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Abstract

Consider a Bertrand model in which each �rm may be inactive with a known probabil-
ity, so the number of active �rms is uncertain. This simple model has a mixed-strategy
equilibrium in which industry pro�ts are positive and decline with the number of �rms,
the same features which make the Cournot model attractive. Unlike in a Cournot
model with similar incomplete information, Bertrand pro�ts always increase in the
probability other �rms are inactive. Pro�ts decline more sharply than in the Cournot
model, and the pattern is similar to that found by Bresnahan & Reiss (1991).
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1. Introduction

Consider a carpenter who is asked by a house owner to submit a tender for
renovating part of the house. He considers it very likely that if the homeowner has
asked for tenders from other carpenters, he gives the job to the carpenter with the
lowest tender. However, he also thinks there is a chance that the homeowner has not
asked anybody else for a tender and will give the job to him if only he does not ask
more than the owner is willing to pay. What price will the carpenter charge?

We try to answer that question. With some probability the carpenter is a monop-
olist who can charge the monopoly price but with some probability he faces Bertrand
competition. We will show that there exists a unique Nash equilibrium, in mixed
strategies. As the expected industry pro�ts are positive for any number of �rms N,
the model does not su�er from weaknesses of the standard Bertrand model. More-
over, the model does reasonably well in explaining the empirical results of Bresnahan
and Reiss (1991) on how industry pro�ts decline with increasing N.

The model allows for many interpretations, in two categories. First, uncertainty
about the existence of competitors may arise from uncertainty about consumer search
behavior, as with the carpenter above. It may be unclear whether consumers regard
rival commodities as perfect substitutes, consumer search costs may be uncertain
from the �rm's perspective, and consumers may vary in their sophistication.

Second, uncertainty about the existence of competitors may arise from uncer-
tainty about other sellers' behavior. It may be unclear whether rivals have hit their
capacity constraints (in which case they cannot compete for additional consumers),
whether rivals have entered yet, whether rivals have grossly overpriced by mistake or
ignorance, or whether rivals have temporarily high costs. It may be unclear whether
other competitors have also discovered a new market, or in black markets it may
be di�cult to know the number of �rms operating in that market (cf., Janssen and
Van Reeven, 1998). Any of these situations can be modelled as uncertainty over the
number of active rivals.

The paper is related to several di�erent literatures. The paper most closely re-
lated is Burdett and Judd (1983). They show that equilibria with price dispersion
exist in competitive markets, i.e., di�erent �rms may charge di�erent prices, if con-
sumer search is noisy (some consumers observe only one price, others two, and so on).
Our model di�ers in a number of respects. First, while one possible interpretation
of our model is that consumers di�er with respect to the number of prices they ob-
serve, our model allows for many other interpretation (see above) which do not �t the
model analyzed by Burdett and Judd (1983). Second, even if we take di�erences in
the number of observed prices as the interpretation of our model, there are important
discrepancies between their models and ours. For example, we analyze a strategic
model instead of a competitive one and when analyzing the impact of the number of
�rms on the market outcome, we assume that demand is given, instead of having a
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constant measure of consumers per �rm.

Spulber (1995) analyzes a model of Bertrand competition when �rms' cost func-
tions are private information. He shows that the model has a unique pure strategy
equilibrium in which �rms set prices above marginal cost and have positive expected
pro�ts. In contrast, the �rms in our model do not know how many competitors they
have, but assume that all competitors (if any) have the same cost structure as they
themselves have. Even though the type of uncertainty between Spulber's model and
ours is of a vary di�erent nature, the properties of the market equilibrium are to a
considerable extent similar: �rms set prices above marginal cost and receive positive
expected pro�ts.

Finally, our model is also of interest for students of auctions. The similarities
between Bertrand price competition and �rst-price sealed-bid auctions is well-known.1

Our paper can be regarded as answering the question what is the optimal bid if the
number of participants to such a sealed-bid auctions is unknown, as is often the case
in procurement bids.

Section 2 of the paper lays out the basic model and solves for the mixed strategy
equilibrium. Section 3 compares the outcome in the model with that of a Cournot
model, and compares the expected industry pro�ts in our model for di�erent values
of N with empirical results obtained by Bresnahan and Reiss (1991). Section 4 shows
how the basic model can be generalized to cover some of the alternative interpretations
alluded to above. Section 5 discusses a two-period model that endogenizes �rms'
decisions to compete or not. The mixed strategy equilibrium of this model can be seen
as a justi�cation for the assumption that �rms do not know how many competitors
they have. Section 6 concludes.

2. The Basic Model

Let there be N �rms that might produce homogeneous goods in a given market.
The �rms do not know of each other whether they really produce for the same market
or not, i.e., they do not know whether or not they are active competitors. The
probability each of them assigns to each of the other �rms being an active competitor
in the same market is �, where 0 < � < 1. If the �rms are active competitors, the
market is described by the Bertrand model of price competition. If, however, there
is only one �rm active in the market, that �rm is a monopolist and can charge the
monopoly price. For simplicity, we further assume that there is one consumer, who
buys at most one unit of the good, and his maximum willingness to pay for the good
is v. In case of tied prices, the consumer picks a �rm randomly. Marginal cost is
normalized to 0.

First, let us establish that there is no Nash equilibrium with any �rm putting

1See for example, Baye & Morgan (1997a, b).
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positive probability weight on choosing any particular price. Suppose Firm 1 (without
loss of generality) charges price p0 with positive probability, rather than mixing over
a continuous range of prices and putting in�nitesimal probability on each. Putting
positive probability on a price of zero is not pro�t maximizing, because if the �rm
charged the monopoly price of v instead on those occasions, it would have an expected
payo� of (1� �)N�1v, so let us focus on p0 > 0.

With some probability, Firms 1 and 2 will be the only �rms active in the market.
Firm 2 has one of two best responses. The �rst is to put positive probability on price
p0� � for some small �, since then whenever Firm 1 charges p0, Firm 2 will capture the
consumer and earn a positive pro�t. This cannot be an equilibrium, however, since
by the same logic Firm 1 can pro�tably deviate to p0 � 2�. Firm 2's second possible
best response is to put positive probability on the monopoly price of v. (Firm 2 would
do this if p0 were close to zero and Firm 1 would heavy weight on it.) But if Firm 2
does this, Firm 1 would deviate by switching from p0 to v � �, and the equilibrium
breaks down.

Firm 2 does not know that Firms 1 and 2 will be the only active �rms, but that
will occur with strictly positive probability. Hence, with some positive probability, if
Firm 1 is putting positive probability on p0, Firm 2 does best by assigning positive
probabilities in the ways described in the previous paragraph. Since that paragraph
showed that Firm 1 would then deviate from its hypothesized strategy, we have shown
that no Nash equilibrium has a �rm putting positive probability on any particular
price.

Let us therefore construct an equilibrium in mixed strategies with the strategies
having a continuous support. Let Fi(p) be the probability that �rm i charges a price
that is smaller than p. Similarly, let F�i(p) denote the vector of cumulative mixed
strategies of all �rms except �rm i. The expected payo� to �rm i of charging a price
pi when all other �rms choose a mixed strategy according to F (p) is

�(pi; Fi(p)) = �N
k=0

 
N
k

!
(1� �)k[�(1 � F (pi))]

N�kpi: (1)

This expression can be explained in the following way. The probability that

exactly N � k out of N �rms exist is equal to

 
N
k

!
(1� �)k�N�k . The expected

payo� to �rm i when exactly N � k �rms exist and when it charges a price of pi is
equal to pi times the probability that each of these N � k �rms charge a price that is
larger than pi : (1�F (pi))

N�kpi. Multiplying these two terms and summing up over
all k gives the expression above.

Expression (1) is, of course, nothing but an application of the Binomial Theorem,

and a standard result says that �N
k=0

 
N
k

!
akbN�k = (a+ b)N . Applying this to the
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present case implies that

�(pi; Fi(p)) = (1� �F (pi))
Npi: (2)

In equilibrium, �rm i must be indi�erent between all pure strategies that are
in the support of the mixed strategy distribution. Hence, it must be that on some
interval of prices the derivative of expression (2) with respect to pi equals zero. Thus,
a necessary condition for any equilibrium in continuous mixed strategies is

[1� �F (pi)]
N �N [1� �F (pi)]

N�1�f(pi)pi = 0; (3)

or
1� �F (pi)� �Nf(pi)pi = 0; (4)

where f is the density function associated with cumulative distribution function F .

It is a matter of straightforward calculations to show that the solution to di�er-
ential equation (4) is

F (pi) =
1� (1� �) N

q
v=p

�
; (5)

for (1� �)Nv � pi � v.

Result (5) implies that there is a unique symmetric equilibrium with continuous
support, and we have shown earlier that an equilibrium in pure strategies does not
exist The result is summarized in Proposition 1.

Proposition 1. The equilibrium of the Bertrand model with an uncertain number
of competitors is in mixed strategies and the distribution function of a player's strategy
is given by

F (pi) =

8>>>>>>><
>>>>>>>:

0 for pi � (1� �)Nv

1�(1��) N
p

v=pi

�
for (1� �)Nv � pi � v

1 for pi � v

(6)

In Figure 1, the cumulative density is depicted for di�erent values of N , using
equation (6), with � = :2 and v = 10 (prices are at intervals of 1, connected). As
N increases, each �rm chooses relatively low prices with higher probability. As N
becomes large, the cumulative density function approaches 1 for all values of p that
are strictly positive. Of course, the equilibrium price under perfect competition is
also equal to 0. The perfectly competitive outcome can be regarded as the limit case
of the present model when the number of �rms becomes very large.
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Figure 1: Equilibrium Price Distributions as Industry Concentration
Rises

The intuition is straightforward. As the number of potential competitors in-
creases, the probability of at least one other �rm actively producing the same product
rises. Accordingly, to make pro�ts, a �rm must lower its price. In the limit, each
�rm considers it extremely likely that there is at least one other active competitor.
Bertrand competition comes into e�ect and the resulting equilibrium is such that each
�rm charges a price that is equal to the perfectly competitive price.

Expected pro�t for one �rm can be found using the pure strategy pro�t from
charging p = v, and is, since the �rm is active with probability �,

�i = �(1 � �)N�1v: (7)

Note that individual pro�t is declining in N and its sum2 is equal to

N�(1 � �)N�1v; (8)

Let �a denote expected industry pro�t given that at least one �rm is active. The
pro�t in equation (8) can be written as

NX
i=1

�i = N�(1 � �)N�1v = (1� �)N (0) + [1� (1� �)N ]�a; (9)

2Note that although the pro�ts of the di�erent �rms are not independent, the expected pro�ts
are, so this summation is legitimate.
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yielding

�a =
N�(1 � �)N�1v

1� (1� �)N
: (10)

To see how industry pro�t changes with N , note that after some algebra,

d�a
dN

=

"
(1� (1� �)N ) +Nlog(1 � �)

(1� (1� �)N )2

# h
�(1� �)N�1v

i
(11)

a derivative which is well-de�ned even though only integer values of N have an eco-
nomic interpretation. The sign of expression (11) is the sign of

1� (1� �)N +Nlog(1 � �): (12)

For N = 1, expression (12) becomes �+ log(1��), which is negative because � < 1.
For larger N , expression (12) becomes even more negative, because its derivative is
�(1� �)N log(1 � �) + log(1 � �) = log(1 � �)[1 � (1� �)N ] < 0. Thus,

d�a
dN

< 0; (13)

and pro�ts fall as the number of �rms increases.

We can say more. The second derivative can be written, after several steps of
algebra,3 as

d2�a
dN2

=
(1� �)N�1log(1 � �)

[1� (1� �)N ]2

(
1 +

Nlog(1 � �)[1 + (1� �)N ]

1� (1� �)N

)
: (14)

The �rst term of this last expression is negative because log(1 � �) is negative. The
second term has the same sign as

1� (1� �)N +Nlog(1 � �)[1 + (1� �)N ]: (15)

We already found that for all N , expression (12) is negative, i.e.,

1� (1� �)N +Nlog(1 � �) < 0: (16)

The expression in (16) is negative, and [1+(1��)N > 1, so Nlog(1��)[1+(1��)N

is more negative than Nlog(1� �), so expression (15) must be negative if inequality
(16) is true. Hence, since both terms of the last expression in (14) are negative, their
product must be positive, and we can conclude that

d2�a
dN2

> 0: (17)

3xxx This algebra is shown at the end of the working paper as an appendix for referees and other
interested parties.
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This means that pro�ts are convexly decreasing in the number of �rms in the industry,
so the shape shown in the numerical examples graphed in Figure 1 would be found
for any example.

3. Extensions and Interpretations

The analysis of Section 2 is quite robust to alternative speci�cations. In partic-
ular, we can easily extend the argument to (i) more general demand structures, (ii)
di�erent product qualities, and (iii) sequential pricing.4

(i) More general demand structures

In Section 2, demand was assumed to be equal to one unit for all prices smaller
than v and zero otherwise. In Section 3, demand was assumed to be linear. Here,
we will consider a more general demand function, which we denote by D(p). For
simplicity we will restrict ourselves to the case N = 2. We will impose one condition
on this demand function, namely that pD(p) is increasing in p for p � pm , where pm
is the monopoly price. Most demand function that are commonly employed satisfy
this condition. It is satis�ed, for example, if pD(p) is concave in p.

Assumption 4.1. The function pD(p) is increasing and di�erentiable on [0; pm).

For general demand functions, the expected pro�t of �rm 1 when �rm 2 chooses
a price according to the cumulative mixed strategy distribution F2(p) is given by

�(p1; F2(p)) = (1� �)p1D(p1) + �(1� F2(p))p1D(p1): (18)

A necessary condition for an equilibrium in mixed strategies with continuous
support to exist is that on a certain domain of prices

[(1� �) + �(1� F2(p1))][D(p1) + p1D
0(p1)]� f2(p1)p1D(p1) = 0: (19)

One can show that the solution to this di�erential equation is given by

4One extension we will not attempt here is to risk aversion. The model can, however, illustrate
in a simple way the intuition for the result of McAfee and Macmillan (1987) that the seller in an
auction can bene�t from the risk aversion of the buyers and their lack of precise knowledge of how
many bidders are active. In the present model, a seller who charges below B, the lower bound of
the support of the mixing distribution, will win the customer with certainty, and still earn a pro�t.
A risk-averse seller would wish to take advantage of this, and would tend to push down the prices
charged. A high price is a gamble in the hope that other �rms are inactive or are themselves charging
high prices, so risk aversion tends to reduce prices.
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F2(p) =

8>>>>>><
>>>>>>:

0 if p � p

1
�

h
1� (1��)pmD(pm)

pD(p)

i
if p < p � pm

1 if p > pm

(20)

A similar solution holds for Firm 1. It is clear that (20) is similar to (20) and the
results of the basic model generalize to more general demand functions. Note that
from the solution for Fi(p) it is clear why we have to impose a condition on demand:
A necessary and su�cient condition for Fi(p) to be increasing in p is that pD(p) is
increasing in p for all values of p smaller than pm . In the present case it is impossible
to provide an explicit solution for the domain of prices over which a �rm randomizes.
It is clear that the upper bound is given by pm. This is because even if the other �rm
does not exist, it is not optimal to set a higher price. The lower bound of the domain,
denoted by p , is de�ned implicitly by the condition pD(p) = (1 � �)pmD(pm) As
pD(p) is increasing in p for p < pm, p is uniquely de�ned in this way. Industry pro�ts
may be calculated as in the previous section and equal

�a =
N�(1� �)N�1pmD(pm)

1� (1� �)N
: (21)

(ii) Di�erent product qualities

So far we have considered the situation that two (or more) �rms do not know
how many competitors they have. An alternative interpretation of the basic model is
that the �rms do not know whether consumers consider the products they produce
as perfect substitutes or not. To focus ideas and to show that the basic model can
be used as a building block for models that analyze di�erent topics in industrial
organization, let us suppose two �rms can produce di�erent qualities of the same
product. They know the quality they themselves produce, but they do not know
the quality the competitor produces. In addition, the consumer also does not know
which quality the �rms produce. For simplicity, let us consider the case in which
producers can produce either low (L) or high (H) quality. For any of the two �rms,
the following is true: consumers and the other �rm believe with probability � that
the �rm produces low quality. As the production capacity is already installed, �rms
are assumed not to make any choice regarding the quality of their product. Low and
high quality incur constant marginal production costs of cL and cH , with cH > cL > 0.
Firms only choose prices.

Let us consider the case in which a consumer buys one unit of a product: if he
buys the high quality, he does not buy the low quality and vice versa. He derives
utility of vi � p from consuming quality i; i = L;H, where p is the price he pays for
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the product he buys. The consumer maximizes utility. In particular, if the consumer
somehow can infer the quality of the products he he will buy the high quality good
if and only if vH � pH > vL � pL , where pH and pL are the prices charged by the
two types of �rms. For convenience, assume that vL > cH . A special case of the
present model, is one in which vH = vL . This case can be interpreted as Bertrand
competition with �rms not knowing of each other whether they have low or high
marginal cost (cf., Spulber, 1995).

There are several types of equilibria in the present model. We mainly consider
the case cH � cL > 2(vH � vL) and show that a continuum of separating equilibria
exists, each of which has a structure similar to the one considered in the previous
models. As it is not the purpose of the present paper to give a full characterization of
the possible equilibrium con�gurations of the present model we just mention that in
case cH � cL < 2(vH � vL) , the equilibrium may be separating, partially separating,
or pooling, depending on the parameters.

For convenience, we consider the following two restrictions on the out-of-equilibrium
beliefs. First, if a consumer observes an out-of-equilibrium price below cH , he knows
that this price is set by a low-quality �rm, because a high-quality �rm that maximizes
pro�ts would never set such a price. Thus, we impose the belief that P (� = Ljp) = 1
for all p < cH . (Note that this is implied by the Intuitive Criterion of Cho & Kreps
(1987) Second, if a consumer observes an out-of-equilibrium price above cH , it does
not know whether it is set by a high or a low-quality �rm. It seems reasonable, how-
ever, to impose that the consumer has the same beliefs no matter which price above
cH is observed, i.e., P (� = Ljp) = �0 for all p > cH .

Proposition 2. Suppose cH � cL > 2(vH � vL). For any given level of �0 > 0, there
exists a continuum of equilibria, indexed by �, where � 2 [0; �0(vH � vL)), in which

pH = cH + �

F (pL) = 1
�

h
1� (1� �)

�
(cH+��cL)�(vH�vL)

pL�cL

�i (22)

for (1� �)[cH + � � (vH � vL)] � pL � cH + � � (vH � vL).

Proof. First, we calculate the expected pro�t of the low-quality �rm in equilibrium.
When this �rm sets a price pL � cH + � � (vH � vL) it is certain that the consumer
will buy from it when the other �rm produces high quality. Hence, its expected pro�t
is

�(pLjFL(p)) = (1� �)[(pL � cL) + �(1 � FL(pL))(pL � cL)]: (23)

Substituting the expression for FL(pL) given in Proposition 2 yields

�(pLjFL(p)) = (1� �)[(cH + � � cL)� (vH � vL)]; (24)

which is strictly positive.
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There are several ways in which the low-quality �rm could deviate.

(a) Deviating to a price smaller than (1 � �)[cH + � � (vH � vL)] makes the
consumer buying the product for sure, but it yields strictly smaller pro�ts.

(b) Deviating to a price in between [cH + �� (vH � vL)]and cH is not pro�table,
because the consumer will infer that it is a low quality product and will not buy it.

(c) The �rm could deviate by setting pL in the interval [cH ; cH + �). Given the
out-of-equilibrium beliefs we speci�ed, the consumer thinks that there is a probability
of a that the good is of a low quality. Thus, the payo� the consumer derives from
buying at this price is �0vL+(1��0)vH � pL. If the other �rm is a high-quality �rm,
it would set a price of cH + � and the consumer derives a payo� of vH � cH � � from
buying at this price. As � is smaller than �0(vH � vL) , the last expression is always
larger than the �rst. Similarly, if the other �rm happens to produce low quality, the
maximum price it will charge is cH + � � (vH � vL) and the consumer's payo� from
buying at such prices is larger than or equal to vL� [cH+��vH�vL)], which reduces
to vH � cH � � . Thus, the consumer is always better o� buying from the other �rm
and will not buy at a price in the interval [cH; cH + �). Hence, it is not bene�cial to
deviate to such a price.

(d) The low quality �rm could deviate by setting its price equal to cH + � . The
consumer will think that the price is set by a high quality �rm and will to choose to
buy from the low quality �rm with probability 1=2 if the other �rm produces high
quality and sets its equilibrium price. Accordingly, the payo� of deviating in this way
is equal to (1 � �)(cH + � � cL)=2 . This is smaller than the equilibrium payo� if
2(vH � vL) < cH + � � cL . Given the condition in the proposition, this is the case
for all values of �.

(e) The low quality �rm could set a price pL > cH+� . This is a situation similar
to (c), the only di�erence being that the �rm considers charging even higher prices.
Following the argument under (c), it is clear that the consumer will not buy at such
a high price. Accordingly, the low quality �rm is not better o� deviating from its
equilibrium strategy.

Let us now consider the high-quality �rm. In equilibrium, the expected payo�
of this type of �rm is given by ��=2 . We consider two possible deviations.

(a) A deviation to a price pH � cH yields a non-positive payo� and is therefore
not undertaken.

(b) For a deviation to a price pH such that either cHN < pH � cH + � or
pH > cH + �, we can give an identical argument as above under (c) and or (e): the
consumer will not buy at this price and, hence, this deviation leads to a lower payo�.

We can conclude that it is not pro�table for any type of �rm to deviate from
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their equilibrium strategies. Q.E.D.

The mixed strategy distribution of the low quality �rm has the same structure
as the mixed strategies we have encountered before. This becomes apparent if we
recall that earlier we have assumed that the cost of production is zero (set cL = 0)
and that the maximum price a �rm can set is not anymore given by v, but by the
price the �rm can set to distinguish itself from a high quality �rm, i.e., replace v by
cH + � � (vH � vL) . If we substitute these values into the expression of the mixed
strategy equilibrium, we have the same expression as in Section 2.

Observe that the more the consumer believes that out-of-equilibrium prices are
set by high quality �rms (the smaller �0), the more competitive the industry and the
lower the prices set in equilibrium. Following the same logic as above we can argue
that if �0 = 0 , a unique separating equilibrium exists in which the high quality �rm
set a price equal to its marginal cost.

(iii) Sequential Decisionmaking

In this last extension, N �rms submit bids publicly in sequence from Firm 1 to
Firm N , rather than simultaneously.

First, consider what happens in the Bertrand model with no uncertainty| the
special case of � = 1. There are two classes of equilibria.

In the �rst class of equilibrium, at least one of the �rst N�1 �rms chooses p = 0,
and consumers buy from �rms charging p = 0. Pro�ts are zero, and the outcome is
the same as in the simultaneous Bertrand model.

In the second class of equilibria, the �rst N � 1 �rms choose prices in a set with
minimum pmin > 0 and the last �rm chooses pN = Minfpmin; vg. The consumers all
choose to buy from �rm N . Pro�ts are zero for all �rms except Firm N , which has
positive pro�t.

The second class of equilibrium is counter-intuitive. For concreteness, consider
the particular member of the class in which all �rms o�er the price v. None of the �rst
N �rms have any incentive to deviate. If a �rm deviates to p = 0, his pro�t remains
zero. If a �rm deviates to any price between 0 and v, Firm N will respond with
the same price and capture the market, so the deviating �rm's pro�t remains zero.
Firm N clearly has no incentive to deviate. And the consumers have no incentive to
deviate because all �rms charge the same price.

This is, to be sure, a weak Nash equilibrium, which is why it is counterintuitive.
No Nash equilibrium exists, however, in which consumers are not indi�erent about
where they buy, and in which more than one �rm earns positive pro�ts. This is
the standard open-set problem; if consumers did not follow this behavior, the last
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�rm would choose to undercut its lowest competitor by an in�nitesimal amount and
gain the entire market.5 It seems reasonable, however, to prefer an equilibrium in
which players behave symmetrically, when such an equilibrium exists, and with that
assumption, the only equilibrium is the symmetric one in the �rst class with p = 0
for all �rms, and consumers evenly divided among them.

Next, consider the Bertrand model in which each �rm is active only with prob-
ability �. The last active �rm will undercut any previous �rm in the sequence that
has o�ered p > 0. Thus, if any later �rm in the sequence is active, the earlier �rms'
payo�s will all equal zero regardless of their bid. If no later �rm is active, an early
�rm will win the market, and might as well bid p = v. Since if � < 1 there is a posi-
tive probability that all later �rms will be inactive, every �rm bids p = v. Consumers
buy from the last �rm bidding, again, to resolve the open-set problem.

The properties of the equilibrium in the sequential model are somewhat bizarre.
Even a tiny amount of uncertainty reduces a continuum of equilibria to a unique
equilibrium. Moreover, the most plausible level of pro�ts rises from zero to the
monopoly level.

What this illustrates is the tremendous power of open-cry auctions in reveal-
ing information. When there is no uncertainty, this does not make much di�erence.
When there is uncertainty about the number of �rms, however, the open-cry auction
resolves that uncertainty, giving the last bidder, in particular, a tremendous advan-
tage. Earlier bidders know they cannot overcome that advantage, so their only hope
is that no later bidders will be active.

The sequential Bertrand model is, of course, not a typical open-cry auction,
because the sequence of bidding is predetermined and each �rm only gets one bid. In
the classic English auction, each bidder can bid as often as he wishes. In the present
context, this would result in a winning bid of p = 0 if at least two �rms are active,
whatever the value of � may be.

The caveat \if at least two �rms are active", however, is important. With prob-
ability N(1 � �)N�1�, only one �rm is active and the winning bid will be p = v.
The expected industry pro�t is therefore N(1 � �)N�1�v, exactly the same as the
pro�t given by equation (8) in the simultaneous game! This is the same result found
in McAfee & Macmillan (1987). From the point of view of the buyer, the English
auction has the advantage of pitting bidders against each other head to head, but the
disadvantage of letting a bidder know if he has no competition. As a result, the En-
glish auction has much greater risk, and a risk-averse buyer would prefer simultaneous
bids.

5See p. 103 of Rasmusen (1994) for a discussion of the open-set problem. Note that the �rst
edition of that book does not contain any discussion of it.
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4. Comparing Bertrand and Cournot

The dichotomy between competition in quantity and competition in price has
existed for over a hundred years. Cournot (1838) proposed a model in which N �rms
simultaneously choose quantities and let the market determine the price. Bertrand
(1883) pointed out that entirely di�erent conclusions result if the �rms choose prices
simultaneously instead. Even though price competition seems to yield a more rea-
sonable model, the quantity model gives more accurate outcomes. In this section, we
will show that this feature of the Bertrand model disappears when uncertainty about
the presence of competitors is taken into account.

To compare Bertrand and Cournot oligopoly, we use a simple linear demand
function:

p

 
NX
i=1

qi

!
= a� b

NX
i=1

qi: (25)

Let us de�ne q(p) as the demand facing a monopolist at a price of p, so

q(p) =
a

b
� p

b
: (26)

The monopoly price equals a=2 and quantity demanded is then a=2b,

What we will do in this section is to compute the expected pro�ts from Cournot
and Bertrand for di�erent levels of N , to obtain some idea of the e�ects of concen-
tration in each.

Bertrand equilibrium

As we have seen above, the industry pro�ts in the Bertrand model with uncer-
tainty are given by

�bertrand =
N�(1� �)N�1 a2

4b

1� (1� �)N
: (27)

Thus, adding uncertainty eliminates the discontinuous behavior of the original
Bertrand model. Pro�ts are positive, but the expected price and pro�ts decrease
smoothly in the number of �rms, as in the Cournot model that we will next analyze.

Cournot Equilibrium

Now let us compute the Cournot equilibrium. Let q� be the Cournot output we
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are trying to determine. Then,

�i(qi) = �N�1[p(qi + (N � 1)q�)]qi + (1� �)�N�2[p(qi + (N � 2)q�)]qi

+(1� �)2�N�3[p(qi + (N � 3)q�)]qi + :::

=
PN�1

j=0 (1� �)j�N�j [p(qi + (N � j)q�)]qi

(28)

The �rst order condition is

d�i(qi)
dqi

=
PN�1

j=0 (1� �)j�N�j [�bqi + a� b(qi + (N � j)q�)] = 0

=
PN�1

j=0 (1� �)j�N�j [a� b(N � j + 2)q�]

=
�PN�1

j=0 (1� �)j�N�j
�
a�

�PN�1
j=0 (1� �)j�N�j(N � j + 2)

�
bq�;

(29)

so

q� =

�PN�1
j=0 (1� �)j�N�j

�
a�PN�1

j=0 (1� �)j�N�j(N � j + 2)
�
b

(30)

Note that if � = 1, this boils down to q� = a
(N+1)b . Adding incomplete information

makes no great di�erence to the Cournot model. If some �rms might not be active,
each active �rm produces somewhat more than it would have otherwise, but there is
no qualitative shift in the equilibrium.

From the quantity we can get the expected pro�t conditional upon there being
at least one �rm in the market.

�Cournot =
N+1X
j=1

 
(1� �)N�j�j

1� (1� �)N

!
p(jq�)jq� (31)

Note that equation (31) is conditional upon N � q� not being so large as to drive the
price to zero, which might rationally happen, since a �rm would be willing to accept
a price of zero occasionally as the result of all N �rms coincidentally being active and
producing a large amount.

Comparisons

Pro�ts are positive but fall with the number of �rms in both the Bertrand and
Cournot equilibria. The question is how fast pro�ts fall. This is best seen with a
numerical example. Let a = 110, b = 1, and N = [0; 7] for � = 1 and � = :9. Table
1 and Figures 2 through 4 show the levels of pro�ts. Table 1 consists of industry
pro�ts under the Bertrand and Cournot models with certainty and with � = :9, and
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its numbers are repeated graphically in Figure 2. Figures 3 and 4 show how the
pro�t/concentration relationship changes for di�erent values of � in the two models.6

Number of
 Firms (N)

Bertrand,     =.9 Cournot,     =.9

Cournot,  no
uncertainty      =1

1
Bertrand, no uncertainty
   =1 2 3 4 5 6 7

0

5

10

15

20

25

Industry
Profits

Bresnahan-Reiss
     (Table 3)

α

αα

α

Figure 2: Bertrand and Cournot Pro�ts

Consider �rst the Cournot model. Table 1 and Figure 2 show that a small amount
of uncertainty makes little di�erence in the Cournot model, though, oddly enough,
industry pro�ts actually fall when the expected percentage of active �rms declines.
Under Cournot competition, a �rm expands its output when it expects fewer rivals
to be helping push down the price. Uncertainty over the number of rivals ends up
increasing average output and reducing pro�ts, a peculiar result. Figure 3 shows that
this is a very delicate conclusion. For N > 3, pro�ts rise when � falls from 0.4 to 0.1,
but also rise when � rises from .4 to .7, but the comparative statics can switch if N
is smaller. Conicting forces are at work in Cournot equilibrium, and the net result
is sensitive to the particular assumptions of the model.7

6In every case, expected industry pro�ts are conditional upon at least one �rm being active.
When � = 0, this is to be interpreted as the probability zero (but possible) event that one �rm is
active and the expected number of other �rms is zero.

7The result is reminiscient of the peculiarities of pro�t per �rm in the Cournot model, which can
(but not always) give rise to an incentive for a Cournot �rm to split in two to increase its pro�ts.
See Salant, Switzer, and Reynolds (1983) for that e�ect.
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Number of Firms N 1 2 3 4 5 6 7

Bertrand, � = 1 25.0 0.0 0.0 0.0 0.0 0.0 0.0
Bertrand, � = :9 (eq. (27)) 25.0 5.6 0.9 0.1 0.02 0.003 0.0003

Cournot, � = 1 25.0 22.2 18.8 16.0 13.9 12.2 10.9
Cournot, � = :9 (eq. (31)) 25.0 19.6 15.0 11.6 9.1 7.3 5.8

Table 1: Industry Pro�ts for Di�erent Concentration Levels8

Uncertainty is much more important in the Bertrand model, and the comparative
statics are more consistent and intuitive. Table 1 and Figure 2 show that a small
amount of uncertainty changes the Bertrand model in a small but crucial way, because
pro�ts do become positive and monotonic in the number of �rms. The sharp fall in
pro�ts moving from monopoly to duopoly under certainty is not so unreasonable as it
looks. It is extreme, but it is a limiting result as � goes toone, as Figure 4 illustrates.
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(N)1 2 3 4 5 6 7
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25Industry
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  no uncertainty,
       =1.0
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α
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α
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=0.7
=0.1

=0.4

α

Figure 3: Cournot Pro�ts For Di�erent Probabilities of Activity � and
Numbers of Firms N

(conditional on at least one �rm being active)

8Numerical calculations and �gure-drawing used Mathematica. Values are rounded.
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Figure 4: Bertrand Pro�ts For Di�erent Probabilities of Activity � and
Numbers of Firms N

(conditional on at least one �rm being active)

Let us also consider the shape of the pro�t-concentration paths. All the curves
in Figures 2 through 4 have convex shapes, if only weakly in the limiting cases, but
the curvatures, and therefore the empirical implications, are di�erent. As Figure 4
and Table 1, in particular, show, pro�ts decline much more rapidly in Bertrand than
in Cournot. For the parameters chosen, industry pro�ts fall from the monopoly level
of 25 to duopoly pro�ts of 5.6, triopoly pro�ts of 0.9, and negligible levels thereafter.
Cournot pro�ts show a much more uniform decline as concentration falls.

Comparison of Figures 3 and 4 shows that for smaller values of the activity
probability � the Bertrand pro�t path becomes atter and the Cournot path, per-
haps more curved, but even at extreme values Cournot does not generate such sharp
di�erences from the addition of one �rm to the market.

For most modelling purposes, these models are building blocks, and such subtle
di�erences in the pro�t-concentration path are unimportant. They are interesting,
however, if one wishes to consider Bertrand and Cournot as serious oligopoly models
in their own right. Empirically, then, how do pro�ts react to the number of �rms? Do
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they decline to zero with duopoly and then stay constant, as in the original Bertrand
model? Do they decline smoothly, as either version of the Cournot model would
suggest? Or do they decline rapidly, as the Bertrand model with uncertainty would
suggest?

Measuring the relationship between pro�ts and concentration is an old exercise
now in some disrepute.9 The di�culty is that the usual unit of observation has
been the industry. This is natural enough, since one needs a measurement of con-
centration for each observation. Comparing accounting pro�ts across industries is
fraught with danger, however, since accounting pro�ts di�er from economic pro�ts in
ways that depend on the industry chosen and which are very likely to be correlated
with technology, and hence with concentration. Moreover, it is not clear that the
concentration-pro�ts path is even the same across industries.

A clever recent approach to the same problem is that of Bresnahan & Reiss
(1991). They took the unit of observation to be the market for a particular product
in a particular small town, rather than for many products over the entire United
States, and they looked at market size rather than directly at pro�ts. They collected
data on the size of a town and the number of dentists there, for example. If a town
is very small|say, 500 people|- it will have no dentist, since a dentist incurs a �xed
cost and could not make any pro�t there even as a monopoly. If it grows to 800
people, it will have one dentist, since the pro�ts are enough for monopoly, but entry
by a second dentist would drive them negative. If the town grows to 1,600 people,
however, it may still have only one dentist| if entry by the second dentist would not
just split the industry pro�ts, but reduce them.

Number of Firms N 1 2 3 4 5

Doctors 0.88 1.75 1.93 1.93 1.83
Dentists 0.71 1.27 1.39 1.36 1.28
Druggists 0.53 1.06 1.68 1.92 1.88
Plumbers 1.43 1.51 1.51 1.55 1.49
Tire Dealers 0.49 0.89 1.14 1.19 1.22

Table 2: Bresnahan-Reiss Entry Thresholds si: Original (1,000's of
inhabitants)10

Bresnahan and Reiss used this approach to estimate the thresholds for entry in

9See pp. 349-366 of Carlton & Perlo� 's 1994 industrial organization text for a good discussion
of the problems of the pro�ts-concentration literature.

10Calculated from Table 5A of Bresnahan & Reiss (1991). Note that the entry of .79 in the second
row of their original paper is a mistake and should be 1.09, and their Figure 4 illustrates si=s5, not
the s5=si in the legend.
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small markets for a number of industries. Table 2 shows these thresholds in thou-
sands of inhabitants per �rm. Table 3 rescales the same numbers to be very roughly
comparable with the numerical example used earlier in this paper.11 The rescaling is
somewhat arbitrary, since the theory of Bresnahan and Reiss is that some quasi-rents
remain to cover �xed cost even when the minimum scale for entry attens out, but it
creates a comparison measure for how the intensity of competition changes with the
number of �rms.

Number of Firms N 1 2 3 4 5

Doctors 25.0 4.3 0.0 0.0 0.0
Dentists 25.0 4.4 0.0 0.0 0.0
Druggists 25.0 15.5 4.3 0.0 0.0
Plumbers 25.0 8.3 8.3 0.0 0.0
Tire Dealers 25.0 11.3 2.7 1.0 0.0

Average 25.0 9.6 2.3 0.2 0.0

Table 3: Bresnahan-Reiss Entry Thresholds: Rescaled (25(sm�si)
(sm�s1)

)

What is signi�cant is how pro�ts atten out, even though the choice of 0 as the
at level in Table 3 is arbitrary.12 The empirical result that going from one �rm
to two is much more important than going from two to three, and that full-edged
competition kicks in very quickly matches the Bertrand model with uncertainty very
well, and is inconsistent with the Cournot model.

6. Concluding Remarks

The Bertrand model with uncertainty about the number of competitors is sim-
ple, but its properties are both interesting and useful. the extreme transition from
monopoly to competition found in the standard Bertrand model disappears. Ex-
pected pro�ts are positive, but decline with the number of �rms in the industry, and
decline in a way that empirical work suggest is more realistic than in the Cournot
model. We have tried to show that the model is useful both as a simple decription
of oligopoly and as a building block for other topics in industrial organization, as in
Gwin (1997), and Janssen and Van Reeven 1998).

11Table 3's rescaling uses the following procedure. De�ne the monopoly level of pro�ts in an
industry to be 25, and the competitive level to be 0. Assume that when si reaches its maximum level
sm over [1; 5], the competitive level of pro�ts is reached and any further changes are measurement

error. Apply the conversion formula s�
i
= 25(sm�si)

(sm�s1)
, and Table 3 results.

12Add 9.1 to each entry in Table 3, and the pro�t at N = 5 is 9.1, as with Cournot competition
and � = 0:9 in Table 1, but the shape is still more like that of Bertrand competition.
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Appendix on Convexity

This appendix repeats some of the analysis of Section 2 but includes several more
steps of algebra.

Let �a denote expected industry pro�t given that at least one �rm is active. The
pro�t in equation (8) can be written as

NX
i=1

�i = N�(1 � �)N�1v = (1� �)N (0) + [1� (1� �)N ]�a; (32)

yielding

�a =
N�(1 � �)N�1v

1� (1� �)N
: (33)

To see how industry pro�t changes with N , note that after some algebra,

d�a
dN

=

"
(1� (1� �)N ) +Nlog(1 � �)

(1� (1� �)N )2

# h
�(1� �)N�1v

i
(34)

a derivative which is well-de�ned even though only integer values of N have an eco-
nomic interpretation. The sign of expression (11) is the sign of

1� (1� �)N +Nlog(1 � �): (35)

For N = 1, expression (35) becomes �+ log(1��), which is negative because � < 1.
For larger N , expression (35) becomes even more negative, because its derivative is
�(1� �)N log(1 � �) + log(1 � �) = log(1 � �)[1 � (1� �)N ] < 0. Thus,

d�a
dN

< 0; (36)

and pro�ts fall as the number of �rms increases.

We can say more. The �rst derivative from (11) can be rewritten as

d�a
dN

= �v

(
(1� �)N�1

1� (1� �)N
+

Nlog(1 � �)

[1� (1� �)N ]2(1� �)N�1

)
: (37)

The derivative of this is
d2�a
dN2 = �v

n
[1�(1��)N ](1��)N�1log(1��)+(1��)N (1��)N�1log(1��)

[1�(1��)N ]2 +
[(1��)N�1log(1��)+(1��)N�1Nlog2(1��)][1�(1��)N ]2+2[1�(1��)N ]=f(1��)N log(1��)[N(1��)N�1log(1��)]g

[1�(1��)N ]4

o
:

= (1��)N�1log(1��)
[1�(1��)N ]2

+ (1��)N�1Nlog2(1��)[1�2(1��)N ]2+(1��)2N+2(1��)N�2(1��)2N

[1�(1��)N ]4
:

= (1��)N�1log(1��)
[1�(1��)N ]2

+ (1��)N�1Nlog2(1��)[1�(1��)2N ]
[1�(1��)N ]4

:

= (1��)N�1log(1��)
[1�(1��)N ]2

n
1 + Nlog(1��)[1+(1��)N ]

1�(1��)N

o
:

(38)
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The �rst term of this last expression is negative because log(1 � �) is negative.

The second term has the same sign as

1� (1� �)N +Nlog(1 � �)[1 + (1� �)N : (39)

We already found that for all N , expression (12) is negative, i.e.,

1� (1� �)N +Nlog(1 � �) < 0: (40)

The third term of expression (39) is negative, and [1 + (1 � �)N > 1, so Nlog(1 �
�)[1+(1��)N is more negative than Nlog(1��), so expression (39) must be negative
if inequality (40) is true. Hence, since both terms of the last expression in (38) are
negative, their product must be positive, and we can conclude that

d2�a
dN2

> 0: (41)

This means that pro�ts are convexly decreasing in the number of �rms in the industry,
so the shape shown in the numerical examples graphed in Figure 1 would be found
for any example.
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