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Abstract. In this paper we will describe a Multi-Agent System which is capable
of finding a feasible solution of a specially structured linear programming problem.
Emphasis is given to correctness issues and termination detection.

1 Introduction

In this paper we will describe a Multi-Agent System which is capable of finding a feasible
solution of a specially structured linear programming problem. As our objective is to solve
a simple LP problem using agents, first, we will indicate what we mean by the notion of
an agent. A number of frameworks have been proposed, examples of these are Agent0 [4],
KQML [3] and Agent-K [2]. Although different frameworks have quite different assump-
tions about the nature of agents, the following features seem fundamental: (i) an agent is an
active and autonomous object with state, goals, knowledge and actions; an agent takes ac-
tions based on its own state and goals, and communicates with the environment by sending
messages to other agents; (ii) agents communicate with each other by exchanging knowl-
edge, i.e., agents do not only pass service requests and replies, they also pass knowledge in
some declarative form; (iii) an agent is associated with a process, it can interact with other
agents and its knowledge state may change; other agents can query the agent to obtain in-
formation on a state in the process; (iv) a group of agents typically exhibits some forms of
human-like behavior, such as commitments, negotiations and mediations.

In this paper, we will describe an agent based method for finding a feasible solution
for a simple linear programming problem. The agents will try to solve, that is, try to find a
feasible solution to, the following problem.
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The agents are trying to satisfy a single global constraint (
PK

i=1 ci
T
xi = b0), and each

of them has to satisfy certain local constraints (Dixi = bi). In the remainder of this paper
it is assumed that each equationDixi = bi has a solution.

The set of equations can be seen as a mathematical representation of a planning problem
in a decentralized organization. The blocksDixi = bi (i = 1; : : : ;K) could be associated
with K divisions of the organization. The vectorxi represents the activities of the division.
The local constraintsDixi = bi refer to the constraints of the division, e.g. capacity con-
straints. The global constraint
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i=1 ci
T
xi = b0 refers to the interdependencies between

the divisions, e.g. common use of a scarce resource.
P

i ci
T
xi can be seen as the value of

the resource, andb0 can be seen as the available amount of the resource.
The most natural way for decomposing the problem(P ) is to represent every division

by an agent. The value of the scarce resource used by an agent is denoted by�i. The
simplicity of the problem lies in the fact that this value can be represented by a scalar. The
problem(P ) can now be reformulated as:

(P 0)
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i �i = b0
�i 2 Si = f� : ci

T
xi = �;Dixi = big

The regionSi is called the feasible region for�i, i.e., the values of the scarce resource
(ciTxi) for feasible activitiesxi.

The problem is solved by letting the agents exchange parts of their scarce resource until
each agent has a feasible value for it.

Before we start discussing how the agents will communicate and solve the problem, we
first describe the model of agents used in this Multi-Agent System.

2 Model of an Agent

As stated in the previous section, the most natural way for decomposing the problem(P )
is to represent each blockxi by an agent. We also stated that an agent is some object with
goals, state, knowledge and actions. Furthermore, an agent is associated with a process and
it has some human-like behavior. We will now describe the agents used in this paper in
terms of these features.

Goals Agents are trying to satisfy a single global constraint (c1
T
x1+: : :+cK

T
xK = b0),

but each of them has to satisfy certain local constraints (Dxi = bi).

State The essential part of the state of an agent can be either of the two values below:

1. feasible: if the agent has found a feasible solution to its subproblem (Dixi = bi).
2. not-yet-feasible: if the agent has not (yet) found a feasible solution to its subproblem.

KnowledgeThe idea is to let an agent know as little about the other agents as possible. So
it should not know, how much the total amount of the scarce resource is and it should not
know what the states of the other agents are. What an agent does know, is how much it uses
of the scarce resource, so what its value for�i is and it also should know what the feasible
region,Si is for its �i. It is easy to see thatSi equals the closed interval[mini;maxi]

1,
with

mini = minfci
T
xijDixi = big (1)

maxi = maxfci
T
xijDixi = big (2)

1 Let xi = argmaxfci
TxijDixi = big and letyi = argminfci

TxijDixi = big. Choose a
�i 2 [mini;maxi] and define� as�i = mini+�(maxi�mini) and letzi = xi+�(yi�xi).
ObviouslyciT zi = �i andDizi = bi, so�i 2 Si andSi = [mini;maxi]. The reader is invited
to adapt this line of reasoning to the casesmini = �1 andmaxi =1.
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Notice that this only holds ifDixi = bi has a solution. Notice furthermore thatmini =
�1 andmaxi =1 are possible.

Actions Agents will be able to perform two types of actions. The first type is an “internal”
action, which does not influence other agents. This type of action includes computing the
above defined valuesmini andmaxi. For any value of�i agents will be able to compute a

feasible solution forxi in

�
ci
T
xi = �i

Dixi = bi
, if this solution exists, or to determine that there

does not exist a feasible solution.
The second type of actions consists of actions that will influence other agents. These

actions are communicative actions and will be discussed in subsequent sections.

Behavior As said in the previous section, a group of agents exhibits some human-like
behavior. In our system, every agent is the same, so every agent exhibits the same human-
like behavior.

The first is negotiating: agents will negotiate with each other about how much of the
scarce resource they may use. Secondly, agents are benevolent: when they receive a request,
they will help the other agent within their ability. A third human-like behavior is their
commitment: if an agent offers a part of its part of the scarce resource, it will reserve this
part until the other agent has accepted or rejected the offer (see, e.g. [5]).

With this model of an agent in mind, we show how the agents will find a feasible solution
to the problem, if there exists one. In the following section we describe the base algorithm.
In Section 4 we will turn our attention to termination detection, more specifically we will
discuss how to detect feasibility/infeasibility. The last section gives conclusions and indi-
cates further research.

3 The base algorithm

In this section we will describe the method the agents use to arrive at a feasible solution if
there exists one. The discussion of the previous sections shows that it is sufficient to solve
the problem

(P 00)

PK
i �i = b0

�i 2 Si = [mini;maxi];

wheremini = �1 andmaxi =1 might be possible.

3.1 Transactions

The problem will be solved by the agents through performing (in parallel) a sequence of
transactions. A transactiontransaction(i,j)between agenti and agentj is set up if agenti
wants to change its value of�i. First of all agenti sends a message to agentj specifying
by which amount it wants to change this value.

In the reply to such a request, agentj specifies whether or not it can accept it. As we
assume that agents are benevolent, agentj will always (partially) accept the request, if this
will make its own situation better (that is, the distance between�j andSj will decrease) or
if its own situation stays the same (that is,�j remains inSj). If a request is accepted, the
agent will also specify how much of the request is granted.

Notice, that both the request from agenti to agentj and the reply back are part of one
transaction, i.e. they constitute a single, uninterruptable action.

We now give the code of the request part oftransaction(i,j), i.e. the algorithm executed
by agenti. The agent will always ask for the minimum amount it needs to get into its
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feasible region. After sending the request, it will wait for the answer and if it receives a
positive reply, the agent updates its internal values. See Figure 1.

I1. (a) if �i < mini then� = mini � �i
(b) if �i > maxi then� = maxi � �i

I2. sendrequestfor � to j
I3. receivereply, �0

I4. update internal values:
if request not rejectedthen

�i = �i +�0

if �i 2 Si then statei = feasible

Fig. 1. The request part oftransaction(i,j)

We continue with the code of the reply part oftransaction(i,j), i.e. the algorithm
executed by agentj. When agentj receives the request, it will evaluate this request and
send a reply. A request will either be rejected or (partially) accepted. It is rejected only
if accepting the request will increase the distance between�j andSj . If the request is
accepted, the return value will be as good as possible, that is, if the request is to decrease
�j , the decrease is not more than�j � minj , and if the request is to increase�j , the
increase is not more thanmaxj � �j . See Figure 2.

/* a requestfor � has been received */
P1. evaluate:

(a) if � > 0 and �j � minj then reject
(b) if � < 0 and �j � maxj then reject
(c) if � > 0 and �j > minj then�0 = min(�;�j �minj)
(d) if � < 0 and �j < maxj then�0 = max(�;�j �maxj)

P2. sendanswer:
if request rejectedthen reply rejected
elsereply�0

P3. update internal values:
if request not rejectedthen

�j = �j ��0

if �j 2 Sj then statej = feasible

Fig. 2. The reply part oftransaction(i,j)

Next, we describe the main algorithm. As stated before, this algorithm will be realized
by pairs of agents executing the transactions described above. These transactions will be
executed in parallel, i.e. different pairs of agents will be active at the same time.

However, because transactions are uninterruptible, and because in a transaction only
local values of the participating agents are being used, any execution of this parallel algo-
rithm is equivalent with an interleaving. This enables us to give a much more perspicuous
proof of its correctness. The possible interleavings are defined by the algorithm in Figure 3.

A short explanation is in order. The notation is inspired by the UNITY-approach, cf.
[1]. The algorithm consists of two parts. First, the agents are initialised. They acquire a
�i, such that all these values sum tob0. Furthermore the agents decide whether this value
makes their statefeasibleor not-yet-feasible, by determining whether�i 2 [mini;maxi].

The main part of the algorithm is a loop. Each iteration of this loop consists of
nondeterministically choosing a pair(i; j) where the state of agenti is not-yet-feasible,
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init < for all i ::

�
�i = anythingj

P
i
�i = b0

statei = computestate
>

loop< choose i; j : statei = not-yet-feasible:: transaction(i,j)>

Fig. 3. Main algorithm

and executingtransaction(i,j). The nondeterminism is supposed to be fair, that is, it
will not occur that atransaction(i,j) is infinitely long enabled (the state of agenti is
not-yet-feasible) and never chosen. Notice that this loop will only terminate if all agents
reach statefeasible. In the next subsection we will prove that if there exists a feasible
solution, it will be found. On the other hand, as it stands now, if there does not exist a
feasible solution to the problem the algorithm will not terminate.

In this paper we will assume that our agents will be able to perform a parallel calculation
that is adequately described by the interleavings given by Figure 3. We will not dwell on
how the agents implement transactions or how the fairness restrictions are realized.

3.2 Correctness of the base algorithm

Now that we have defined how communication between agents proceeds, we will show
that this Multi-Agent System will always find a feasible solution if there exists one. This is
stated in the following theorem.

Theorem 1. If there exists a feasible solution to problem(P 00), then the Multi-Agent Sys-
tem as defined above, will find one.

To prove this theorem, we will first state and prove an invariant and prove some
lemma’s. The invariant is that the sum of the�i’s will always be equal tob0. To see this,
first note that, when the system is initialized, the�i’s are chosen such that

PK

i �i = b0.
The only occasions, when a�i changes, is when there has been an acceptance of a request.
In this case�i will increase by some amount� and for onej, �j will decrease by the
same amount, so the sum of these two�’s will stay the same, and

PK

i=1 �i will remain
unchanged.

Let P be an assertion. We callP a semi-invariantof a computation if its value cannot
change fromtrue to false during that computation. A semi-invariant is therefore an asser-
tion that, oncetrue, will remain so forever. The difference with a usual invariant is that it
is not necessarilytrue at the beginning of the computation.

Lemma 1. The properties�i � mini and�i � maxi are semi-invariants.

Proof. �i only changes through an accepted request. Suppose that�i � mini before this
request.

Case 1Agent i is the sender of the request. Then the requested amount ismaxi � �i
(Step I1) and by Step P1d we know that for the accepted amount�0 it is true thatj�0j �
j�j = �i � maxi. Thus the new value of�i after the acceptance is��i = �i + �0 =
�i � j�0j � �i � (�i �maxi) = maxi � mini.

Case 2Agent i is the receiver of the request. If the request was to decrease its�i
(Step P1c) then the value after the update will be��i = �i � min(�;�i �mini) � �i �
(�i�mini) = mini. If the request was to increase its�i (Step P1d) then for the new value
we have��i > �i � mini.

The proof for the property�i � maxi is analogous.

As a corollary of this Lemma, it follows that once an agent has statefeasible, it will
always remain feasible.
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Corollary 1. The propertymini � �i � maxi is a semi-invariant.

Lemma 2. If there exists a feasible solution to(P 00), then for each agent that has statenot-
yet-feasible, there exists an agent that will (partially) accept a request sent by the agent with
statenot-yet-feasible.

Proof. Suppose agenti has statei = not-yet-feasible, i.e. �i 62 Si. Suppose�i < mini,
then for some agentj to be able to accept a request from agenti, it must be true that
�j > minj (Step I1 and Step P1c). Suppose there does not exist such an agentj, then for
all agentsj it must be true that�j � minj . Thusb0 =

PK

i �i <
PK

i mini, and there
does not exist a feasible solution for(P 00).

Notice that, due to the fairness of the choice of pairs(i; j) in our main algorithm (Fig-
ure 3) we obtain the following

Corollary 2. If there exists a feasible solution to(P 00), then each agent that has state
not-yet-feasible, will eventually execute a succesful transaction, i.e. a transaction with an
accepted request.

So, now we know that, if there exists a feasible solution, as long as not all agents are
feasible, progress will be made. In the sequel we show that such progress will proceed
in steps that are sufficiently large to guarantee termination. We will do this by a standard
well-foundedness argument. To this end we define the following values:

nfeas = number of agents in statefeasible
nbound= number of agents with�i 2 fmini;maxig

d =
PK

i=1max(0;mini � �i; �i �maxi)

d can be seen as the total distance from finding a feasible solution, as for each agent
i max(0;mini � �i; �i � maxi) denotes the distance between�i andSi. Obviously a
feasible solution has been found ifd = 0. Another way to know that a feasible solution is
found is whennfeas= K.

The next lemma says that in each successful transaction the number of agents in state
feasiblewill increase, or else the number of agents with�i 2 fmini;maxig will increase,
or else the distanced will decrease with at least�, where� = minfmaxi �minijmaxi >

minig is the length of the smallest (non-degenerate) feasible region of the agents.

Lemma 3. After each successful transaction(nfeas; nbound;�d
d
�
e) has lexicographically

increased.

Proof. Case 1Suppose the transaction was between two agents in statenot-yet-feasible.
Then by Step I1 and Step P1, we know that at least one of the two agents will afterwards
be in statefeasible, sonfeashas increased.

Case 2Suppose the transaction was between an agenti, with statei = not-yet-feasible
and an agentj, with statej = feasible. Moreover, suppose that afterwards both agents are in
statefeasible. Thennfeashas increased (although it might be that, if�j 2 fminj ;maxjg,
nbounddecreases.)

Case 3Suppose the transaction was between an agent,i, in statenot-yet-feasible, and
an agent,j, in statefeasibleand that afterwards agenti still is in statenot-yet-feasible.
Then, by Step P1, we know that afterwards it must be true that�j 2 fminj ;maxjg. So, if
at the time the transaction was initiated�j 62 fminj;maxjg, thennboundhas increased.
Otherwise,di = max(0;mini��i; �i�maxi) has decreased by at least�, and thus�dd

�
e

has increased.

Notice that(nfeas; nbound;�d
d
�
e) is a triple consisting of three integers. The set of all

such triples is bounded from above by(K;K; 0). Therefore this set is well founded. The
Lemma above thus guarantees termination.
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4 Termination

Earlier, we remarked that the algorithm will terminate if all agents reach statefeasible.
In the previous section we showed that, if the problem has a feasible solution, then this
termination is guaranteed. Notice that in that case an agent in isolation does not yet know
whether the problem has been solved. A standard algorithm for termination detection (cf.
for instance [1], Chapter 9) can be applied to remedy this.

As it stands now, the algorithm will not terminate if there does not exist a feasible
solution: at least one agent will not reach statefeasible, and therefore it will be scheduled
for unsuccessful transactions forever. In this section we will expand our algorithm to cater
for this.

Suppose problem(P 00) cannot be solved. Then there are two possibilities. Either, at a
certain moment one agent, say agenti, has�i < mini and all other agentsj have�j �
minj , or the dual case holds ‘on the other sides of the intervals[mini;maxi]’. The reader
is invited to check that these are the only possibilities and that such an overall state will
always be reached (the argument is similar to the line of reasoning in Section 3.2.)

Without loss of generality we assume the first option. Because agenti will try all pos-
sible transaction(i,j)’s in a fair manner, at a certain moment it will have participated in
an unsuccessful transaction with all other agents. Let us call thisthe first round. Now it is
tempting to let agenti decide that the overall problem is infeasible. However, in general this
would not be justified: it is quite well possible that after the unsuccessfultransaction(i,j),
agentj might have participated in a successfultransaction(k,j)with the effect that its� has
been incremented to a value�j > minj and that agenti is not aware of this.

The only conclusion that agenti can draw from an unsuccessfultransaction(i,j) is
thatat that moment�j � minj but from this only the semi-invariant�j � maxj can be
inferred (cf. Lemma 1.)

Let us consider the case that agenti, having experienced unsuccessfultransaction(i,k)’s
for all k, now entersthe second round: suppose it tries a secondtransaction(i,j)which
again does not succeed. Again agenti knows that at this moment�j � minj , but now the
stronger conclusion can be derived that from now on forever�j � minj . This can be seen
as follows. Suppose�j changes due to atransaction(j,k)in whichj is the requester. In such
a case�j can never become greater thanminj (cf. Steps I1a, P1c and P3.) The value�j
cannot change in atransaction(k,j)in which j is the receiver because such a transaction
will always fail. Due to the fact that�k � maxk, agentk will request a� > 0 and in
Step P1a agentj will reject this.

Therefore, if in the second round agenti gets a negative answer from all other agents
as well,it knows that�k � mink for all k. Together with�i < mini (our starting point)
agenti now knows that

PK

i �i <
PK

i mini and thus that the problem is infeasible.

This line of reasoning is captured in our extended algorithm given in Figure 4 (only
the code of the request part of a transaction changes). The variablesstatei can now take
a third value, viz.infeasible, indicating that agenti has detected infeasibility. Each agent
needs some auxiliary variables reji[j] for bookkeeping. Initially all reji[j] are 0. After
an unsuccessfultransaction(i,j)agenti sets reji[j] = 1 (first round), unless agenti is
in the second round, indicated by reji[k] � 1 for all k. In the latter case the assignment
reji[j] = 2 is performed. As soon as reji[k] = 2 for all k, agenti setsstatei to infeasible.

All in all we have the following

Theorem 2. The Multi-Agent System as defined above will terminate. If there exists a fea-
sible solution to the problem(P ), all agents will be in statefeasible. If there does not exists
a feasible solution, there will be at least one agent in stateinfeasible.
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I1. (a) if �i < mini then� = mini � �i
(b) if �i > maxi then� = maxi � �i

I2. sendrequestfor � to j
I3. receivereply, �0

I4. update internal values:
if request not rejectedthen

�i = �i +�0

if �i 2 Si then statei = feasible
else

(a) if 8k : reji[k] � 1 then
i. reji[j] = 2

ii. if 8k : reji[k] = 2 then statei = infeasible
(b) elsereji[j] = 1

Fig. 4. The request part of atransaction(i,j), second version

Proof. Follows directly from Theorem 1 and the arguments of this section.

5 Conclusions and Future Research

We have shown how to solve a simple linear constraint satisfaction problem using agents.
The merit of our approach is that our agents have only limited overall knowledge: they need
to know their local constraint (Dixi = bi) and their contribution to the global constraint
(
PK

i=1 ci
T
xi = b0).

Several extensions come to mind. First there are some technical issues to settle, fairness
as well as transactions have to be implemented. More interesting are extensions to the prob-
lem, e.g. considering a many-dimensional global constraint (i.e.b0 2 IRn), or turning the
problem into an optimization problem by adding a cost function to be minimized. Finally,
adding dynamics to the problem seems interesting, e.g. one could allowb0 or the number
of participating agents to change during the computation.
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