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ABSTRACT: In this paper, we make use of state space models to investigate the presence of stochastic

trends in economic time series. A model is speci�ed where such a trend can enter either in the autoregressive

representation or in a separate state equation. Tests based on the former are analogous to Dickey-Fuller

tests of unit roots, while the latter are analogous to KPSS tests of trend-stationarity. We use Bayesian

methods to survey the properties of the likelihood function in such models and to calculate posterior odds

ratios comparing models with and without stochastic trends. In addition, we extend these ideas to the

problem of testing for integration at seasonal frequencies and show how are techniques can be used to carry

out Bayesian variants of HEGY test or the Canova-Hansen test.
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1 Introduction

State space models have been widely used in many �elds in the physical and social sciences (see, eg., Harvey

1989). Such structural time series models can be used to analyze stochastic trends in macroeconomic and

�nancial data.1 In this paper, we use state space models and Bayesian methods to investigate whether

stochastic trends are present in economic time series. In classical econometrics, a large number of tests

have been developed which test for stochastic trends (see the survey by Stock 1994 or see Dickey and Fuller

1979). The vast majority of these tests have the unit root as the null hypothesis. In light of the low power

of unit root tests, Kwiatkowski, Phillips, Schmidt and Shin (1994) developed a test for trend-stationarity,

hereafter the KPSS test (ie. the null is trend stationarity and the alternative is the unit root).

The two types of classical tests can be illustrated in the following models. Dickey-Fuller type unit root

tests use:

yt = �yt�1 + et; (1)

where et is a stationary error term and the null hypothesis is � = 1. A simple version of the KPSS test

for stationarity makes use of a state space representation:

yt = �t + et (2)

�t = �t�1 + ut;

where ut is white noise with variance �
2
u; et is white noise with variance �

2
e and ut and es are independent

for all s and t. The null hypothesis is �2u = 0, in which case the series is stationary.

To our knowledge, Bayesian analysis of nonstationarity (see, among many others, DeJong and White-

man 1991, Koop 1992, Phillips 1991 and Schotman and van Dijk 1991a,b) has focussed exclusively on

generalizations of (1). Hence, one purpose of this paper is to develop Bayesian tests based on extensions of

1The reader is referred to Stock and Watson (1988) for an expository survey of stochastic trend behaviour in economic
time series. One of the models they focus on is an unobserved components model which is a type of state space model.
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(2) which can be used to test for stochastic trends by looking at �2u (as in the KPSS test) or by looking at

the autoregressive coe�cients (as in the Dicky-Fuller test) or both. The �rst part of this paper is devoted

to analyzing evolving trends models (ie. investigating roots at the zero frequency). We begin by focussing

on (2) to provide intuition into this class of models (see also Koop and van Dijk, 1996). For empirical

relevance, however, it is important to allow for deterministic components and more general stationary

dynamics. These are added as we generalize the model. The second part of the paper focusses on testing

for integration at the seasonal frequency using the extension of (2) referred to as the evolving seasonals

model (Hylleberg and Pagan 1995). In the context of seasonal models one can test for roots by looking

at the autoregressive coe�cients (see Hylleberg, Engle, Granger and Yoo 1990 | hereafter HEGY) or at

coe�cients similar to �2u (see Canova and Hansen 1995). We show how the evolving seasonals model can

be used to nest both these approaches and, hence, Bayesian tests for seasonal integration analagous to

HEGY or Canova-Hansen can be developed.

A further purpose of this paper is to develop computational tools for analyzing such models from a

Bayesian perspective. For the models used in this paper, analytical results do not exist for posterior

moments and posterior odds ratios. Hence, we must turn either to deterministic (like Gaussian product

roles) or simulation-based integration techniques. The former are typically more accurate and faster in low

dimensional problems while the latter are more suitable for high dimensional problems. For the models

used in the �rst part of the paper, we show how (after analytically integrating out nuisance parameters)

the problems can be reduced to one or two dimensions and, hence, numerical integration can be done

using a deterministic technique. This obviates the need for sophisticated simulation methods or the direct

use of Kalman �ltering techniques. In the second part of the paper, it proves impossible to reduce the

dimensionality of the problem below four or �ve. Hence, we turn to Gibbs sampling techniques to calculate

posterior properties of the evolving seasonals models.

Throughout, we apply our techniques to simulated or macroeconomic data. We consider, in particular,

the extended Nelson-Plosser data set and a well-known U.K. seasonal data set.
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2 Testing for Integration in Evolving Trends Models

2.1 The Local Level Model

In this section, we begin with the simplest state space model given in (2) with the further assumptions that

the errors, ut and et are Normally distributed and that �0 = 0. This model is referred to by Harvey (1989)

as the local level model. Notice that there are several di�erent ways of interpreting this model. First, it

can be interpreted as saying that the observed series is decomposed into a local level plus error where the

local level contains a unit root. Secondly, it can be interpreted as a time-varying parameter model (ie.

�t is a mean which varies over time). Thirdly, by substituting the state equation into the measurement

equation, the observed series can be seen to have an ARIMA(0,1,1) representation.

The local level model is parameterized in terms of �2e and �
2
u. The latter of these parameters is crucial

for testing. It proves convenient for both computation and prior elicitation to work in terms of a di�erent

parameterization: �2e and � where:

� =
�2u

�2u + �2e
:

The parameter � has a simple intuitive interpretation. Furthermore, since � is bounded between 0 and 1,

a plausible noninformative prior is p(�) = 1 which is proper. Since Bayes factor calculations require proper

priors on the parameter(s) being tested, the �-parameterization allows us to calculate Bayes factors without

subjectively eliciting informative priors. Of course, other priors could be used and the basic message of the

current paper would not be altered. Further justi�cation and discussion of priors is given in the Appendix.

Formally, we assume the following prior:

p(�2e ; �) /
1

�2e

for 0 � � < 1:

To develop a Bayesian version of the KPSS test, consider the Bayes factor (B01) comparing H0 : � = 0

to H1 : � > 0, which can be calculated using the Savage-Dickey density ratio (see Verdinelli and Wasserman

1995). The Bayes factor can be written as:

3



B01 =
p(� = 0jData)

p(� = 0)
;

where the numerator of the Bayes factor is the marginal posterior of � for the unrestricted model (or the

alternative hypothesis) and the denominator is the marginal prior for � evaluated at the point of interest

� = 0 (or the null hypothesis).

For the local level model we can calculate the Savage-Dickey density ratio by integrating out the nuisance

parameter �2e .We set presample values of ut to zero. By successively substituting the state equation into

the measurement equation of the local level model we obtain:

yt = et +

tX
i=1

ui;

and, hence, de�ning y = (y1; :::; yT )
0,

y � N(0; �2eV );

where V = IT + �
1��

CC 0 and

C =

0
BBBBBBBB@

1 0 : : : : 0

1 1 0 : : : 0

1 1 1 0 : : 0

: : : : : : :

: : : : : : :

: : : : : : :

1 1 1 1 1 1 1

1
CCCCCCCCA
:

C is known as the random walk generating matrix. Multiplying prior by likelihood and integrating out

�2e yields the marginal posterior for � :

p(�jData) / jV j�
1

2 (y0V �1y)�
T

2 : (3)

The integrating constant of this posterior is, to our knowledge, not known in terms of elementary

functions (such as the Gamma function). However, one-dimensional integration su�ces to calculate it. If

we combine this expression with the formula for the Savage-Dickey density ratio we obtain:
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B01 =
(y0y)�

T

2R 1
0
jV j�

1

2 (y0V �1y)�
T

2 d�
:

Hence, the Bayes factor with the uniform prior reduces to something similar to a likelihood ratio (with

�2e integrated out), except the denominator of the likelihood ratio is an average over the parameter space

under the alternative hypopthesis.

To illustrate our test procedure, we simulated two data sets from the local level model.3 In all cases,

T = 100 and �2e = 1. For the �rst data set � = 0 and for the second � = 0:5: Using simple numerical

integration, we calculate the integrating constant for p(�jData) used in the Bayes factor. The marginal

posteriors for � for the two datasets are plotted in Figure 1. These marginal posteriors are quite reasonable.

The Bayes factor comparing the stationary to the unit root model for the two data sets are 90:82 and

2:86� 10�86, respectively, indicating that they distinguish well between the two hypotheses.

A third data set is simulated from the standard AR(1) unit root model: �yt = "t, where "t is i:i:N(0; 1).

Note that this model can be obtained from the local level by setting �2e = 0 and, hence, � = 1.4 The resulting

marginal posterior for � is plotted in Figure 1. The Bayes factor in favour of stationarity is 9:85� 10�146.

This suggests that if there is an AR unit root in the data generating process, our methods will be good at

detecting it.

2.2 Adding an AR(1) Component

The Bayes factor above compares a white noise model to one with a random walk plus noise. With macro-

economic series, we are usually interested in testing whether a series can be characterized by stationary

uctuations around a deterministic trend, or whether it is better characterized by a stochastic trend. As

a step in this direction, and as a way of illustrating the connections between the Dickey-Fuller and KPSS

tests, consider:

3For all simulated data sets in the paper, we used the same seed for the random number generator.
4Note that when � = 1, the matrix V becomes in�nite. Hence, formally speaking, the pure random walk model is not

nested in the local level model, although the latter can come arbitrarily close to the former. This is why we restrict � to lie
in the interval [0; 1). When doing numerical integration we use a grid over the interval [0; 0:9999].
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yt = �t + �yt�1 + et (4)

�t = �t�1 + ut;

where the assumptions about the errors are as in the previous section. If � > 0 and j�j < 1, then yt has

a random walk component plus a stationary component. If � = 0, then we get an AR(1) model.

We use the same prior as before with the additional assumption that p(�) is uniform over the interval

[�1; 1] and � is a priori independent of the other parameters. If we condition on the initial observation,

set presample values of ut to zero, multiply likelihood function by prior and integrate out �2e analytically,

we obtain:

p1(�; �jData) / jV j�
1

2 [(y � �y�1)
0V �1(y � �y�1)]

�
T

2 ; (5)

where y = (y2; :::; yT )
0 and y�1 = (y1; :::; yT�1)

0: Note that, if we had assumed an untruncated uniform

prior for �, we could also have integrated out � analytically, using the properties of the Student-t density.

Details are omitted here, see further below after equation (8). If we were to integrate out �, we could derive

an expression for the Bayes factor analogous to that given above:

B01 =
(y0

�1y�1)
�

1

2 (y0My)�
T�1

2R 1
0
jV j�

1

2 (y0
�1V

�1y�1)
�

1

2 (s2)�
T�1

2 d�
;

whereM = I�y0
�1(y

0

�1y�1)
�1y�1 and s

2 = (y�b�y�1)
0V �1(y�b�y�1). Furthermore, b� = (y0

�1V
�1y�1)

�1y0
�1V

�1y:

In (4), a unit root is present if either � > 0 or � = 1. Formally, we consider four hypotheses:

H1 : � = 0 and j�j < 1: In this case the series is stationary.

H2 : � > 0 and j�j < 1: In this case the series is I(1) plus a stationary component.

H3 : � = 0 and j�j = 1: In this case the series is I(1) and a random walk.

H4 : � > 0 and j�j = 1: In this case the series is I(2).

Bayes factors for comparing these models can be calculated using (5) in the Savage-Dickey density ratio

as described in Section 2.1. We label B�, B� and B�� the Bayes factors for testing � = 0, j�j = 1 and
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(� = 0; j�j = 1), respectively. Although the setup here is more general than the simple Dickey-Fuller or

Schotman and van Dijk (1991a,b) setup,5 the similarities between B� and these tests are apparent. The

similarity between B� and the KPSS test is also apparent. However, our setup allows for for more general

comparisons, involving joint tests. In fact, the posterior probability of any of the four hypotheses listed

above can be calculated using B�, B� and B��.

To investigate posterior properties and the performance of Bayesian model comparison procedures, we

simulate data assuming T = 100 and �2e = 1. Table 1 presents posterior model probabilities for the four

hypothesis listed above for di�erent values of � and �.

Table 1: Posterior Model Probabilities for Simulated Data Sets

p(H1jData) p(H2jData) p(H3jData) p(H4jData)

� = 0; � = 0 0:975 0:025 0:000 0:000

� = :5; � = 0 0:000 0:998 0:002 0:000

� = 0; � = 1 0:154 0:040 0:798 0:009

� = :5; � = 1 0:000 0:010 0:000 0:990

� = :5; � = :5 0:008 0:199 0:772 0:020

� = 0; � = :5 0:987 0:013 0:000 0:000
Note that our simulated data sets exhibit a wide variety of behavior: from white noise, through sta-

tionary but persistent, to I(1), to I(2) series. It can be seen that the Bayes factors, as reected in the

posterior model probabilities, do detect the appropriate degree of integration with high probability. In

general, they also seem to detect whether nonstationarity is entering through an AR unit root or through

a non-degenerate random walk state equation. The only exception is the case � = :5; � = :5 where more

weight is put on the AR unit root than we would expect.

Figures 2-7 plot the joint and marginal posteriors for � and � for the various simulated data sets.

All results look completely reasonable. For instance, for the data set simulated with � = � = 0, the

relevant posteriors (see Figure 2) are concentrated near these points. An examination of the joint posteriors

indicates, unsurprisingly, that there tends to be a fair degree of correlation between � and �. This correlation

is most marked in the case of data simulated with � = 0:5 and � = 0:5 (see Figure 6) and accounts for

the fact that the Bayes factors indicate that an AR unit root is present when in reality the unit root

enters though the state equation. That is, the resulting marginals (Figures 6b and 6c) are very at and,

5These authors would assume et = 0 for all t.
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thus, allocate non-negligeable weight to the boundary points � = 0 and � = 1. The former increases the

probability of � = 0 and the latter boosts � = 1. Combining these two we get more evidence for an AR

unit root and less evidence for � > 0 than we would expect. Nevertheless, it should be emphasized that

our approach does choose the correct degree of integration.

2.3 Extensions: More Dynamics and Deterministic Terms

Economic time series typically have more deterministic terms than (4) allows for. These considerations

suggest that the following speci�cation is more appropriate for empirical research:

�(L)yt = �t + et (6)

�t = �+ �t�1 + ut

where the assumptions about the errors are the same as for the previous models, but here we no longer

assume �0 = 0. It is worthwhile briey motivating this particular extension as opposed to one which puts

the deterministic component directly in the measurement equation or puts the AR component in the state

equation. If we assume that �(L) satis�es the stationarity conditions and di�erence yt; we can write:

�(L)�yt = �+ ut +�et:

That is, if � > 0 the model becomes an ARIMA(p,1,1) plus drift. If � = 0, then the model can be

written in terms of stationary uctuations around a deterministic trend:

�(L)yt = �0 + �t+ et:

Hence, if we test � = 0 we are testing a null of trend-stationarity against an alternative of a unit root

with drift. We feel that these are the sensible hypotheses to be considering in practice. An alternative way

of extending (4) is less satisfactory. For instance, if we add the AR component to the state equation then,

under � = 0; the model would reduce to white noise uctations around a deterministic trend which is not

a reasonable null hypothesis for most macroeconomic data.
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Since we use numerical integration techniques in this section, it is important to reduce the dimensionality

of the problem by integrating out nuisance parameters. It is convenient to rewrite the measurement equation

in (6) as:

yt = �t + �yt�1 +

p�1X
i=1

�i�yt�i + et:

With this speci�cation, we can focus on the bivariate posterior for � and � in order to make inferences

about the presence of stochastic trends.

By repeatedly substituting the state equation into the measurement equation in (6) we can write:

yt = xt� + vt;

where xt = (yt�1; 1; t;�yt�1; :::;�yt�p+1); � = (�; 0)0;  = (�0; �; �1; :::; �p�1)
0; k = p+ 2 and

vt = et +

tX
i=1

ui:

De�ning y = (y1; :::; yT )0 , X = (x01; :::; x
0

T )
0 and treating p initial values of yt as �xed

6 we obtain:

y � N(X�; �2eV ):

Using the same prior as in the previous section plus untruncated uniform priors for the new parameters

added in this section, and integrating out �2e , we obtain an expression for the joint posterior of � and �:

p1(�; �jData) / jV j�
1

2 [(y �X�)0V �1(y �X�)]�
T

2 ; (7)

which is similar to (6).

To get the bivariate posterior for � and �, we can integrate out  using the presence of a Student-t

kernel in (7), yielding:

p1(�; �jData) / jV j�
1

2 jX�0V �1X�j�
1

2 s2
�

�

2

; (8)

6Note that, when we condition on p initial values, we are implicitly rede�ning T so that it is now equal to the old T � p.
That is, we are treating our observed data as running from period 1 � p through T instead of as running from 1 through T

as before. We maintain this convention throughout the remainder ot the paper.
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where � = T � k + 1, X� has t0th row given by x�t = (1; t;�yt�1; :::;�yt�p+1),

s2 =
(y� �X�b)0V �1(y� �X�b)

�
;

y� has t0th element given by y�t = yt��yt�1 and b = (X�0V �1X�)�1X�0V �1y�: Using two-dimensional

numerical integration we can calculate posterior properties of � and � using equation (8). Bayes factors

for the various hypothesis listed in the previous section can be calculated using the Savage-Dickey density

ratio as described above.

Since this speci�cation is now suitable for working with macroeconomic time series, in this section we

investigate the properties of the extended Nelson-Plosser data in an empirical illustration. Schotman and

van Dijk (1991b) use this data set to to carry out Bayesian tests for a unit root in an AR process (allowing

for deterministic time trend). The reader is referred to this paper for a description of the data. In an

attempt to make our results comparable to Schotman and van Dijk (1991b), we set p = 3 for all series

except the unemployment rate for which we set p = 4. Table 2 presents posterior model probabilities for

these series, the last column of this table presents the probability of a unit root calculated by Schotman

and van Dijk.7

7The last column of Table 2 is taken from Hoek (1997), who made some corrections to Schotman and van Dijk's original
calculations.
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Table 2: Posterior Model Probabilities for Nelson-Plosser Data

p(H1jData) p(H2jData) p(H3jData) p(H4jData)
S:v:D:

p(� = 1)

Real

GNP
0:169 0:819 0:012 0:000 0:300

Nominal

GNP
0:010 0:931 0:055 0:004 0:619

GNP per

capita
0:247 0:740 0:013 0:000 0:290

Industrial

Production
0:293 0:686 0:021 0:000 0:316

Employment 0:002 0:998 0:001 0:000 0:313

Unemployment 0:463 0:533 0:004 0:000 0:217

GNP

Deator
0:011 0:866 0:110 0:014 0:678

Consumer

Prices
0:000 0:996 0:003 0:001 0:697

Nominal

Wages
0:026 0:887 0:078 0:010 0:602

Real

Wages
0:006 0:948 0:042 0:004 0:642

Money 0:036 0:897 0:055 0:012 0:397

Velocity 0:001 0:983 0:015 0:000 0:666

Interest

Rate
0:001 0:973 0:011 0:015 0:641

Stock

Prices
0:021 0:898 0:079 0:001 0:653

The results in Table 2 accord reasonably well with the results of Schotman and van Dijk (1991b), despite

di�erences in speci�cation (and slight di�erences in the prior). In particular, most evidence for stationarity

is found for series like real GNP, GNP per capita, unemployment and industrial production. Other series

provide much stronger evidence of integration. The present approach, however, �nds more evidence of

nonstationarity. One possible explanation for this is that it could be due the di�erence in treatment of

deterministic terms. Schotman and van Dijk treat these in a manner that is di�erent from the present

approach. Another possibility is that the implicit MA component added in our state-space approach is

an important extension for macro data. It is interesting to note that, for most series, H2 receives much

more probability than H3 indicating that the data prefer the state space unit root (which implicitly adds a

moving average component) to the autoregressive unit root. To see why this might increase the probability
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of integration, suppose that a true data generating process exists and its is ARIMA(3,1,1) and that the

MA coe�cient is substantial and negative. This series, of course, is I(1) and we would hope a test would

indicate this. The Schotman and van Dijk approach would approximate the ARIMA(3,1,1) by an AR(3)

model. The presence of a negative MA coe�cient would tend to pull the AR coe�cients into the stationary

region, reducing the probability of the unit root relative to the present approach which would correctly

model the ARIMA(3,1,1).

3 Testing for Integration in the Evolving Seasonals Model

3.1 Theory

The evolving seasonals model has recently been reintroduced to the econometrics literature in Hylleberg

and Pagan (1995). Originally developed in Hannan, Terrell and Tuckman (1970), this model is a very

exible speci�cation which allows the seasonal pattern to vary over time. A simple variant of this model

is given by:

yt = �0t cos(�0t) + �1t cos(�1t) + 2�2t cos(�2t) + 2�3t sin(�2t) + et; (9)

where �0 = 0; �1 = � and �2 = �
2
capture behaviour at the relevant 0 and seasonal frequencies,

respectively. The � 0its capture the evolution of the trend and seasonal patterns over time. Hylleberg and

Pagan (1995) shows how this speci�cation nests most common seasonal models.

In this paper we focus on testing for seasonal unit roots so it is worthwhile to briey digress and describe

the two chief classical approaches. The most common of these is outlined in Hyllegerg, Engle, Granger and

Yoo (1990) | HEGY | and is based on the fact that an AR(p) speci�cation: �(L)yt = et can be written

as

��(L)y4;t = �0y1;t�1 + �1y2;t�1 + �2y3;t�2 + �3y3;t�1 + et;

where y1;t = (1+L+L2 +L3)yt; y2;t = �(1�L)(1 +L)yt; y3;t = �(1�L2)yt and y4;t = (1�L4)yt. A

nonseasonal unit root is present if �0 = 0, while if �1 = 0 a seasonal unit root at frequency � is present. �2
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and �3 relate to possible seasonal unit roots at frequency
�
2
and HEGY suggests a joint test of �2 = �3 = 0.

An alternative test is given by Canova and Hansen (1994) and is based on a speci�cation similar to (9)

under the assumption that, for i = 0; 1; 2; 3:

�it = �i;t�1 + uit;

and var(uit) = �2i : If �
2
1 = 0 then a seasonal unit root at frequency � is present while if �22 = �23 = 0

then a seasonal unit root at frequency �
2
is present. The nonseasonal unit root occurs if �20 = 0.

Given the evolving seasonals model, it is apparent that we can derive a speci�cation that nests both

these approaches in the same way that our speci�cation in the previous section nested both Dickey-Fuller

and KPSS tests. As before, it is important to allow for deterministic terms and hence we work with the

following speci�cation:

��(L)y4;t = �0t + �1t cos(�t) + 2�2t cos(
�t

2
) + 2�3t sin(

�t

2
) (10)

+�0y1;t�1 + �1y2;t�1 + �2y3;t�2 + �3y3;t�1 + et

�it = �i + �i;t�1 + uit;

where the e0ts are i:i:N(0; �2e), the u0its are i:i:N(0; �2i ) and all error terms are independent of one

another. As in the previous section, we can test for unit roots either through the AR coe�cients or

through the error variances in the state equations (eg. testing �0 = 0 or �0 = 0 for the nonseasonal unit

root). If the state equations are substituted into the measurement equation it can be seen that the � 0i0s

enter as a deterministic seasonal pattern and the inclusion of drift terms in the state equations (ie. the

�0is) allows for a deterministic trend the speci�cation and in the seasonal patterns. In our empirical work,

we rule out the latter and set �1 = �2 = �3 = 0, but leave �0 unrestricted. Assuming the AR coe�cients

satisfy the stationarity condition, then if �i = 0 for i = 0; 1; 2; 3 the model is characterized by stationary

uctations around a deterministic seasonal pattern. Hence, (10) is an extremely exible speci�cation which

nests most common seasonal models, and our Bayesian counterpart to the Canova-Hansen test has as its

null hypothesis a reasonable model for macroeconomic time series.
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As before, we reparameterize in terms of

�i =
�2i

�2i + �2e
:

Tests of the various sorts of seasonal integration then reduce to testing for zero restrictions on the �0is.

Note, however, that there are eight parameters of interest (ie. �i and �i for i = 0; 1; 2; 3), so that, even

if we analytically integrate out all nuisance parameters, deterministic numerical integration is extremely

di�cult given current computational power. However, it is possible to set up a Gibbs sampler to analyze

this model. To calculate Bayes factors, it is necessary to specify priors for the �0is. To do this, we extend

the strategy of the previous section, assume prior independence between these parameters, and obtain:

p(�i) = 1 if 0 � �i < 1:8 For all other parameters, we use traditional, at, noninformative priors. Hence,

the Bayes factors calculated here have the same "weighted likelihood ratio" form as in the previous section.

Of course, subjective informative priors can be used if so desired.

Conditional on knowing �2e and �i for i = 0; 1; 2; 3, the Gibbs sampler can be set up exactly as in de Jong

and Shephard (1995).9 In particular, our equation (10) is exactly in the form as the model in Section 3 of

de Jong and Shephard if we condition on p initial observations. Using their equations (2) and (4) modi�ed

for the inclusion of regression e�ects as in their Section 5, we can sample jointly from all the states and

all regression parameters jointly (conditional on �2e and the �0is). In our experience, the de Jong-Shephard

algorithm is highly e�cient. Of particular value is the fact that it reduces the Gibbs sampler to three

blocks. For the sake of brevity, we do not repeat the exact form of the algorithm here, but refer the reader

to de Jong and Shephard (1995).

The conditional distribution of ��2
e is:

p(��2
e jData; ��; �0; �1; �2; �3; �) = fG(�

�2
e j

T

2
;

PT

i=1 e
2
t

2
); (11)

8Note that we are using an improper prior for the �0
i
s and, hence, do not calculate Bayes factors for these parameters. The

methodology outlined in this section could be used do this, but proper priors would be needed. Such priors could either be
elicited subjectively or we could use a at prior over the stationary region. The necessary restriction for imposing the latter
is complicated (see Franses, 1996, pp. 64-66). Hence, for reasons of simplicity and to keep the empirical illustration focussed
on the �0

i
s, we do not consider proper priors for the AR parameters.

9Fruhwirth-Schnatter (1994) and Carter and Cohn (1994) provide alternative methods for Gibbs sampling with state space
models.
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where fG(:ja; b) is the Gamma density with mean a
b
and variance a

b2
. The posterior conditionals for the

�0is (for i = 0; 1; 2; 3), can be obtained by noting that they are independent of one another (i.e. �i is only in

the i0th state equation) and are closely related to the variance of each equation. The resulting conditional

posterior is non-standard:

p(�ijData; �
2
e ; �) /

�
1� �i

�i

�T

2

exp

�
�
1� �i

�i
SSEi

�
; (12)

where

SSEi =

TX
j=1

u2ij

2�2e
:

Hence, we use an alternative approach. If we had parameterized with �i =
�2
i

�2
e

and used a at prior for

�i, then resulting posterior conditional for �i would be Gamma:

p(�ijData; �
2
e ; �) / �

�
T

2

i exp

�
�
SSEi

�i

�
:

But a at prior for �i is improper and has some strange implications for �i (see Appendix). The

uniform prior for �i; which is truncated to ensure 0 � �i < 1, is proper and implies a prior for �i which is

proportional to 1
(1+�i)2

. This suggests as simple strategy for drawing from �i using a Metropolis-Hastings

algorithm (see, for instance, Chib and Greenberg, 1995). Suppose the current draw of �i is called �Oldi .

First take a candidate draw of �i from (12) using the Gamma distribution (call it �New
i ). This draw is

accepted with probability:

1

(1+�New

i
)2

1

(1+�Old
i

)2

;

where probabilities greater than one are rounded down to one. If the candidate draw is not accepted

then the draw for �i remains �
Old
i . Draws from �i can be converted into draws from �i using the fact that

�i =
�i

1+�i
:

Output from this posterior simulator can be used to calculate posterior features of interest as well as

the Bayes factor using the Savage-Dickey density ratio (see, for instance, Verdenelli and Wasserman, 1995,
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section 2.2).10

3.2 Empirical Illustration

The techniques described above are here illustrated using several UK seasonal series: GDP, total con-

sumption (TOTCON), consumption of nondurables (NONDUR), total investment (TOTINV), exports

(EXPORTS) and imports (IMPORTS). All data are quarterly, logged and run from 1955:1 to 1988:4.

These series have been analysed extensively by many authors (see Franses, 1996, chapter 5 for a list of

citations). Franses, 1996, Table 5.2 presents results from the HEGY test on these series (and others),

concluding that the nonseasonal unit root seems to be present in all series, and TOTCON and NONDUR

have in addition roots at both seasonal frequencies.Table 3 presents Bayes factors for testing �i = 0; which

we call B�i for i = 0; 1; 2; 3. Small values of B�i indicate evidence in favour of seasonal integration. The

last four rows present posterior means of the �0is, with posterior standard deviations in parentheses.

Table 3: Posterior Information on UK Seasonal Series

GDP TOTCON NONDUR EXPORTS IMPORTS TOTINV

B�o 4:9x10�114 1:5x10�13 3:2x10�41 7:0x10�142 8:4x10�3 2:1x10�35

B�1 0:10 5:8x10�3 6:3x10�4 0:26 5:7x10�2 0:27

B�2 0:14 2:4x10�2 2:7x10�3 0:66 2:8x10�2 3:1x10�2

B�3 0:31 4:8x10�3 7:4x10�4 0:18 0:15 0:29

�0
�0:19

(0:07)

�0:11

(0:05)

�0:09

(0:07)

�0:35

(0:07)

�0:20

(0:06)

�0:16

(0:05)

�1
�0:51

(0:21)

�0:75

(0:26)

�0:82

(0:34)

�0:27

(0:06)

�0:41

(0:10)

�0:34

(0:18)

�2
�0:53

(0:11)

�0:98

(0:23)

�0:77

(0:19)

�0:63

(0:09)

�0:69

(0:10)

�0:62

(0:12)

�3
�0:21

(0:12)

�0:34

(0:27)

�0:40

(0:25)

0:08

(0:08)

�0:21

(0:13)

�0:02

(0:14)

A standard Bayesian rule of thumb (see, eg., Poirier, 1995, page 380) is to say that there is slight

evidence against �i = 0 if B�i > 0:10, strong evidence if 0:01 � B�i � 0:10, and decisive evidence if

B�i < 0:01: Using this rule of thumb, all series provide decisive evidence in favour of a unit root at the

nonseasonal frequency. TOTCON and NONDUR provide decisive evidence in favour of roots at both

seasonal frequencies. These results accord with those provided by the HEGY test. The Bayes factors for

10Due to the di�culties of evaluating (12) at the point 0, we evaluate it at a point close to zero. Formally speaking, this
means we are testing the hypothesis that �i = 0:0001 rather than �i = 0. In practical applications the di�erences between
these two hypotheses are negligeable.
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the seasonal unit roots for the other series do not provide decisive evidence, but nevertheless some evidence

for seasonal unit roots occurs.

Our speci�cation allows for seasonal and nonseasonal unit roots to enter through either the AR coef-

�cients or the state equation. Although we do not calculate Bayes factors for the former, the posterior

moments for the �0is indicate that the data chooses to put unit roots (if they exist) in the state equations.

This �nding is analagous to that noted in Section 2, where the Nelson-Plosser data tended to favor H2

over H3.

It is also worth noting that we test each of the �0is individually. Given the aliasing problem, one may

be interested in doing a joint test of �2 = �3 = 0. This can, of course, be easily done using our present

framework.

4 Conclusion

In this paper, we develop Bayesian tests of stochastic trends using state space representations. We consider

both non-seasonal and seasonal models, and AR unit roots and roots arising in the state equation(s).

Our general framework nests most of the common approaches to testing for integration in the literature.

We construct computational methods involving either numerical integration or posterior simulation to

calculate the probability associated with each type of integration. Empirical evidence using simulated and

real data indicate that the approach advocated in this paper is both simple to use and yields reasonable

results. The added exibility of state space modelling and the allowance for the test of stationarity to be a

point hypothesis (in contrast to the usual setup where the unit root is the point hypothesis) heighten the

advantages of our approach.

The basic ideas in this paper can be extended in two important ways: i) Di�erent priors can easily be

accomodated; and ii) Multivariate models and resulting issues involving common trends can be handled in

a conceptually similar manner.
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5 Appendix: Priors and Parameterizations

In the local level model, we parameterize the variance of the state equation in terms of the parameter:

� =
�2u

�2u + �2e

which has a natural interpretation. Here, and in the material below, we use the standard noninformative

prior for �2e ; independent of the other parameter in the model. We use a at prior over the interval [0; 1)

and the stationary case corresponds to � = 0. Since the prior is �nite at the latter point and proper, the

Savage-Dickey density ratio can be used to calculate Bayes factors. This simpli�es our computations and

allows for the analytical derivation of the Bayes factor formulae in the �rst part of the paper. Of course,

the general ideas in this paper hold for any prior.

The prior we use can be interpreted as a "noninformative" one. However, there are other candidates

for a "noninformative" prior. An alternative is the standard noninformative prior for the variance:

p(�2u) /
1

�2u
:

This prior is improper and is in�nite at the point �2u = 0. Hence, meaningful Bayes factors cannot be

obtained and, even if the prior were truncated to be proper, the Savage-Dickey density ratio could not be

used to calculate the Bayes factor. By using the change of variable theorem11 it can be seen that this prior

implies a prior for � of the form:

p(�) /
1

(1� �)�
;

which is a U-shaped prior with in�nite asymptotes at the points � = 0 and � = 1.

Alternatively, it is common to parameterize the model in terms of � =
�2
u

�2
e

. There are two common ways

of being noninformative about �. The �rst is used in Min (1992) and is given by p(�) / 1. In previous work

with this improper prior, we found signi�cant evidence that it resulted in an improper posterior which is a

11Formally speaking, the change of variable theorem should not be used here since the prior is not a valid probability density
function. Nevertheless, if we treat the resulting formulae as coming from a prior truncated at a very large value they can at
least provide some intuitive insight into the implications of the various noninformative priors considered in this Appendix.
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reason for avoiding it. Nevertheless, if one were to truncate it to make the prior (and, hence, the posterior)

proper it can still be used for testing using the Savage-Dickey density ratio. Results using this prior are

slightly sensitive to the choice of truncation point, but nevertheless reasonable choices of truncation point

give results similar to those given in the body of the paper. In terms of our preferred parameterization,

this at prior for � implies:

p(�) /
1

(1� �)2

indicating a prior which puts very large weight on values of � near one. An alternative noninformative

prior for � might be p(�) / 1
�
. This prior su�ers from the same problems for Bayes factor calculation as

the noninformative prior for �2u. In terms of our preferred parameterization, this prior implies:

p(�) /
1� �

�

which puts very large weight on small values of �.

Hence, we have four di�erent "noninformative" priors which imply very di�erent prior views about �

(ie. uniform, U-shaped, skewed towards 0 and skewed towards 1 on �). This illustrates the great care that

must be taken in prior elicitation, even when the researcher is striving to be noninformative. However, we

have found that, for reasonably large sample sizes (e.g. T > 50) that the choice of noninformative prior has

little e�ect on posterior inference. In a more serious empirical exercise, the researcher would likely have

prior information which could be used to guide construction of a suitable informative prior.

Of course, the testing strategy discussed in the paper could be performed using any prior. In some

cases, however, the Savage-Dickey density ratio could not be used and the researcher would be forced to

use more computationally intensive methods (see, eg., Chib 1995) to calculate Bayes factors.
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