)

ai = qi-1 + g(pm,i, yv,i, X, θ) (i=1,...,5)

bi = qi   + g(pm,i, yv,i, X, θ) (j=0,...,4)

With b0 and a5 we mean minus infinity and infinity, respectively. qi is equal to the

consumption level in kink i. Both types of expressions S and K can be rewritten, by some

manipulation with normal densities, such that for practical purposes only the cumulative

                                                       
12max is equal to yv,4 / pm,4
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normal distribution is required. The final step is specifying the demand function g and the

parameter set θ. In the case of a linear demand function (in pm and yv) we would have:

 (10) g(pm,yv,X, θ) = βX + γpm + δyv θ = ( β, γ, δ, σα , σε)

By applying expressions (8), (9) and (10), a maximum likelihood estimator can be

obtained. Since the log-likelihood is not globally concave, the choice of a good set of

starting values is important.

In estimating the two-error model we encounter another problem: the value of the

(log)likelihood goes towards infinity. Analysis of this phenomenon reveals that this can be

established by taking σε arbitrarilly small. Numerical evidence can be found in table 4.

value σε value loglikelihood

0.5 -737.4

0.54 -588.3

0.516 91.9

0.5100 4866

Table 4: Unboundedness of the loglikelihood

An explanation of this unexpected property can easily be found: consider an observation

lying exacty on a kink, for instance the kink at 10. Then the value of the loglikelihood for

that observation can be made arbitrarily high by sending σe to zero. The value of the

loglikelihood, more precisely the values of Si, i=1,...,4 , for other observations can be

bounded from below by holding σ2
α + σ2

ε constant. Under some weak assumptions (which

are valid in our case), a more formal statement can be made by the following theorem,

which states that even when there is only one observation lying exactly on a kink the

maximization problem is unbounded.

Theorem 1: Let q = (q1,...,qn) be a sample of n observed demands and let X = (X1,...,Xn)

and y=(y1,...,yn) be samples of observed explanatory variables and incomes. Let
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( ) ( , , )=
=

∏ L q X y
i

n

i i i
1

 |  be the loglikelihood corresponding to the sample (q, X, y) with the

function L the loglikelihood for one observation defined as above.  , shorthand for ( , ,

,  ,  ) is a parameter vector lying in the parameter space  = Rn R++ R++ 13. Assume

the demand function g( , , ,Xi,yi,p) is strictly decreasing in p for some  and all

observations14 and that there is an observation i with the observed demand qi lying exactly

on a kink. Then the maximization problem

max { ( ) |   θ θ ∈Θ}

is unbounded.

The proof of this theorem for the case of normally distributed error terms and one kink can

be found in Appendix A. The theorem can be generalized for more kinks and even for

other continuous distribution functions for α and ε when σα and σε are scale parameters.

Of course, one wonders why the result of theorem 1 has escaped the attention of the many

researchers who have used maximum likelihood methods to deal with kinked budget

constraints and who have investigated its econometric properties.15. The probable answer is that

the large majority of these studies refer to labour supply. In that context the probability of

observing an individual who is located exactly at a kink is extremely small. It would require the

taxable income to be exactly on the point where the marginal rate shifts, which may only be

possible if the number of working hours equals a specific number that will only by accident be

an integer. However, in the present context the kinks refer to demand that equals a multiple of

10, and since the water meters indicate only integers, it is highly probable that at least some

observations are exactly at a kink point.

                                                       
13R++ = (0,∞)
14In our case this means taking γ<0 in (10)
15In addition to the work of Burtless and Hausman [1978], and Moffitt [1986] mentioned above, we refer to
Blundell [1993] for a review of structural labor supply analysis and MaCurdy, Green and Paarsch [1988], van
Soest, Kapteyn and Kooreman [1993] and Blomquist [1995] for some debate on the appropriate econometric
technique for dealing with kinked budget constraints.
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To avoid this problem, we assume that observations, now denoted by q*, follow a discrete

distribution. More in particular we assume that the observed demand q* is the output of a

rounding procedure: a value q is rounded to the nearest integer q*. The new likelihood

becomes:

(11) L* (θ | q*,X,y) = L q X y dq
q

q

( , , , )
* .

* .

θ
−

+

∫
0 5

0 5

The fine that has to be paid for this is the inevitable need for a numerical integration

procedure.  The results presented in the next section are derived by applying the trapezium

rule. Note that this discretization technique is not just a technical solution to deal with the

unboundedness of the loglikelihood. The observations are really discrete since the water-

meters only yield water consumption in integers.

5. Estimation results

In this section, estimation results of the two error discretisized Burtless and Hausman

model are presented. Both a linear (corresponding with (6) in section 2) and a logarithmic

(with (7) as starting point) specification are considered. After evaluating both

loglikelihoods and taking the Jacobian into account the logarithmic specification16

performed 30 points better, so the starting point is the following equation for the logarithm

of water demand:

(12) ln q = β X + γ ln pm + δ ln yv + α

Table 5 gives results (standard errors between brackets). The number of members of a

household will be denoted by H. D is a dummy variable with value one if a household has

an extra water source (usually the river or a private well) and value zero elsewhere.

Unfortunately, no data are available on whether or not neighbours are co-consumers of the

water.

                                                       
16In the logarithmic case, the extra kink for zero demand can be omitted, because the logarithm of zero is
equal to minus infinity.
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ln(q) =  8.764 + 0.526 ln(H) - 0.220 D - 1.280 ln (pm) + 0.501 10-6 ln(yv) + 8.604 10-3 ln(pm)ln(yv)

(1.22)      (0.099)        (0.142)      (0.235)            (0.348) 10-6            (1.164) 10-3

α ~ N( 0 , 0.5582 ) ε ~ N( 0 , 0.0202 )

(0.036) (0.0052)

loglikelihood = -681.06

Table 5: Estimation results

The value of the coefficient of D differs significantly from zero when a likelihood ratio test

is performed. Water demand becomes 22 percent smaller when an extra water source is

available. The only coefficient which does not differ significantly from zero is the

coefficient for the virtual income yv. This is also the conclusion when the product

ln(pm)ln(yv) is left out of the specification. This product term is significant and adds an

extra richness to the model in the sense that the price elasticity is not constant anymore.

Table 6 shows various values for the price elasticity for a given value of the (virtual)

income. The mean price elasticity is  -1.176. Thus we arrive at the conclusion that water

demand in Salatiga, Indonesia, is strongly sensitive to the price of water. The values of the

price elasticities obtained here are higher (in an absolute sense) than the of about -0.3 to -

0.9 mentioned by Nieswiadomy and Molina (1989). On the other hand Hewitt and

Hanemann (1995) arrive at an elasticity of about -1.6, and mention some other studies

leading to elasticities of water demand clearly higher than one (in absolute sense). Most of

the studies in this field relate to the US, where indoor water consumption is thought to be

rather price independent whereas outdoor consumption (for watering lawns) is much more

price dependent. This context cannot be easily transferred to a developing country such as

Indonesia where lawn watering is not usual.
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income (rupiah) price elasticity

          0 -1.280

  30000 (minimum) -1.191

166872 (mean) -1.176

650000 (maximum) -1.164

Table 6: Price elasticity as a function of income

Another advantage that appears when the product term is added is the fact that income

effects are clearly positive. The mean income elasticity17,  is equal to 0.049 and its range

lies between 0.046 and 0.052.

The ratio between variances of the disturbance terms gives an indication of the amount of

clustering of data around a kink (Moffitt, 1986). The ratio of heterogeneity to measurement

variance is  778, which is large compared to previous results (see again Moffitt 1986, table

1). This result indicates a clustering of data around kinks and coincides with what we

found in section 3. Although the estimator of the measurement variance is small, its

standard error is small enough to state that the measurement error term is nondegenerate.

In Appendix B we present the estimations with OLS and instrumental variables. The results

are implausible and quite different from those obtained with the maximum likelihood

method presented here.

6. Welfare Effects of a Uniformization of the rate structure

The idea behind the rate structure for water users seems clear. Households with small budgets

and - presumably - small water consumption are favoured because the marginal price is

relatively low for small consumption levels. It appears from our estimation results that income

has a significant, but, nevertheless, only small effect on water consumption, whereas household

                                                       
17The mean income elasticity is defined as the income elasticity for the mean marginal price observed in the
sample.
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size has a more substantial influence. This implies that the main effect of the current rate

structure may well be that larger households have to pay a higher marginal price than small

households, whereas income is an unimportant determinant of the marginal price. Such an

effect is almost surely unintended, and probably undesired, by the authorities that determine the

price schedule. It is therefore of some interest to investigate the welfare consequences of an

uniformization of the rate structure.

The appropriate tool for doing so is the cost function, or the closely related indirect utility

function. Either of these allows us to determine the compensating variation, that is minus the

change in income that is required to keep a household at the same indifference curve after a

change in the price schedule for water has occurred. However, the cost function and the indirect

utility function that are associated with the demand function estimated here is unknown, and the

method proposed by Hausman [1981] does not lead to an (easily) solvable differential equation.

We will therefore make use of the procedure developed by Vartia [1983], which requires only

knowledge of the ordinary (Marshallian) demand functions. In our case, the system of demand

functions consists of two equations: one for water, the other for a (Hicksian) composite

consumption good. All conditions required by Vartia's method are satisfied if the demand

equation for water satisfies the Slutsky-condition:18

In order to check the validity of this condition, we computed this Slutsky term on the basis of

our estimation results. The computations involved are complicated by the fact that observed

demands depend on the random variables ε and α. We dealt with this problem as follows. For

the purposes of the present section we assume that all realizations of the ε's are equal to zero.

Since the estimated variance of this error term is very small (see Table 5), the associated error is

negligible. With respect to α, the random term that refers to taste variation, we can now

determine the interval in which it must lie, given the observed demand for water and the

presumed rounding procedure. The Slutsky term was then computed for both the lower and

upper bound of this interval, taking into account that for demands located on the kinks the

                                                       
18This conclusion is motivated, in the present context, in an appendix that is available upon request from the
authors.
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marginal prices and virtual incomes are different for the lower and upper bounds. The

computed Slutsky terms are all negative. Hence Vartia's procedure can be used.

An illustration of the outcome of the computation is given in figure 5. Under the current rate

structure the household is on the second segment of the kinked budget line. A change to the

uniform price per unit, while keeping the utility level constant, implies a move along the

original indifference curve until the point where the marginal rate of substitution corresponds

with the uniform price for water. The straight line that touches the indifference curve at this

point is the budget restriction that would lead the utility maximizing individual to choose that

point as its optimum. The income implied by this budget line, denoted as y* is the income that

would be needed to make the consumer indifferent between the current rate structure and the

uniform price. The difference between actual income y and y* is the compensating variation. If

the compensating variation is negative, a higher income is needed to keep the consumer on the

same indifference curve after the uniformization of the rate structure. If it is positive, as is the

case in the situation shown in figure 5, a lower income would suffice. Clearly, in the former

case the change is to the disadvantage of the household, in the latter to its benefit.

We considered two possibilities for uniformization of the rate structure. In the first the new

uniform price was computed at such a level that total demand remains unchanged. This price is

equal to Rp 296.10 per m3. In the second the new price per unit equals the average price paid

under the current rate structure by the households in the sample, which is equal to Rp 263.40

per m3 .19 The first procedure has the advantage that no assumptions about the cost structure of

the water company have to be made. The disadvantage is that we have to assume how the

additional profits are used. For the purpose of these computations it is assumed that the benefits

were distributed equally over the household connected to the water pipeline. The Indonesian

context is that the profits of water companies are used for public provisions that benefit the

whole population. This means that a part of these additional profits will be spent in favour of

                                                       
19In all computations we took the α's first to be equal to the lower bounds that are compatible with observed
demands, then to the upper bounds, and averaged the results. Remember that all ε's have been put equal to 0.
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                   other

                   goods

                            y

                           y∗

                                                                                                                               water demand

figure 5: Welfare effect of a uniformization of the price of water

households not connected to the water pipeline. However, it is difficult to assess the effects of

such expenditures, and we have taken the redistribution of the additional profits among

households not connected to the water pipeline as a kind of benchmark. Actual benefits may be

lower or higher than the figures we computed, depending on the way the additional profits are

spent.

The second procedure is only reasonable if water supply can be increased without a

considerable increase in average cost. If the water company operates under constant returns to

scale, has no fixed costs and makes no profit, then the compensating variations computed give

the complete welfare effect. However, it seems plausible that the water companies have

considerable fixed costs, whereas marginal costs are probably low and independent of the

volume of production in a wide range. This means that an increase in the production at a

constant average price will lead to an increase in the profits of the water companies. The
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compensating variations that have been computed for this case are therefore most probably

underestimates of the total welfare effects.

The averaged compensating variations that have been computed for various subgroups of the

population are listed Table 7. For both uniformizations the average compensating variation is

positive, and for both uniformizations the group of households with a higher than average

income gains more than the group with a lower than average income. However, the

decomposition into quartile groups reveals that the welfare effect is not monotonous in income:

although the averaged effects for all quartile groups are positive, the second and fourth quartile

gain less than both the first and third. The effect of uniformization on households of various

size is close to monotonous, and larger households gain most, as we expected.

% of households with
welfare    higher

Household group Number Effect (Rp/month)* gain (%)   demand (%)

uniform price Rp 296.09

all 220  207.79 .35 .37

income**

first quartile  52  235.00 .38 .38
second quartile  51   36.83 .29 .29
third quartile  74  369.51 .36 .41
fourth quartile   43   99.35 .33 .42

household size
single person   4 -106.38 .25 .25
two persons  25   31.41 .16 .16
three persons  29 - 82.25 .17 .17
four persons  49 - 68.72 .18 .18
five persons  41  146.98 .44 .51
six persons  32  597.02 .50 .53
seven persons  16  655.86 .56 .63
eight or more p.  24  645.12 .58 .67

extra water source available
yes   20  425.46 .20 .25
no  200  186.02 .36 .39
------------------------------------------------------------------------------------------------------------
Table 7: Welfare effects of uniformization of the rate structure for two different price levels
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% of households with
welfare    higher

Household group Number Effect (Rp/month)* gain (%)   demand (%)

uniform price Rp 263.40
all 220  347.39 .38 .70

income**

first quartile  52  381.55 .38 .67
second quartile   51   66.66 .29 .67
third quartile  74  570.74 .41 .69
fourth quartile   43  254.68 .42 .81

household size
single person   4 -233.17 .25 .50
two persons  25 -101.94 .16 .40
three persons  29 -212.63 .17 .52
four persons  49 -137.09 .18 .59
five persons  41  370.98 .51 .85
six persons  32 1018.27 .53 .91
seven persons  16 1147.02 .63 .81
eight or more p.  24 1110.17 .67 .92

extra water source available
yes   20  492.84 .25 .45
no  200  332.85 .39 .73

* Average compensating variation for the relevant group.
**Due to a large number of equal (reported) incomes, the number of households per quartile
differs.

---------------------------------------------------------------------------------------------------------------------
Table 7 (continued)

The effect of availability of an extra water source is somewhat unexpected: households with an

extra source gain more than households without an extra source. The probable explanation is

that the households with an extra source are often large households.

It is important to note that for both levels of a uniform price, the average welfare effect is

clearly positive. However, in terms of the percentage of households that benefit from a

uniformization it is only a minority of households (35-38 %) that are net beneficiaries. Thus,

there is a rather large group of households that experience a small welfare loss, and a smaller

group of households that experience a relatively large welfare gain. The beneficiaries can
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mainly be found among the large households. If we would carry out the analysis per individual

instead of per household, the share of beneficiaries is considerably higher.

The following observations are relevant for a comparison of the two uniformizations

considered. The average welfare gains of a uniformization to the current average price are

much larger than those of a uniformization to a price where total demand remains unchanged. It

has, moreover, been observed above that the effects of the former are probably an

underestimate of the total welfare effect. However, a drawback of the uniformization to the

current average price are the stronger negative effects on small households, and this makes it

impossible to formulate an unconditional best choice on the basis of the computed welfare

effects.

7. Conclusions

In this paper a discretized version of the Burtless and Hausman model is used to estimate

water demand. The unconditional distribution of water demand is characterized by a

clustering of observations around the kinks. In particular, the distribution of water demand

is clearly not unimodal. This property is consistent with the Burtless and Hausman model

and related micro-economic theory. The estimation results indicate a large (in absolute

value) price elasticity and a small income elasticity. The price elasticity is decreasing (in

absolute value) in income. Average price elasticity is about - 1.17.

Section 6 shows that replacing the block rate structure by one marginal price leads on

average to an increase in household welfare. When the uniform price level is chosen such

that total demand remains unchanged, the water company has higher revenues owing to the

higher average price. An equal redistribution of these revenues among households implies

an average increase in welfare of Rp 208 per month. The strongest beneficiaries of a

uniform price are large households. Differences among income groups are small, however.

A similar result is found when a uniform price is introduced at the level of the average

price in the block rate system.
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We conclude that in the case of Salatiga (Indonesia) , the block rate structure does not

reach its aim of helping the poor. In stead, it appears to favour small households, and these

include both poor and rich.
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Appendix A Proof of theorem 1

Before we give a proof of theorem 1 we present expressions for the likelihoods of the two-

error model and the heterogeneity-only model. We present the latter case first20. Let the

likelihood function of the heterogeneity-only model be denoted by 1 (θ).
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20For compactness, we represent the loglikelihood for observation i  L(θ|qi,Xi,yi) with Li(θ) and g(θ,Xi,yi,pj)
with gij(θ). Another change in notation: with θ we mean (β,γ,δ,σα) because σε appears only in the two-error
model. Finally: the index i is for observations and not for segments, which was the case in section 4.
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The expressions for S1,i and S2,i are derived from (9), section 4. We simplified the

expressions by reducing the two quadratic forms behind the integral sign (fα and fε) to one

quadratic form. The tedious but rather simple derivations are omitted.

After these preliminaries, we give the main result of this appendix. This result gives some

insight in the relationship between both likelihood functions and Theorem 1 turns out to be

a trivial by-product.

Proposition A1 Let m be the number of observations i with qi = k. Then

( )lim ( , ) ( )→ =0 2 12  
m

pointwise for all θ∈Θ.

Corollary (proof of Theorem 1) Note first that m ≥ 1 in this case. Choose θ such that the

demand functions gi (θ,.) are strictly decreasing in p for i=-1,...,n. The reader should verify

that this gives 1 (θ) > 0. Now, proposition A1 guarantees that lim ( , )→ = ∞0 2  . In

particular, we conclude the unboundedness of the maximization problem

max { ( ) |   θ θ ∈Θ} . This completes the proof of theorem 1.
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The term before the integral converges to
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The same arguments show that S2,i(θ,σε)→0 when σε→0. The first conclusion is that

limσ ε →0 Li(θ,σε)=Li
1(θ)

Assume now that i≤m, so qi=k. We wish to calculate

limσ ε ε σ ε ε σ ε ε σ ε εε ε ε ε
πσ θ σ πσ θ σ πσ θ σ πσ θ σ→ → → →= + +0 0 1 0 2 02 2 2 2L lim S lim S lim Ki i i i( , ) ( , ) ( , ) ( , ), ,

The first two limits are zero. The third limit is equal to K Li i
1 1( ) ( )θ θ=  (note that qi = k):

lim K lim
k g k g k g k g

Ki
i i i i

iσ ε ε σ
α α α α

ε ε
πσ θ σ

θ
σ

θ
σ

θ
σ

θ
σ

θ→ →=
−






 −

−





 =

−





 −

−





 =0 0

2 1 2 1 12 ( , )
( ) ( ) ( ) ( )

(Φ Φ Φ Φ

 Summarized, we have
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This completes the proof of the proposition.
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Appendix B: Estimation results of OLS and IV models

The results of OLS and IV estimations can be found in tables 9 and 10. The choice of

instrumental variables for pm and yv are the marginal price and virtual income on the

segment predicted by the OLS estimator for ln(q), respectively. The results are terrible. In

both cases, the price elasticity is positive. Moreover, also other estimations of parameters

are having the 'wrong' sign, for instance the income elasticity and the coefficient of the

dummy for an extra water source in the OLS case. We note that the main contribution on

both R2 's comes from pm: the correlation between ln (pm) and ln(q) is almost 0.9.

ln(q) =  -2.014 + 0.039 ln(S) + 0.043D + 0.817 ln (pm) - 0.431 ln(yv) + 0.078 ln(pm)ln(yv)

             (5.724)   (0.027)          (0.039)      (1.007)            (0.348)           (0.085)

R2    = 0.870

table 9: Ordinary Least Squares estimation of demand function

ln(q) =  -1.334 + 0.011 ln(S) - 0.094 D + 0.671 ln(pm) - 0.505 ln(yv) + 0.094  ln(pm)ln(yv)

 (7.066)   (0.032)         (0.104)       (1.240)           (0.595)            (0.104)

R2    = 0.826

table 10: Instrumental Variable estimation of demand function


