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Summary We prove that the probability distribution of Hill's estimator can be
better approximated by a series of appropriate gamma distributions than by the limiting
normal distribution.

1. Introduction

An often used estimator for the tail index of a probability distribution is Hill's es-
timator. Let X1; X2; � � � be i.i.d random variables with distribution function F and
suppose that the function 1� F is regularity varying at in�nity with index 1=
, 
 > 0.
Hill's estimator[6]

Hk;n :=
1

k

k�1X
i=0

logXn�i;n � logXn�k;n;

where X1;n � � � � � Xn;n are the order statistics of X1; � � � ; Xn is a consistent estimator
for 
 if one chooses k = k(n) in such a way that k(n)!1, k(n)=n! 0(n! 0(cf.[7]).
For asymptotic normality one needs a further expansion of 1�F : suppose that for some
function c not changing sign with limt!1 c(t) = 0,

lim
t!1

1

c(t)

�1� F (tx)

1� F (t)
� x�1=


	

exists and is not zero. In that case we have, with a possibly di�erent function c,

lim
t!1

1

c(t)

�1� F (tx)

1� F (t)
� x�1=


	
= x�1=
 � x

�0 � 1

�0
(1.1)

for all x > 0 with �0 a non-positive second order parameter([2]). Condition (1.1) is

ful�lled e.g. when 1�F (x) = c1x
�1=
+ c2x

�
+�0

(1+o(1))(x!1) with �0 < 0. Under
these conditions p

k
�Hk;n



� 1

	

is asymptotically standard normal for sequences k = k(n) that do not increase too
quickly, more precisely: if
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lim
n!1

p
ka(n=k) = 0; (1.2)

with U the inverse of the function 1=(1 � F ) and a(t) = c(U(t)). Cheng and Pan [1]
proved that under condition (1.1),

lim
n!1

p
k[P (Hn � x)� �(x)] =

�1� x2

3
� C


(1� �)

�

2�(x) (1.3)

uniformly for all x where � = �0
, � is the standard normal distribution function and
� its density, provided

lim
n!1

ka(n=k) = C: (1.4)

Note that (1.4) implies (1.2).
We shall prove a rate of convergence result for Hk;n when the approximating distri-

bution is not the normal one but a standardized version (mean zero, variance one) of
the gamma distribution function with k degrees of freedom.

Theorem 1. Suppose (1.1), (1.2) and

lim
n!1

log n

k
= 0 (1.5)

hold. Then

lim
n!1

1p
kna(n=k)

�
P
�p

k
�Hk;n



� 1

� � x
	� �k(k + x

p
k)
�
= �
�(x)

1� �
(1.6)

uniformly for all x where �k is the distribution function of a gamma distribution with
k degrees of freedom.

In order to compare the two results note that for ka(n=k)! 0 and logn = o(k), the
rate in (1.6) is better than in (1.3), for ka(n=k)! C 2 (0;1) the two rates are of the

same order and for ka(n=k)!1 but
p
ka(n=k)! 0, only (1.6) is valid. Approximation

by the gamma distribution is attractive since the density of the density has a known
functional form like the normal distribution, moreover the distribution is asymmetric
and this is what seems to happen to Hill's estimator in simulations and applications.

2. Lemmas

First note (cf.[2]) that (1.1) implies

lim
t!1

logU(tx)� logU(t)� 
 log x


2a(t)
=

x� � 1

�
(2.1)

for x > 0. It follows that a is regularity varying at in�nity with index � � 0 and
therefore for every � > 0, there exists a t0 > 0 such that

(1� �)min(x���; x�+�) � a(tx)=a(t) � (1 + �)max(x���; x�+�) (2.2)

holds for all t � t0, tx � t0 and x > 0. Moreover, we need three lemmas.
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Lemma 1. ([3]) Suppose (1.1) holds. Then there exists a function â with â(t)=a(t)!
1(t ! 1), such that for every � > 0, there exists a t0 with: uniformly for x � 1 and
t � t0 �� logU(tx)� logU(t)� 
 logx

â(t)
� 
2

x� � 1

�

�� � �x�+�: (2.3)

Lemma 2. Suppose k = o(n) and (1.5) hold. Then there exists a sequence ftng with
tn ! 0 such that for n!1

P (jkYn�k;n=n� 1j � tn) = o(
p
kâ(n=k)) (2.4)

where fYi;ngni=1 are the n-th order statistics from the distribution function 1 � x�1,
x � 1.

Proof. De�ne Ii := IfYi>n(1�tn)=kg with Y1; Y2; � � � i.i.d. with the distribution function

1 � x�1, x � 1. Then
Pn

i=1 Ii 2 Bin(n; r�1n ) with rn := n(1 � tn)=k. Hoe�ding's
inequality (cf.[8], page 440) gives

P (
kYn�k;n

n
� 1� tn) = P (

nX
i=1

Ii � k)

=P
�Pn

i=1 Ii � nr�1np
n

� � ktnp
n(1� tn)

�

� exp
�� � ktnp

n(1� tn)

�2Æ� 2k

n(1� tn)

�
1� k

n(1� tn)

��	

=expf�kt
2
n[1 + o(1)]

2
g:

If � = 0, we take tn = [(2 logn)=k]1=2 and by (2.2) get for some K > 0 and � 2 (0; 1),

expf�kt2n[1 + o(1)]=2gp
kâ(n=k)

� K

n1��k1=2+�
! 0:

If � < 0, we take tn = [(�3� logn)=k]1=2 and by (2.2) get for some K > 0 and � 2
(0;��=2),

expf�kt2n[1 + o(1)]=2gp
kâ(n=k)

� K

n��=2��k1=2��+�
! 0:

Hence P (kYn�k;n=n � 1� tn) = o(
p
kâ(n=k)). similarly we may show P (kYn�k;n=n �

1 + tn) = o(
p
kâ(n=k)), completing the proof of (2.5).

Lemma 3. For any sequence fk ! 0, we have

lim
k!1

�k(k + (x+ fk)
p
k)� �k(k + x

p
k)

fk
= �(x) (2.6)
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uniformly for all x.

Proof. By Cramer's theorem (cf. [4] Theorem 1 of XVI.4)

�k(k + x
p
k) = �(x) +

(1� x2)�(x)

3
p
k

+ o
� 1p

k

�

uniformly for all x. Hence

�k(k + (x+ fk)
p
k)� �k(k + x

p
k)

fk

=
�(x+ fk)� �(x)

fk
+
�(x+ fk)[1� (x+ fk)

2]� �(x)(1� x2)

3
p
kfk

+ o
� 1p

k

�

uniformly in x. The �rst term goes to �(x) uniformly and the other terms go to zero
uniformly, so that (2.6) holds uniformly.

3. Proof of Theorem 1 We use the representation fXig1i=1 d
= fU(Yi)g1i=1 and may

assume

Hk;n :=
1

k

k�1X
i=0

logU(Yn�i;n)� logU(Yn�k;n):

Write

P
�p

k
�Hk;n



� 1

� � x
	�Gk(x)

=
�
P
�p

k
�Hk;n



� 1

� � x
��jkYn�k;n

n
� 1j � tn

	�Gk(x)
�
P (jkYn�k;n

n
� 1j � tn)

�Gk(x)P (jkYn�k;n
n

� 1j > tn) + P
�p

k
�Hk;n



� 1

� � x; jkYn�k;n
n

� 1j > tn
�
:

According to Lemma 2, P (jkYn�k;n=n � 1j � tn) ! 1 and the two last terms are

o(
p
kâ(n=k)), so we only have to deal with the �rst term and in fact, we only have to

�nd the limit of

P
�p

k
�
Hk;n=
 � 1

� � x
��jkYn�k;n=n� 1j � tn

	�Gk(x)p
kâ(n=k)

:

If kYn�k;n=n � 1� tn with tn ! 0, we have by Lemma 1 eventually for 0 � i � k � 1

�� logU(Yn�i;n)� logU(Yn�k;n)� 
 log(Yn�i;n=Yn�k;n)

â(Yn�k;n)
� 
2

(Yn�i;n=Yn�k;n)
� � 1

�

��
� �
� Yn�i;n
Yn�k;n

��+�
:
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Moreover, if jkYn�k;n=n�1j � tn with tn ! 0 and n is so large that (1� tn)
��� � 1+ �,

(1� tn)
� � 1� � and (1 + tn)

��� � 1� �, then we have from (2.2) that

(1� �)2â(n=k) � (1� �)minf(1 + tn)
���; (1� tn)

�gâ(n=k)
�â(Yn�k;n) � (1 + �)(1� tn)

���â(n=k) � (1 + �)2â(n=k)

Hence for jkYn�k;n=n� 1j � tn with tn ! 0, we get by addition

p
k
�Hk;n



� 1

��pk�1
k

k�1X
i=0

log
Yn�i;n
Yn�k;n

� 1
	

� â(Yn�k;n)p
k

�


p
k
k�1X
i=0

(Yn�i;n=Yn�k;n)
� � 1

�
� �




k�1X
i=0

� Yn�i;n
Yn�k;n

��+�� � Rk

:=
â(n=k)p

k

�

(1� �)2

k�1X
i=0

(Yn�i;n=Yn�k;n)
� � 1

�
� �(1 + �)2




k�1X
i=0

� Yn�i;n
Yn�k;n

��+��

and a similar lower inequality. So we have for suÆciently large n,

P
�p

k(
Hk;n



� 1) � x

��jkYn�k;n
n

� 1j � tn
	

(3.1)

�P �pk�1
k

k�1X
i=0

[log
Yn�i;n
Yn�k;n

� 1]
	
+ Rk � x

��jkYn�k;n
n

� 1j � tn
�

=P
�p

k
�1
k

k�1X
i=0

[log
Yn�i;n
Yn�k;n

� 1]
	
+ Rk � x

�

since fYn�i;n=Yn�k;ngk�1i=0 and Yn�k;n are independent. Note by the lack of memory
property of the exponential distribution

k�1X
i=0

log
Yn�i;n
Yn�k;n

d
=

k�1X
i=0

Ei

with E0; E1; � � � ; Ek�1 i.i.d. standard exponential. A similar simpli�cation may be

applied to
Pk�1

i=0 (Yn�i;n=Yn�k;n)
� and

Pk�1
i=0 (Yn�i;n=Yn�k;n)

�+�. Write

Qk :=
1p
k

k�1X
i=0

�

(1� �)2

�e�Ei � 1

�
� 1

1� �

�� �(1 + �)2




�
e(���)Ei � 1

1� �+ �

�	
;

which is asymptotically normal, and

�̂k :=
p
k
�1
k

k�1X
i=0

Ei � 1
�
+
p
kâ(n=k)

�
(1� �)2

1� �
� �(1 + �)2


(1� �+ �)

�	
:
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Then we have from (3.1)

P
�p

k
�Hk;n



� 1

� � x
��jkYn�k;n

n
� 1j � tn

	

�P ��̂k + â(n=k)Qk � x
�

(3.2)

�P ��̂k � x+ �
p
kâ(n=k)

�
+ P

�
Qk � ��

p
k
�
:

We consider the two terms separately. Noting that
p
k
�Pk�1

i=0 Ei=k�1
�
has distribution

�k(k +
p
kx), we have from Lemma 3

P
�
�̂k � x+ �

p
kâ(n=k)

�� �k(k + x
p
k)p

kâ(n=k)

=
�k(k + (x+ ��

p
kâ(n=k))

p
k)� �k(k + x

p
k)p

kâ(n=k)

!���(x)

uniformly for all x where

�� :=
�
(1� �)2

1� �
+

�(1 + �)2


(1� �� �)
+ �:

For the second term we use the exponential inequality (cf.[8], page 851) for independent
random variables

P (Qk � ��
p
k) � expf�Ckg

with C > 0 and the right hand side is o(
p
kâ(n=k)) under the stated condition (1.6). It

follows from (3.2) that

lim sup
n!1

P
�p

k
�
Hk;n=
 � 1

� � x
��jkYn�k;n=n� 1j � tn

	� �k(k + x
p
k)p

kâ(n=k)
� ���(x):

Letting �! 0, we get

lim sup
n!1

P
�p

k
�
Hk;n=
 � 1

� � x
��jkYn�k;n=n� 1j � tn

	� �k(k + x
p
k)p

kâ(n=k)
� �
�(x)

1� �

uniformly for all x. Similarly, we may prove

lim inf
n!1

P
�p

k
�
Hk;n=
 � 1

� � x
��jkYn�k;n=n� 1j � tn

	� �k(k + x
p
k)p

kâ(n=k)
� �
�(x)

1� �

uniformly for all x, completing the proof of the theorem.

4. Remarks

Under some condition like (1.4) used by Cheng and Pan, we may also get approxi-
mation by gamma distributions. In fact, instead of Lemma 3, we have
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Lemma 4. Suppose (1.2) holds and there exists a � > 0 such that

lim
n!1

k�+1=2a(n=k) = C 2 [0;1]: (4.1)

Then there exists a sequence ftng such that for n!1, tn ! 0 and

P (jkYn�k;n=n� 1j � tn) =

�
o(
p
kâ(n=k)) for C 2 (0;1]

o(k��) for C = 0:
(4.2)

Proof. As in the proof of Lemma 2, Hoe�ding's inequality gives

P
�kYn�k;n

n
� 1� tn

� � exp
�� kt2n[1 + o(1)]

2

	
:

Take

tn =

8><
>:
f�2[log(pkâ(n=k))]=pk]g1=2 if C = 0;

[4� log k)=k]1=2 if C 2 (0; 1);

[2� log k)=k]1=2 if C =1:

Then (4.2) holds.

Following the steps in proving Theorem 1 and using Lemma 4, we can get the fol-
lowing.

Theorem 2. Suppose (1.1), (1.2) and (4.1) with some � > 0 hold. If C 2 (0;1] in
(4.1), then (1.6) holds and if C = 0 in (4.1), then

lim
n!1

k�
�
P
�p

k
�Hk;n



� 1

� � x
	� �k(k + x

p
k)
�
= �
�(x)

1� �
: (4.3)
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