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Abstract: In this paper, a new paradigm is developed for analyzing investment strategies and
pricing financial assets. This paradigm assumes that any investment strategy has its own “inherent
reward” and “inherent risk” that can be judged with common sense. I justify axiomatically the
existence and uniqueness (ratio scale) of inherent reward (U) and inherent risk (D) that could be
regarded as universal measures of reward and risk for any given investment strategy. Incorporating
the notion of “inherent efficiency” in a portfolio context, I show that the inherent reward-to-risk
ratio (Z = U/D) is capable of ranking all the investment strategies with any return distributions,
while being consistent with the fundamental principles of no-arbitrage and first-order stochastic
dominance. If there exists an inherently efficient benchmark portfolio within any given set of feasible
strategies, then the risk premium on any of these strategies must satisfy a simple relationship with
the benchmark risk premium (the Inherent CAPM). Sophisticated securities such as options or
portfolios with imbedded options can then be priced without having to assume that the market
is complete or that the security price follows a specific process. Other issues discussed in the
paper include prospect theory, the Allais paradox, the computation of inherent reward and risk,
the mean-variance CAPM, and performance evaluation.

Key words: inherent reward, inherent risk, inherent dominance, stochastic dominance, inher-

ent efficiency.



“Nature is the realization of the simplest conceivable mathematical ideas.”

ALBERT EINSTEIN, Ideas and Opinions (1954, p. 274)

1 INTRODUCTION

ONE FUNDAMENTAL ISSUE in investment analysis under uncertainty is the choice of valid invest-
ment objectives. There are two distinct approaches to this issue. The first one, which I call the
dichotomous approach, assumes that investment under uncertainty involves two basic parameters
— reward and risk (e.g., Knight, 1921; and Hicks, 1939). Investments with higher reward or lower
risk will be preferred by all individuals, and investment decisions boil down to finding an optimal
trade-off between reward and risk. The second one, the expected utility approach, assumes that
the objective of investment should be one of maximizing the expected value of some utility function
(e.g., von Neumann and Morgenstern, 1947; Marschak, 1950; Samuelson, 1952; and Herstein and
Milnor, 1953; and Savage, 1954). The two approaches do not in general overlap, and they both
have their merits and weaknesses.

In the dichotomous models, reward is conventionally measured as the expected return (or
the expected return over a risk-free rate, i.e., the risk premium) on investment. However, risk has
not received any consensus as to what constitutes its proper measure. Risk can be viewed as the
variance of investment return (Markowitz, 1952, 1959; Tobin, 1958; Sharpe, 1964; and Lintner,
1965a, 1965b; Mossin, 1966); a mean-preserving spread (Rothschild and Stiglitz, 1970, 1973); the
probability of shortfalls (e.g., Roy, 1952; Markowitz, 1959; Pruitt, 1962; Samuelson, 1963); the
semi-variance (e.g., Porter, 1974); the lower partial-moments of return (e.g., Bawa, 1974, 1975,
1976; Fishburn, 1977; and Harlow and Rao, 1989); the so-called value at risk (e.g., Morgan, 1995);

and so on. A general form of risk measures that includes the above as special cases has been



proposed by Stone (1973):

LWy, k, A) = /A W —WolfdF(W) k>0 (1)
—0
where F'(W) is the cumulative distribution of the investor’s uncertain terminal wealth W. Hence
the selection of any particular risk measure involves the selection of three parameters, namely, W
(reference level of wealth), k (the relative importance of deviations of final wealth from the reference
level), and A (the outcome that should be included in the risk measure).

The dichotomous analysis of reward and risk is appealing for its intuitive simplicity as well
as for its applicability. The mean-variance model is, undoubtedly, the most successful of the
dichotomous models on which modern portfolio theory is built. This model uses the return variance
or standard deviation as a measure of risk. Among the most important results of this theory are
the separation theorem, the role of correlation among assets in the selection of optimal portfolios
(Markowitz, 1952, 1959; and Tobin, 1958, 1965), and the capital asset pricing model or CAPM
(Sharpe, 1963, 1964; and Lintner, 1965a, 1965b).! On the other hand, the limitations of the mean-
variance model are also well documented (e.g., Fishburn, 1977 and the references therein). In
addition to criticisms of using the return variance or standard deviation as a measure of risk, there
have been challenges to the validity of the results of the mean-variance theory. For instance Dybvig
and Ingersoll (1982) show that CAPM necessarily involves risk-free arbitrage opportunities if it is
to hold for all assets in a complete capital market; moreover, the security market line of CAPM
can also be problematic if it is used to measure investment performance (Dybvig and Ross, 1985a,
1985b).

Indeed, when asked what the risk of an investment really is, most investors will probably

say that it is the risk of losing one’s money. This common notion of risk is reflected in the mean-

T assume that the reader is familiar with these results.



downside risk literature. In this literature, investment risk is defined as the risk of underperforming
a fixed and deterministic benchmark return. In terms of the general form of (1), for instance, Domar
and Musgrave (1944) measure risk as the probability-weighted losses (k = 1, A = Wj) in their study
of the effect of progressive income taxation on risk taking; Porter (1974), Bawa (1975, 1976, 1978),
and Fishburn (1977) show that the lower-partial moments as a measure of risk is consistent with
the stochastic dominance rules (k = 0,1,2); and Bawa and Lindenberg (1977), and Harlow and
Rao (1989) examine the capital asset pricing relationship in the lower-partial moment framework
(k = 1,2). Unfortunately these mean-downside risk models have not gained much popularity.
Lacking a theoretical foundation, the choices of k, Wy and A in (1) remain to be a matter of
opinion. Critics of the downside-risk models would also point to their added complexity in both
theoretical and empirical analysis.

In contrast to the dichotomous view of investment reward and risk, the expected utility
theory offers a much more rigorous approach to making investment decisions. According to this
theory, optimal investment decisions should be derived by maximizing the expected value of some
utility functions, provided that investors’ preferences agree with the basic axioms upon which the
theory is built. Thanks to the intuitive appeal of these axioms, the expected utility theory is
successfully adopted in almost every field of study involving risk: capital markets, game theory,
incentive contracts, security design, optimal taxation, etc. Apparently the expected utility models
are more general than the dichotomous models since the former makes use of the information of
distributions on their whole support whereas the latter only a few statistical parameters of the
distributions. This is perhaps the reason why much attention has been devoted to justifications of
the dichotomous models in the framework of expected utility theory. It is logical to find out that,

for whatever dichotomous model one selects, it can be justified in the expected utility framework



only for a small class of utility functions (e.g., quadratic utility function for the mean-variance
model), or for a small class of the return distributions (e.g., normal distribution for the mean-
variance model). The dichotomous models restrict the investors’ objective functions to a smaller
class than what would be available in the more general expected utility maximization problem.
Trading off generality for simplicity seems unavoidable if we confine ourselves to the paradigm of
expected utility.

Nevertheless, there is some cause for concern about the empirical validity of the expected
utility hypothesis (e.g., Tversky, 1967a, 1967b, 1969, 1975; De Bondt and Thaler, 1995). It has
been observed that there are circumstances where the individual choices can systematically violate
the expected utility hypothesis (e.g., the well known Allais paradox that we shall discuss later).
Individuals also exhibit a preference for flexibility to change their tastes — thereby to change their
utility functions — as they face new uncertainty (e.g., Kreps, 1979). In view of the limited rationality
of individuals (e.g., Simon, 1955, 1956), the dichotomous approach remains attractive if only for its
simplicity. It has the potential to resolve some of the puzzles raised by the expected utility theory
as well. But the dichotomous approach first needs a more rigorous theoretical foundation before it
can be confidently adopted.

This paper offers a theoretical foundation for the dichotomous view of investment uncertainty,
represented by the investment reward and risk. 1 develop a system of axioms that involves intuitive
common (or objective) judgement of how the investment reward and risk should be defined. I
call such reward and risk the investment’s inherent reward and inherent risk. Thus, by virtue of
common judgement, inherent reward and risk can be objectively defined and not affected by any
change in tastes of an individual. Provided that their underlying axioms are universally accepted,

the inherent reward and risk measures can be used as universal measures of investment reward and



risk. In comparison, the expected utility theory concerns individual behavior towards risk. It is
developed from a system of axioms that describes individual preferences. When risk is defined in
terms of individual preferences, it is natural that different individuals with different preferences
will come up with different judgements about what they prefer. In the expected utility paradigm,
it is well known that when choosing between two investment alternatives, the only criterion for all
individuals who prefer more to less (wealth) to arrive at the same choice is the first-order stochastic
dominance criterion (e.g., Quirk and Saposnik, 1962; and Hadar and Russell, 1969). The class of
distributions that are comparable by the first-order stochastic dominance criterion, unfortunately,
is rather small and many interesting investment strategies are not comparable even by the higher-
order stochastic dominance criteria that limit the class of utility functions.

At the bottom of the new paradigm that will be developed in this paper is the notion that any
investment strategy, broadly defined, has its own inherent reward and inherent risk — the reward
and risk that are independent of any particular investor’s preference or behavior. Inherent reward
and risk differ from subjectively construed reward and risk in that they are directly related to the
investment’s returns, rather than to the investor’s utility. They are actual; independent of one’s
preference or taste. Inherent risk, for instance, exists for everyone including risk-lovers — only they
require less reward to compensate for the risk. “A new-born calf does not fear tigers,” goes a
Chinese saying. The danger of a tiger for the calf, however, is there despite the calf’s ignorance. If
some investors refuse to buy stocks, it is not because they are more liable to losses than those who
doj; they are simply more risk-averse and do not think that the reward is sufficient for them to take
the risk. An asset’s risk of yielding less than the risk-free rate of return, for example, is inherent
in the asset’s actual return distribution, and not as a personal matter. Likewise, there exists an

inherent reward in a risky investment to earn more than the risk-free rate of return.



Section 2 is devoted to the development of the axioms that lead to the existence of a unique
measure for inherent reward (U) and a unique measure for inherent risk (D) of any investment
strategy (unique in the sense that U and D are ratio scale measures, invariant up to a positive
multiplicative transformation). These measures are shown to possess the desired properties of
being simple, transitive, and complete (able to measure all investment strategies). The inherent
reward-to-risk ratio (Z = U/ D) is shown to be capable of ranking all the investment strategies with
any return distributions, while respecting the fundamental principles of no-arbitrage and stochastic
dominance. The contribution of this section is the development of what might be called an “inherent
dominance theory” for investment analysis.

In Section 3, I apply the inherent dominance theory to the study of various important issues.
Among these issues are the prospect theory, the Allais paradox, the stochastic dominance criteria,
investment performance evaluation, and comparisons of the inherent dominance criterion with that
of mean-variance, etc. Section 4 shows the computation of inherent reward and risk when the
investment returns follow a binomial process or when the payoff distribution is normal.

In Section 5, the inherent analysis is extended to the portfolio context where I introduce the
notion of inherent efficiency of a portfolio or an investment strategy. I show that inherent efficiency
of any portfolio, in particular that of the capital market, directly implies a capital asset pricing
formula that exhibits both rigor and simplicity. It is capable of pricing sophisticated securities such
as options without having to assume that the market is complete or that the stock price follows
a specific process. Section 6 concludes the paper with some suggestions for future research in this
inherent analytical framework.

In a companion paper (Zou, 2000), I show how the basic capital asset pricing model can

be extended to a multi-period framework and how it can be used to price sophisticated financial



products. Moreover, I derive a multi-period capital market equilibrium model which is consistent

with both expected utility maximization and inherent efficiency of the capital market.

2 THE AXIOMATIC DEVELOPMENT OF INHERENT REWARD

AND INHERENT RISK MEASURES

2.1 Preliminaries

Much of the development in this section is similar in form to the early axiomatic development of the
expected utility theory (e.g., von Neumann and Morgenstern, 1947; Marschak, 1950; Samuelson,
1952; Herstein and Milnor, 1953; and Debreu, 1960).% 1 try to stay away from the issue of individual
preference and behavior, focusing instead on what is likely to be agreed upon by all investors —
that is, by common judgement. This allows me to add a few intuitive axioms that eventually lead
to the simple measures of inherent reward and risk, and develop a simple dominance criterion that
is able to rank all investment strategies in the sense of inherent dominance.

The problem I consider is one of investment under uncertainty with a known investment
horizon. Assuming away cash inflows and outflows during the holding period, any initial investment,
combined with any well-defined investment strategy, conceivably leads to a probability distribution

of the monetary payoff at the end of the horizon.> The return distribution of any investment

2Some axioms, lemmas and theorems are straightforward extensions of the expected utility theory. We include
the proofs for ease of reference and completeness. The line of presentation follows largely the textbook of DeGroot,

1970 (Chapter 7).

3Thus any dividends, interest payments, rents, etc., that will be earned during the holding period are assumed to
be reinvested and storage costs of the assets, if any, will be financed by selling partially the invested funds. For any
individuals with interim income and consumption during the holding period, we can assume in the spirit of MM’s

theorem (Modigliani and Miller, 1958) that their surplus or shortage for consumption can be saved or financed with
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strategy is assumed to be independent of the amount invested, i.e., to exhibit stochastic constant
returns to scale (Arrow, 1974). Thus the focus is on investment returns, rather than total payoffs,

of investment strategies.*

Further, any two identical return distributions will be assumed to be
the same no matter how they are generated. For instance, after the ticket is bought, the inherent
reward and risk of a bet on a racehorse is the same whether or not one watches the race. This
assumption is crucial for ensuring the legitimacy of the use of Bayesian rules in the development
of the inherent reward and risk measures, as it is in the development of expected utility theory.
In summary, my purpose is to study the inherent reward and risk of probability distributions of
investment returns for an arbitrarily given, and fixed, investment horizon.®

A well-defined investment strategy is understood as a decision, or a sequence of “if then”
decisions that can be implemented by delegation or via a computer program. The decision to buy
a mutual fund, for instance, is a well-defined strategy that delegates the interim trading decisions
to the mutual fund manager. Although investors may have different beliefs about the probability
distribution of their investment returns, it is conceivable that there is only one true (or objective)
distribution for any well defined strategy. To avoid ambiguity, I shall analyze inherent reward
and risk of the investment strategies as though such true distributions of the random returns are
known. A lottery’s payoff distribution, for example, can be made known to all players. The return

distribution of a stock, on the other hand, may not be perfectly known by any individual. The

axiom system to be developed here, however, has little to rely on personal beliefs.®

lending or borrowing at the risk-free interest rate. We do not explore these issues here, however.

4A further justification for focusing on returns rather than wealth is that an asset’s inherent reward and risk must

be common to all investors: investment returns are common, whereas invested wealth is not.

®Most of the research in the expected utility paradigm focus on terminal-wealth distributions. See, for instance,

Dybvig (1988a) for more discussions.

5Tt might help by imagining the existence of an omniscient creature who is willing to show us the return dis-
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There are several advantages of such an objective approach. First, subjective beliefs although
important for the (experimental) study of human behavior have little empirical content since all
empirical studies of investments rely on data drawn from the “true” sample distributions. Second,
it is the true distribution of returns that determines an investor’s potential gains or losses, and not
the hope or belief of any individual investor. In evaluating the performance of a fund manager, for
instance, we look at what he actually does and not at what he claims he can do. Third, analytically,
this approach avoids the potentially complicating issues that may arise with subjective beliefs and
expectations, such as the distinction between risk and uncertainty (Knight, 1921); between known
and unknown probabilities (e.g., Ellsberg, 1961; Schmeidler, 1989; Fishburn, 1991; and Sarin and
Wakker, 1992); and between true probabilities and subjectively weighted probabilities (e.g., the
references in Machina, 1989).

The potential for application of the inherent dominance theory to practical issues, on the
other hand, are not limited to this perception of true distributions. An investor with his own
subjective beliefs about the probability distributions of different investment strategies, for instance,
can assess the inherent reward and risk of these strategies that he believes. These decision issues

are investigated in Section 3.

2.2 The Formal Set-up

Uncertainty: For 1 dollar of initial (¢ = 0) capital invested and a given time horizon ¢ > 0, let 7
denote the random variable, the return on this investment that will be evaluated at time t.
Uncertainty of any such investment is represented by a probability space {R, B, P;} where R

(the real line) denotes the space of all possible returns 7, € R on the investment, 5 denotes the

tributions of all available strategies for all horizons, and who resolves our uncertainty over time by following these

distributions until the end of our chosen horizon.
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o-field of Borel sets of R, and P; denotes the probability distribution of r on (R, B). Let P
denote the class of all probability distributions P on (R, B) whose mean exists, and we focus
only on investments whose return distribution is in P.” I would like to simultaneously discuss
discrete distributions, continuous distributions, and a mixture of both kind of distributions
with minimum notations. Thus, P(x) can mean either the probability that » = z for the
discrete case or the density function at » = x for the continuous case. For any Borel set
X C R, P(X) will denote the probability that » € X. More generally, for any probability
distribution P over R, any integrable function y on R, and any subset X € B, the abstract
integral [ y(r)dP(r) will be interpreted as the Lebesgue-Stieltjes integral [ y(r)dF(r) where

F' is the distribution function that corresponds to P.

Strategy: For a given time horizon ¢ > 0, an investment strategy S is defined as any decision
or a sequence of decisions that matches the initial investment capital (1 dollar at time 0) to
a probability distribution of returns P € P on horizon t. For instance, the decision to buy
and hold an asset A that matches the initial capital to the return distribution of the asset
P/ € P is a well-defined strategy. An example of an ill-defined strategy for horizon t is one
of holding an option that expires before time ¢, if subsequent actions are not specified for
the remaining time after the expiration of the option up to time t. A strategy is feasible if
under the current investment environment it can be actually implemented. Some strategies

may not be feasible in practice. For one thing, if short-selling of a security is prohibited then

"Thus, we avoid discussion on investments that generate infinite expected returns, such as St. Petersburg Paradox
(e.g., Samuelson, 1977). We do allow for cases of risk-free arbitrage, however. An arbitrage strategy can be perceived
as an investment that generates an abnormal (finite) return without any downside risk, and in order to generate
infinitely high returns one needs to be able to replicate the strategy infinitely many times. This is a special case that

will be dealt with after the definition of inherent reward and risk.
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any strategy involving short-selling of this security is not feasible. Let {2 denote the class of
all strategies that are feasible at t = 0. All assets, funds, indices, or buy-and-hold portfolio
strategies that are feasible in the market place, for example, form a subset of 2. A dynamic
trading strategy, e.g., a periodically rebalanced portfolio that keeps the proportion of each
asset in the portfolio constant, is also an element of ). More generally, strategies in which
sequential actions will be taken upon realized contingencies or upon new information arrivals
can be seen as an element of {2, provided that at time ¢ = 0 the return distributions of such
strategies on horizon t can be assessed. Again, recall that even if an investor does not have
a perfect idea about the return distribution of his strategy, an objective distribution can be
perceived to exist from which his actual return will be drawn.® Since the return on investment
is the only concern here, two strategies with identical return distributions on horizon t will
be considered the same despite their possible differences in actions and payoffs before or after
t. Thus, we can also directly refer to any return distribution P; as a strategy provided that

P; is attainable by some strategy in Q.

Inherent dominance relationship: Let the binary relation > denote the notion “inherently
dominates”, and let ~ denote “inherently equivalent”.? The symbol = will mean “either >
or ~”. For any two probability distributions P/ € P and PP € P, P4 = PP means that

PA inherently dominates PP, PP < P/ means the same as P/ = PP, and PP < PA means

8 Although the true return distribution of a trading strategy may never be known to us, just as that of a particular
asset, we have at least statistical methods to estimate the distribution — especially where a strategy can be frequently

repeated.

Tt bears remarking that here > is not meant to be an individual preference relationship but rather a relationship
that is based on common judgement. By analogy, imagine two dishes of food served in a restaurant. Although it
might be impossible to have all individuals prefer one dish to the other, it is easier to commonly agree on which dish

is more salty, spicy, etc.
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the same as P/* = PP. These binary relations are defined also for the case of certainty.
Thus, given any two returns ry and ro, 1 > 79 indicates that receiving a return r; for sure
inherently dominates receiving ro for sure. Such a relation > is assumed to be complete and
transitive. That is, it is able to completely rank all the probability distributions in P in the
following sense. First, if PA and PP are any two probability distributions in P, then exactly
one of the following relations must hold: P# = PP, PA ~ PP, or PP = P/. Second, let any
three probability distributions P, PP and P be given. If P4 = PP and PP = P, then
PA = PCif PA =~ PP and PP = P, then PA = PC; and if P = PP and PP = PC, then

PA - PL.

Inherently more rewarding and more risky relationships: Similar to =, the binary relation
>4 denotes either >,: “inherently more rewarding” or ~g: “inherently equally rewarding”. And
the binary relation =<, denotes either <;:“inherently more risky” or ~y:“inherently equally
risky” (thus =, denotes “inherently less risky”). The subscripts g and ¢ refer to the gain and
loss, respectively. For any P/ € P and PP € P, PP =y P/ means the same as P/ =4 PP,
and PP <, P/ means the same as P/* =, PP. Also, the relations =g and = are assumed to

be complete and transitive in the same sense as >.

Inherent reward and risk: The inherent reward and inherent risk of any return distribution are
perceived as two functionals with domain of definition P that maps the return distribution
to a pair of real numbers on R*. Let U : P, € P — U(P;) € R" denote the inherent reward
and let D : P, € P — D(P;) € R* denote the inherent risk. Thus, for any given time
horizon ¢t > 0 and any given investment strategy or return distribution P, U(F;) and D(FP;)
are the measures of the inherent reward and risk of the strategy. My goal is to axiomatize

some properties of such inherently more rewarding and more risky relationships =, and <, in
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P, and identify a unique (ratio scale) pair of measures U and D that map the relationships
=4 and <y in P to the > relationship in R*. That is, for any two probability distributions
PA € P and PP € P, P/ =, PP if and only if U(PA) > U(PF) and PA <, PP if and only

if D(P) > D(PP).

Inherent reward to risk ratio: The inherent reward to risk ratio, denoted Z (=U/D), is also
a unique functional (up to a positive linear transformation) Z : P, € P — Z(P;) € R" that
maps the inherent dominance relationship = in P to the > relationship in RT. For any two

probability distributions P4 € P and PP € P, P/ = PP if and only if Z(P2) > Z(PP).

Investment objectives of the investors: Assuming that the return distributions are known
for any given horizon and any feasible investment strategies, I propose a general formulation

of the investment problem as follows.1?

max B[V,(Wo,U(Ft), D(P2), Wa); ] (2)

where P, € Q is the return distribution of a feasible investment strategy, E|-; P is the
expectation operator under distribution P, Wy is the investor’s current wealth, W; is the
investor’s time-t wealth (the random variable), and U(F;) and D(P;) are the inherent reward
and risk of P;. Clearly, this formulation includes expected utility maximization as a special
case and it allows the value function V; to vary with horizon ¢. It is natural to assume that

V4 increases in U and decreases in D, for any all ¢, Wy, W; and P;. In the companion paper

10Tn an investment context in which wealth is the major concern, a general form of the investment problem may
be represented as one of choosing the optimal return distribution function of a feasible strategy, P, given one’s initial
wealth Wo, such that a functional V(Wo, P) is maximized (see Machina, 1982). Expected utility theory boils down

to restricting the form of the objective functional V to being linear in P.
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(Zou, 2000), this general form of investment objectives is adopted to develop a general capital

market equilibrium theory and dynamically consistent investment strategies.

From now on, the subscript ¢ will be dropped for notational convenience.

2.3 The Basic Notion of Inherent-Dominance

Given any return distributions P € P, P, € P, and any 6 € (0,1), let 6P, @ (1 — ) P> denote a
lottery that assigns probability € to distribution P; and 1 — 6 to distribution P, for the investment
returns. In particular, if 7 and ry are any two deterministic levels of returns, then 0r; @ (1 — 0)ro
denotes a lottery in which the chance that the return equals r; is 8 and that the return equals ro
is 1 —#. On the other hand, let P, 4+ (1 — 0) P> denote a portfolio with # and 1 — 6 being the
weight of capital invested in two assets whose return distributions are P; and P respectively; in
particular, 0r; + (1 — 0)ry denotes a realized return on such a portfolio (mix of outcomes). When 6
denotes the percentage of capital invested in a portfolio, it may be allowed to be smaller than zero
or greater than one if short selling and leverage are feasible.

Put differently, let §; denote the degenerate one-stage lottery that assigns probability one to
the outcome x. Then 0r1 @ (1 — 0)ry = 06,, ® (1 — 0)é,, and Or1 + (1 — 0)r2 = dgr 4 (1-0)r,. For
a numerical example, suppose 6 = 0.8, 1y = 0.2, ro = 0.1. Then 0r; @ (1 — 0)ry equals 0.2 with
probability 0.8 and equals 0.1 with probability 0.2. Whereas 0r; + (1 —80)ry = 0.8%0.24+0.2%0.1 =

.18 for sure.

Axiom 1 (Gain-Loss Partition) : (i) Let any ro € R and any two distributions Py and Py be
given such that Py([ro,00)) = 1 and Py((—00,r0)) = 1, then P1 = Po; and if Py({ro})P2({ro}) < 1,
then Py = Py . (ii) The set of all possible returns R can be partitioned into a set of gains G, a set

of neutral returns N, and a set of losses L such that G # (0, N #0, L# 0, and GUNUL = R. If
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rr € N andro € N, thenry ~7ro. If r1 € G, 10 € N, and r3 € L, then r1 = 12 > 73.

Underlying Axiom 1(i) is the basic notion that more wealth is better than less. Thus, if an
investment yields a (weakly) higher return than another investment under all the contingencies,
then the former inherently dominates the latter. Axiom 1(ii) further postulates that gains and

losses can be separated by some neutral returns that are neither gains nor losses.

Lemma 1 : For any two returns r1 and ro, 71 = 1o if and only if r1 > ro, and r1 ~ ro if and only

ifrl =T92.

Proof: Straightforward from Axiom 1 (i), choosing rg such that r1 > rg > ra. O

Lemma 2 There exists 1o € R such that N = {r¢}, L = (—00,r9) and G = (rg,00).

Proof: Since all returns in N are equivalent, from Lemma 1 they must be equal. Since N
is not empty, there must exist a unique number r¢ in N. Thus, from Axiom 1 and Lemma 1 any
r > rop must belong to G and any r < ry must belong to L. O

Intrinsically, any realized return cannot be a gain and a loss at the same time. Moreover,
any investment return must be either a gain or a loss, unless it breaks even by some standard. I
call rg the neutral-return benchmark. In practice, of course, investors may have different goals and
different standards. Fund managers, for instance, are usually evaluated against the performance of
a benchmark portfolio and investors may have different target rates. For practical purposes, then,
one may interpret the probability distributions discussed here as those of the deviations of any
fund’s return from that of a benchmark portfolio, and speak about the inherent reward and risk of
deviations from the benchmark.

For notational convenience, we let G = GUN and L = LU N.
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2.4 The “Inherently More Rewarding” and “Inherently More Risky” Relation-
ships

Having partitioned the outcome space R into the gain and loss domains that are separated by a

neutral-return benchmark, I now partition the distributions in P as follows.!!

Definition 1 For any P € P, let Pt be defined as a distribution over G such that Pt = P over
G and P*(rg) = P(L). Similarly, let P~ be defined as a distribution over L such that P~ = P

over L and P~ (ry) = P(G).

Axiom 2 (Reward-Risk Partition) Let any distributions P1 € P and P> € P be given. Then
Py =4 Py if and only if P{" =, Py; Pi =y P if and only if P| =, Py . In particular, if P\(G) =
Py(G) =1 then P, = Py if and only if Py =g Po; and if P, (L) = Py(L) = 1 then P, = P, if and

only Zf P1 tg PQ.

In other words, Axiom 2 postulates that the inherent reward of a distribution P is uniquely
determined by its upper part over » > rg; and the inherent risk of a distribution P is uniquely
determined by its lower part over r < rg. Therefore, the inherent reward and inherent risk of any
investment strategy can be analyzed separately. The distributions P+ and P~ will be called the

upside equivalent of P and the downside equivalent of P, respectively.!?

Axiom 3 (Lottery Independence) : Let any distributions Py € P, P, € P, and P € P be

1 Although it is common in prospect theory to partition the outcome distributions according to gains and losses,
that partition is usually based on individual preferences. Here, we are seeking a commonly perceived partition in

which the neutral-return benchmark is a universal rg, i.e., is the same for all investors.

127¢ is worth noting that except for special cases, PT and P~ are not conditional distributions; that is, for all
r € R, PT(r) # P(r|G) and P~(r) # P(r|L). The shape of a distribution on a subset of events does not in general

overlap with the conditional distribution obtained by restricting the events to be in the subset.
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giwven. Then for all 6 € (0,1],

P} =, PFiffoP ® (1 - 0)Pt =, 0P @ (1 - 0)PT, (3)

Py = PyiffP; & (1—0)P~ =4 6Py & (1—60)P. (4)

Axiom 3 is analogous to the well known (traditional) independence axiom in the development
of expected utility theory.!®> Here, independence is extended to a distribution’s upside and downside
equivalences on the gain and loss domains respectively. As I shall show later, the implications of
this lottery-independence axiom are not likely to suffer the empirical problems that confront the
traditional independence axiom (e.g., the Allais paradox). In words, Axiom 3 postulates that, if
distribution P; is inherently more rewarding (or less risky) than distribution P», then a lottery
whose return follows with probability 6 the distribution P; and otherwise P is also more rewarding
(or less risky) than a lottery with probability 6 to follow distribution P and otherwise P. Since
two other independence axioms will be introduced later, I call this axiom the lottery-independence

ariom.
Lemma 3 Let any distributions Py, P2, Q1 and Q2 in P be given. Then for all 0 € (0,1],

0P ® (1 - 0)Qf =4 0P ® (1 —0)Q] (5)
if Pf‘ =g P2+ and Qf =g Qg‘, and

0P © (1 -0)Qy = 0P @ (1-0)Q; (6)

13Gee, e.g., Marschak (1950), Malinvaud (1952), and Samuelson (1952). Implying that the functional form of the

preference function is linear in probabilities, this axiom was critical in the early development of the expected utility
theory. Machina (1982) later showed that the expected utility analysis can be justified locally without this axiom,
provided that preference functionals are smooth in a differentiable sense. We do not investigate such extensions here

in the inherent dominance context.
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if Pl =¢ Py and Q7 =0 Q5.
Further, the strict =g holds in (5) if either P;" =, Py" or QF =, Q3 , and the strict = holds
in (6) if either P >¢ Py or Q] >¢ Q5.
Proof: Applying Axiom 3 twice yields
OP ® (1 -0)Qf =, 0P ® (1 —0)Qf =, 0P @ (1-0)Q5.

One of the =, above must be strict if either P;" =, P;” or Qf =, Q7. The same holds if =, is

replaced with »y. 1
Lemma 4 Let any distributions Py € P and Py € P be given. Then for all 6 € (0,1),
P =, 0P @ (1 — 0) Py =, P if P =, P57, (7)
P =y 0P @ (1—-0)P, =, Py ifP| =y Py . (8)

Proof: Note that for all P, P ~ 0P ® (1—0)P. Suppose P; =, P;". It follows from Lemma 3

that
Pl o~y 0P @ (1-0)P]
g 0P @ (1-0)Ps
=g 0P @ (1—0)P;
~g Py
The same holds for (8) with >, instead of >. O

A particular case of Lemma 4 is that for any deterministic returns r; and 79, and for all
6 € (0,1),
7L g Or1 ® (1 —0)rg =g ro if r1 >1ry > 1,

1= Or1 ® (1L —0)rg =g 1o if 179 > 11 > 1ol
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Lemma 5 Let any returns r1 € R and r2 € R be given, and let any & € [0,1] and ¢ € [0,1] be
given. Then for ri > re > 19,
Eri® (1 —8Qra =g Yr1® (L —¢)re if >4, (9)
and for rog < ry <o,
Erao® (1 —&)r1 =g vro ® (L —)ry iff € > 1. (10)
Proof: It suffices to show that if & > 1, then (9) and (10) hold. Let a = (1 —¢&)/(1 — %) and
assume that 1 > ¢ > ¢ > 0 so that « € [0,1). Suppose first that r1 > ro > rg. It can be verified
that
§r1® (1 =&)ry
~g o afri @ (1 —)ra] & (1 —a)r
g afhr1 @ (1 —¢)re] ® (1 — @)hry @ (1 —4)re]  (by Lemma 4)

~g Yrr @ (1 —a)rs.
Suppose next that rs < ry < rg. Then,
Era® (1 —&)m
~e o alra @ (L—)r] @ (1 - a)ry
<¢ apra® (1 —9)r] & (L—a)Yry @ (1 —1)r1]  (by Lemma 4)
~p o Yra @ (1 —)r.
U

Axiom 4 : Let any P, P, and Py in P be given. If P1+ =g P14 P2+, then there exists ¢ € (0, 1)

and & € (0,1) such that

YP @ (L= )P =g PT =y £PF @ (1 =€) Py (11)
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Similarly, for P =¢ P~ = Py, there exists ¢ € (0,1) and £ € (0,1) such that
YPr @ (L—)Py = P™ = §PT @ (1= §)P; . (12)

Theorem 1 : For any ri, r, and ry in G such that ry > r > ro, there exists a unique number
0 € (0,1) such that r ~g Or1 ® (1 —0)ry. Similarly, for any ri, r, and ro in L such that ry <r <,

there exists a unique number ¢ € (0,1) such that r ~y ¢r1 @ (1 — P)ra.
Proof: Suppose r1 > r > ro > rg. Let the sets X and Y be defined as follows.

X = {0l0ri®1—-0)ro=4r; 0€(0,1)}

Y = {0l0ri®(1—-0)ry <,r; 0€(0,1)}

Axiom 4 implies that these sets are open and not empty. It follows from Lemma 5 that for
allp € X and ¢ € Y, ¢ > ¢. Thus there exists a such that inf{6|0 € X} > a > sup{0|f € Y}. By
Axiom 4, this o does not belong to either X or Y, thus r ~y ary @ (1 — a)ry. Lemma 5 further

implies that this « is unique. The ~; part of the theorem can be proved analogously. 1

2.5 The Gain and Loss Functions

Similar to the utility functions, there are now defined two auxiliary functions that will be useful for
the development of inherent reward and inherent risk measures. Let any function g(-) : r» € G —
g(r) € RT be called a gain function provided g(r1) > g(rz) if 71 > ro for any 7 € G and 75 € G.
Let any function £(-) : » € L — £(r) € RT be called a loss function provided £(r1) > £(rg) if r1 < 7o

for any r € Landry € L.

Theorem 2 : There exists a gain function g(-) : r € G — g(r) € Rt that strictly increases in

r, and there exists a loss function £(-) : v € L — L(r) € R that strictly decreases in r with
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g(ro) = £(ro) = 0. They satisfy that, for allry, 72 € G and § € [0,1] such that ry ~y Ora® (1 —0)rg,

g(r1) = 0g(re); and for all r1, ro € L and 0 € [0,1] such thatry ~g Oro ® (1 — O)rg, L(r1) = 04(r2).

Proof: 1 first prove the existence. Let any 7 € R and r € R be given such that ¥ > rg > r.
By Theorem 1 a unique gain function g(-) on G and a unique loss function ¢(-) on L (for given 7

and r) can be defined as follows. For all € [rg,7], define g(r) € [0, 1] such that

7 g g(r)T @ (L= g(r))ro (13)

And for r € (T, 0), define g(r) € (1,00) such that

T~y r® Ol (14)
Similarly, for r € [r,ro] define ¢(r) € [0,1] such that
r g £(r)r @ (1 —£(r))ro (15)

And for r € (—oo,r) define £(r) € (—o0,0) such that

r vy

1—_€(r) 1 "o (16)

T
Thus a gain function g(r) on G and a loss function £(r) on L are defined. They are unique for any
given values of 7 and r.

I now verify the stated properties of g and ¢. Let any r; and 75 from G be given and assume
that for some 6 € [0,1], 71 ~g Or2 @ (1 — 0)rg. The property to be verified is g(r1) = 0g(r2).

By the construction of g(r), for r; < ry <7 it follows from (13) that

r1 o~ g(r)T @ (1—g(r1))ro (17)

ry ~g g(r2)T @ (1 —g(r2))ro (18)
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Thus

T o~ Ora @ (1—0)ro
~g Olg(r2)T @ (1 —g(r2))r0] ® (1 — O)710

~g [09(r2)r @ [0(1 —g(r2)) + (1 = 0)]ro (19)

From Lemma 5, the probability of reaching 7 in (19) must be the same as that in (17). Thus

g(r1) = 0g(ra).

For ro > 7 > rq, it follows from (14) that

— 1 g(rz) =1

T g ey @0)

Consequently,

ro~g g(r)T@® (1 —g(r1)ro

v gmlsra© (L2 @ (1 - gl
~ g @ o) L2t 1= gl @

By Lemma 5, the probability of reaching r2 in (21) must be the same as that given as in r; ~yg
Oro @ (1 — @)rg. Thus g(r1) = Og(rs).
Finally, for ro > > 7, it follows from (14) and 1 ~g 672 ® (1 — )ro that both (20) and the

following relationship must hold.

1 g(r) —1
T o~y g(rl)’r‘l D 9(7“1) ]7“0 (22)
1 g(ry) —1
~g m[@?‘g Q5] (1 — 9)7‘0] D { 9(7“1) ]’r‘o (23)
1 1 g(ry) —1
o Gy ey O ey .
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By Lemma 5 again, the probability of reaching rs in (24) must be the same as that in (20). Thus
g(r1) = 0g(r2). Lemma 5 also implies that, following the condition that rqy ~g 612 @ (1 — 6)ro,
0e(0,1)ifrg <ry <re, 8 =01if r; =rg, and 0 = 1 if r; = ry. In other words, g(r) is a strictly
increasing function of  on G. Finally, substituting 7o for r in g(r1) = fg(rs) yields g(ro) = 0.

The proof with r and ry in L is similar. O

2.6 Expected Gain and Loss as Representations of Inherent Reward and Risk

Extending the expected utility theory, this subsection shows that the inherent reward and risk can
be represented by the expected values of the gain and loss functions. To motivate the subsequent

analysis, I first show a theorem that holds for the discrete case with finite possible outcomes.

Theorem 3 Let any P € P and QQ € P be given and let ¥ denote a random variable. If the outcome
spaces of both P and @ contain only a finitely many possible returns ¥ € {ri,ra,...,mrn} C G, then
P =4 Q if and only if E(g(7); P*) > E(g(7); Q"). Similarly, if the outcome spaces of both P and
Q@ contain only a finitely many possible returns ¥ € {ry,ra,...,r,} C L, then P =, Q if and only if

E(((F); P~) < E((r); Q7).

Proof: I prove only the =, part of the theorem; the =, part of the theorem can be proved
analogously. Without loss of generality, assume that P and ) have the same upside support
{ri,72,...,rn} C G and consider P first. Let # € {ri,ra,...,r,} denote the random return
variable with distribution P where 7; occurs with probability p; > 0, for j = 1,2,...,n. Let
p=1- 2?21 p; denote the probability that 7 < 7y (thus no restriction on the downside). Without

loss of generality, assume that ro <r; <79 <... <r,. By definition,

Pt g pir @ pora @ ... ® prrn @ ¢ro. (25)
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In other words, PT can be seen as a lottery with n + 1 possible outcomes. It assigns probability
pj for ¥ = r; and 1 — Z?:l pj for 7 = rg. By Theorem 1, for all r;, j = 0,1,...,n, there exists a
unique #(r;) such that

1y g 0(r5)r ® (1= 0(r3))ro (26)

with 0(rg) = 0 and 0(r;) € (0,1) for j =1,2,...,n. Note also that

E(0(F); PY) =" pif(r;) + ¢0(ro) = ij9(7“j)-

j=1
Consequently, substituting (26) into (25) and by n applications of Axiom 3 yield

Pt~y P pil0(rj)rn ® (1= 0(r;))ro] ® ¢ro (27)
j=1
~g Do pfr)lra © (1= pif(ry)lro (28)
j=1 j=1
~g E(O(F); PT)r, @ [L— E(0(r); PT)]r. (29)

The right hand side of (27) is a two stage lottery that first chooses a r; with probability p; and
ro with probability ¢. If rg is chosen in the first stage, the lottery yields rg with certainty in the
second stage. If r; is chosen in the first stage, the lottery then chooses r,, or ro with probability
(r;) in the second stage. The final result of the lottery is thus either 7, or 7y, as expressed in
(28). The total probability that 7, will be chosen is » 7, p;f(r;) and that 7o will be chosen is
D pi(L=0(ry) + ¢ =1-=377 p;o(r)).

From Theorem 2, however, there is a relationship between 6(r;) and g(r;) given by g(r;) =

0(r;)g(ry). Thus, substituting g(7)/g(ry) for 0(7) in (29) yields

7). Pt ) Pt
The same holds also for @); that is,
7 + 7 +
QF g AL, - ZUDED)y,, (31)
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It follows from Lemma 5, then, that P =, @Q if and only if E(g(7); PT) > E(g(7); Q). O

I now extend the result in Theorem 3 to the more general set-up involving both discrete
and continuous distributions over possible unbounded outcome spaces. For any given P € P, its
upside equivalent P and its downside equivalent P~ on the sets G and L, respectively, have been
previously defined. Consider now the conditional distributions obtained by further restricting P+
to the set Gy, = [ro, ] for some r, > 1o, and by restricting P~ to the set Ly, = [rm, o for some
rm < 1r9. Let P, € P denote the conditional distribution of P on G,, such that B (r) = P (r|G,,),

and let P, € P denote the conditional distribution of P~ on L,, such that P, (r) = P~ (r|Ly,).
Lemma 6 For any rpy, <11 <ro <19 <ryn, P =g Py and P[ =, P,,.

Proof: Let Ay = (ro,rn] and Ay = [rg,rs]. Since PT(A;1]A;) = PT(A3Ay) = 1, from
Axiom 1 it follows that P*(-|A;) >4 P*(-|A2). Further, since P (A;) + P (A2) =1 and P (:) =
P*(|A1)Pf (A1) + Pt (-|A2) PF(Ag), it follows from Lemma 4 that P, =, P (-|43) = P;".

Similarly, let By = [r1,79] and By = [rm,r1). Since P~(B1|B1) = P~ (B2|B2) = 1, it follows
from Axiom 1 that P; = P~ (:|By) >¢ P~ (:|B2) = P; . Since P,, = P[ P,,(B1) + P; P,,(B2), it
follows from Lemma 4 that P =, P,,. g

By Theorem 1, for all r € [rg,r,]| there exists a unique ¢ (r) such that
7 g Y(r)rn @ (1= 9(r))ro, (32)
and for all r € [rp, ro] there exists a unique £(r) such that
7 g §(r)rm @ (1= &(r))ro, (33)

with 9(rg) = £(r9) = 0. The next axiom postulates that for all distributions P € P, what has been

shown in (29) is generally true with P over G,, and with P, over L.
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Axiom 5 For any P € P, let ¢(r) be defined on Gy, as in (32) and let {(r) be defined on Ly, as
in (33). Then
Py g B (r); PN )ra @ [1 = E(¢(r); BY)]ro, (34)

By o0 EE(r); P )rm @ [1 = E(E(r); Py )]ro- (35)
A variation of the (traditional) continuity axiom is further adopted as follows.

Axiom 6 Let any P € P and Q € P be given. If P =, QQ, then there exists r1 < ro such that for

all 7y <11, Py =4 Q. If P =4 Q, then there exists ro > ro such that for all rp, > 1o, P =4 Q.

This Axiom means that, for all distributions, the binary relationship >4 is continuous in the
limit as r, — oo, and the binary relationship >, is continuous in the limit as r,, — —oo. The next
theorem shows that the inherent reward and risk measures can in general be represented by the

expected value of the gain and loss functions constructed in Theorem 2.

Theorem 4 (Dichotomous Expected Utility) Let any P € P and Q € P be given. Then
P =, Q if and only if E(g(r); P*) > E(g(r);Q*), and P =¢ Q if and only if E(¢(r);P~) <
B(Ur); Q-

Proof: Substituting g(r)/g(ry) for ¢ (r) in (34) and £(r)/¢(ry,) for £(r) in (35), it follows from

Axiom 5 that

R
Similarly,
Py~ E(%Zf )rm@[l—E(é((Q;f w,, (39)



29

}7“0. (39)

If both P and @ are bounded distributions, a sufficiently small r,, and a sufficiently large r, can
be chosen so that Pf = PT, P, = P~, Q} = Q", and Q,, = Q™. It then follows from Lemma 5

that the theorem holds.
In general, it can be shown that P~ <, Q™ implies E(¢(r); P~) > E(¢(r); Q~). By Axiom 6
and Lemma 6 there exists r1 < rg such that for all r,, < rq,
P, 2Pl <0Q =¢Q, 2 Q7.

Since P and Q)7 are bounded, E({(r); P;) > E(¢(r); Q7). From Axiom 4, there exists 6 € (0,1)

such that
0P © (1—-0)Q; < Q =0 Q.

Since the above distributions are bounded,

E((r); Py,) = E((r); Pr) > 0E(e(r); Pr) + (1 = 0)E(U(r); Q1) = E(U(r); @r,)-

Taking the limit as r,, — —oo yields E(¢(r); P~) > E(¢(r); Q™).
That Pt >, QT implies E(g(r); PT) > E(g(r); Q") can be shown analogously as follows.

Similar to the above proof, there exists ro > rg such that for all r, > ra,
Py zg Py =g Q7 g Q=g Q3.
which implies that E(g(r); Py7) > E(g(r); Q7). From Axiom 4, there exists € (0,1) such that
0Py @ (1-0)Q3 =9 Q =g Q)
It follows that

E(g(r); Py) = E(g(r); Py") > 0E(g(r); Py) + (1 — 0)E(g(r); Q3) = E(g(r); Qry)-
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Taking limit as r,, — oo yields E(g(r); PT) > E(g(r); Q™). O

I call this theorem the dichotomous expected utility theorem for its relation (in form) to the
von Neumann-Morgenstern expected utility theory. To see this, interpret r» and ry as an investor’s
time-t wealth (random) and the benchmark wealth (fixed) respectively. Call g(r) the investor’s
upside utility and ¢(r) the investor’s downside utility. Then, the investor’s investment objective
can be postulated as follows.

wmax B(g(r); P*) — E(¢(r); P) (40)

In general, g(r) and ¢(r) depend on the benchmark ry and horizon ¢. As the investor’s benchmark
wealth changes and/or investment horizon changes, the functional forms of g(r) and ¢(r) can change
as well. It is easily seen that the expected utility is a special case of (40) if the benchmark r¢ is held
fixed for all wealth levels and the functional forms of g(r) and ¢(r) are fixed. A similar uniqueness
result can be derived such that for all (r) and £(r) having the property stated in Theorem 4, they
are a positive linear transformation of g(r) and £(r).

Further, if the distribution function P is interpreted as one’s subjective probability distribu-
tion of wealth, then (40) gives a general form of objectives of which many special cases have been
studied in the non-expected utility models (see, e.g., a list of such models in Machina, 1989, p.
1631). In this regard, Theorem 4 contributes a normative foundation to the non-expected utility

analysis of choice under uncertainty.

2.7 The Form of The Gain and Loss Functions

So far I have shown only that the gain and loss functions g(r) and ¢(r) exist and are monotonic
in r. It is desirable to know more about plausible forms of these functions that may result from

the requirement of common judgement. In this subsection, I propose two additional axioms that
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together with the preceding axioms imply a simple linear form for both g(-) and £(-).

The next axiom, the allocation independence axiom, is similar in form to the lottery indepen-
dence axiom (Axiom 3) but it concerns the mix of outcomes rather than the mix of distributions.
For any ¢ € [0,1], let ¢r + (1 — ¢)rp denote the weighted average of returns r (random) and ry
(deterministic), where ¢ is the weight. If P € P is the distribution of r and g is the risk-free
interest rate, then ¢r + (1 — ¢)r¢ can be interpreted as the return on a portfolio with proportion
of capital ¢ allocated to P and 1 — ¢ allocated to the risk-free asset. For notational convenience,
let Py denote the distribution of the return on such a combined strategy over R, i.e., for all r,
Py(r) = P(¢r+ (1 — ¢)rp). Similarly, let P(; denote the upside equivalence of P, over G, and P

the downside equivalence of P, over L (see Definition 1).

Axiom 7 (Allocation Independence) : Let any two distributions P € P and @ € P be given.

If PT =4 Q7, then for all ¢ € [0,1], P(;r =g Q; If P~ = Q. then for all ¢ € [0,1], Py =, Q.

It will be shown later in Theorem 7 that if investors can borrow or lend a risk-free asset,
then rg must be the risk-free interest rate under what will be called the leverage independence
axiom. In such a situation, Axiom 7 postulates that the inherently more rewarding and more risky
relationships are invariant with the proportion of capital allocated to the strategies being compared
(hence the label of the axiom).!* Intuitively, since individuals may have different risk tolerance

and thus may allocate their capital to risky assets differently, in order for all to commonly agree on

This view is held quite commonly. For instance, in a practitioner’s journal, Modigliani and Modigliani (1997)
proposed that any measures used for ranking investment performances should meet the criteria of: “1) leverage
changes the reward and risk of portfolios in the same direction, and 2) leverage does not change the ranking of
portfolios at any level of risk (p.51).” Our axiom postulates a weaker condition on capital allocation with 6 required
only to be between 0 and 1. It is also worth remarking that the stochastic dominance criteria fail to meet this second

condition above.
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any “inherently more risky” relationship this relationship must be independent of any individual’s
capital allocation. This holds also for the “inherently more rewarding” relationship. In general,
Axiom 7 is a postulate about a reasonable perception of inherent reward and risk. Even in the
absence of a risk-free asset, the axiom would still have the same connotation as if there were such
an asset that yields a neutral return.

The next lemma is a straightforward implication of Axiom 7.

Lemma 7 Let any two distributions P € P and Q € P be given. If PT ~y QF, then for all

¢ €1[0,1], P; ~g qu If P~ ~¢ Q7, then for all ¢ € [0,1], Py~ Q.

Proof: If P+ ~g Q+, then P+ - Q*+ and Q* g PT. Thus by Axiom 7 both P(;r =g Q; and
Q;f - P(; must hold for all ¢ € [0,1], which implies P; ~g Q;ﬁ The second part of the lemma

with respect to the ~ycan be proved analogously. O

Lemma 8 Any gain function §(-) : G — R and loss function {(-) : L — R having the corresponding
property stated in Theorem J are differentiable on G and L, respectively, with ¢'(r) >0 on G and

~

?'(r) <0 on L.

Proof: T look at §(r) only; the proof concerning £(r) is analogous.
Let any r and r; be given from G and assume that r < r;. From Theorem 1, there exists
6 € (0,1) such that

7 ~vg Ory ® (1 —0)ro. (41)

From Axiom 7 and Theorem 4 it follows that

g(ro+¢(r—ro)) = 09(ro+ ¢(r1 —70)) + (1 = 0)g(ro) V¢ €[0,1] (42)

g(ro+¢1(r —ro)) = 6g(ro+ ¢1(r1 —ro)) + (1 = 0)g(ro) Vo1 € [0,1]. (43)
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Subtracting (43) from (42) yields

g(ro + ¢1(r — o)) — g(ro + ¢(r — o))

= 0[9(ro + é1(r1 —70)) = G(ro + ¢(r1 —r0))] Vo € [0,1], V¢ €[0,1].

For ¢ € [0,1), define x(¢p) = ro + ¢(r — ro) and y(¢) = ro + ¢(r1 — rp). Since g(r) is monotoni-
cally increasing in  on G, by the Lebesgue differentiation theorem (e.g., Edwin Hewitt and Karl
Stromberg, 1955, p. 264) g is differentiable almost everywhere on any closed interval of G . This
implies that for any x > rq, there exists y > = such that §'(y) exists.

Now for any given x > rg, choose r; > r for y > x such that §'(y) exists. Consequently,

9(z + Ax) — §(x)

g@) = Jm S
_ iy 900+ (@4 AG)(r —ro)) — §(ro + ¢(r —10))
A¢p—0 A¢(T — 7“0)
= lim 0lg(ro + (¢ + A)(r1 — o)) — g(ro + ¢(r1 —r0))] 11 —70
Ap—0 A¢p(ry —ro) p—
= 0 lim 9y +Ay) —g(y) T
Ay—0 Ay r—1r
= 0§'(y) - 7;1_—:00

It follows that §'(x) exists and §'(x) > 0 for all z > rg. Noting that §'(y) = 0 would imply that
~

§'(z) = 0 for all x € (rg,y). This would contradict the property that g(y) > g(z) for y > x > ro.

Thus ¢'(z) > 0 for all x > r. O

Theorem 5 For any gain function §(-) : G — R and any loss function ¢(-) : T — R having
the corresponding property stated in Theorem 4, they must have the form g(r) = C1(r — ro)®* and

U(r) = Cy(rg — ), where a, b, Cy and Cy are positive and constant real numbers independent of r.

Proof: Let any §(r) be given and assume that it satisfies the property stated in Theorem 4.

Let any r and r; be given from G and assume that r < r;. By Theorem 1 there exists 6 € (0,1)
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such that

7 eog O @ (1 — 0)r.

By Axiom 7 and Theorem 4,

9(ro + ¢(r —r0)) = 0g(ro + ¢(r1 — o)), Vo[0, 1].

Applying Lemma 8, T differentiate both sides of (45) with respect to ¢ and obtain

g (ro + ¢(r —10))(r — r0) = 04" (ro + ¢(r1 — r0))(r1 — 70), V9[0,1].

Dividing (46) by (45) and letting ¢ = 1 thus yield

g (r)r—r0) _ gr)lrni=ro) oy eq
g(r g(ri) 7 ’ ’
or, equivalently,
/\I _
YO g
g(r)

(44)

(46)

(48)

where a > 0 is a constant. Dividing both sides of (48) by r — rg and integrating over any interval

(r1,7) C G yield the desired functional form for g; that is, §(r) = Ci(r—rp)® where C} is a constant.

Further, from the property that ¢ is an increasing function of r, C; > 0. The proof concerning /s

analogous.

g

Theorem 5 is an important result in its own. It justifies the gain-loss objective functions

that are frequently adopted in prospect theory and in the behavioral finance literature. I discuss

Theorem 5 further in the next section, and continue to proceed here with the development of the

inherent aspects of investment reward and risk.

From Theorem 5, the gain and loss functions are differentiable on the open sets (rp, c0) and

(—o0, 1) respectively. T now extend the derivatives of the gain and loss functions and define §'(rg)
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and #'(rq) as the left and the right limit. That is,

g(ro +€) — g(ro)

N 1 >
g'(ro) = lim ; €>0
and
g/(To) = lir% tro) = £(ro — ) e > 0.
€— €

The next axiom further restricts the functional form of the inherent reward and risk measures.

Axiom 8 (Properness) : There exist r1 and ro (11 > 19 > 13), €0 > 0, and 01 € (1 — €, 1) and

0o € (0,€p), such that for all € € (0,¢p),

011 @ (1= 01)ro =g 01(r1 — €) ® (1 = 01)(ro +€) (49)
Gor1 ® (1 — O2)rg <4 O2(r1 —€) ® (1 — 62)(ro + €) (50)
0179 ® (1 — 01)rg <4 O1(ra +€) @ (1 — 01)(ro — €) (51)
Oor9 ® (1 — O2)10 =4 Oa(ra 4 €) @ (1 — O2)(ro — €) (52)

I term this axiom the properness aziom because it implies that the gain and loss functions
should not have an infinite slope (¢'(r¢) = oo, or ¢'(rg) = —o0) or a slope of zero (¢'(rg) = 0 or
¢'(rg) = 0) at the neutral origin r¢. In terms of preferences, intuitively, this implication means that
when receiving 1 dollar for free one should (marginally) neither be infinitely happier nor be totally
indifferent; likewise, when losing 1 dollar one should (marginally) neither be infinitely unhappier

nor be totally indifferent.!® Note that fixing any small amount e and choosing #; sufficiently close

5In comparison with the utility functions of wealth w that exhibit constant relative risk aversion (CRRA), i.e.,
V(w) = w*/a for a # 0 and V(w) = In(w) for a = 0, the gain and loss functions here differ in their having a
neutral-return benchmark. Thus, although the CRRA utility functions do have a slope that goes to infinity for oo < 1
and to zero for @ > 1 as wealth goes to 0, the interpretation is very different. For instance, with o < 1 and V'(0) = oo
it is natural to interpret that the investor cannot survive if deprived of everything. Whereas the properness axiom

here says that given one’s current wealth level, an additional 1 dollar gain or loss should not matter that extreme.
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to 1 and 65 sufficiently close to 0 we can always meet the conditions in (49)—(52). Here, the axiom
essentially postulates that an event that is virtually certain (with probability of reaching it close to
1) dominates the event that virtually will not happen (with probability of reaching it close to 0) in
the determination of the inherent “more rewarding” and “more risky” relationships. For instance,
suppose 11 = 1, 79 = 0, 61 = 0.999 and ¢ = 0.01. Then, the relationship in (49) says that a
lottery with a probability 0.999 of realizing 1 and probability 0.001 of realizing 0 is inherently more
rewarding that another lottery with the same probability 0.999 of realizing 0.99 and probability
0.001 of realizing 0.01. That is, the inherent dominance relationships are robust to (infinitesimally)
small shift of contingent outcomes from the high probability state r1 to the low probability state

To.

Lemma 9 For any gain function §(-) : G — R and any loss function (-) : T — R having the

corresponding property stated in Theorem 4, 0 < §'(ro) < 0o and —oo < {'(ry) < 0.

Proof: Let any §(r) be given and assume that it satisfies the property stated in Theorem 4.

From (49) it follows for all € € (0, ¢p) that
019(r1) + (1 = 61)4(ro) > 019(r1 — €) + (1 = 61)4(ro + €),
or, altering terms, that
O1g(r1) — g(r1 —e)] = (1 = 01)[g(ro +€) — g(ro)].- (53)
Dividing both sides of (53) by € > 0 and taking limit as e goes to zero yield

01
N —919 (r1) < oo.

g'(ro) <

From (50) it also follows for all € € (0,€p) that

02G(r1) + (1 — 62)g(ro) < O2g(r1 —€) + (1 —02)g(ro +¢€),
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or, equivalently, that
0a[g(r1) — g(r1 — €)] < (1 —02)[g(r0 + €) — §(ro)]. (54)
Dividing both sides of (54) by € > 0 and taking limit as € goes to zero yield

Oy
1_929(7“1) > 0.

§'(ro) >

Similarly, let any E(T) be given and assume that it satisfies the property stated in Theorem 4. The

property (51) then implies that
01[0(r2 + €) — £(r2)] < (1 = 01)[0(ro) — £(ro — €)]. (55)

Dividing both sides of (55) by € > 0 and taking limit as e goes to zero yield

N 0 N
¥(ro) 2 7 _1915'(@) > —oo0.

And finally, (52) implies that

03[0(ry + €) — 0(r9)] = (1 — 02)[0(ro) — £(ro — €))]. (56)

Dividing both sides of (56) by € > 0 and taking limit as € goes to zero yield

7(ro) < 7' (r9) < 0.

2
1—6,
O
Thus, any gain and loss functions having the desired property in Theorem 4 should not grow

too fast, nor too slow, at r9.The next theorem, the main result of this paper, states that the gain

and loss functions must be a linear function of r — ryg.

Theorem 6 : For any gain function §(-) : G — R and any loss function 0(-) : T — R having the
corresponding property stated in Theorem 4, there exists constants C1 > 0 and Co > 0 such that

g(r) = Ci(r —ro) and é(r) =Cy(rg — ).
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Proof: Simply note from Theorem 5 that ¢ (ro) = aCy (r—ro)*~ ! and # (ro) = —bCy(ro—r)"~1.

Lemma 9 implies then a = 1,6 =1, C; > 0 and Cy > 0. O

2.8 Inherent Dominance

The next, and last, axiom associates the inherent dominance relationship to a capital market. It

has an important implication for the level of the neutral-return benchmark

Axiom 9 (Leverage Independence) : If investors can borrow and lend at a deterministic in-
terest rate vy, thenr € G = ¢r+ (1 — ¢)ry € G andr € L = ¢r + (1 — ¢)ry € L, for all

o> 1.

Since ¢r 4+ (1 — ¢)ry is deterministic, Axiom 77 simply postulates that leverage cannot turn

a “sure gain” into a “sure loss” or vice versa.
Theorem 7 If investors can borrow and lend at a deterministic interest rate ry, then ro =ry.

Proof: Suppose, contrary to what is stated in the theorem, that ry < 7¢. Then there
exists » € (ry,rp) such that realizing » will be considered a loss. We have then 7o > r but
ro < ar + (1 — a)ry for o sufficiently large by Lemma 1. Similarly, if r; > 7o, there exists
r € (rg,7y) such that r > rg but ar + (1 — a)ry < r¢ for a sufficiently large. Both of these would
contradict Axiom ??. Thus the theorem must hold. O

It is worth noting that Theorem 7 may not apply to individual benchmarks; it applies only
to the commonly perceived, deterministic neutral-return benchmark ry. In a sense, Axiom 7?7
is related to risk-free arbitrage in a well-functioning capital market. Arbitrage typically involves
shortselling or leverage to lock in risk-free profits (sure gain). The common perception of a sure

gain should thus be consistent with the existence of an arbitrage opportunity. For instance, if there
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exists a strategy that generates a deterministic return » > 7y then arbitrage profits can be realized
by borrowing at ry and investing in this strategy.
With the preceding preparations, I am now ready to define the inherent reward, risk, and

dominance measures.

Definition 2 The inherent reward of a return distribution P € P, denoted U(P), is defined as
U(P) = E[max(r —rg,0); P]

Definition 3 The inherent risk of a return distribution P € P, denoted D(P), is defined as
D(P) = Emax(ro — r,0); P]

The term max(r —rp, 0) is the profit on a one-dollar investment relative to the neutral return
ro when gain actually occurs, and the term max(ro — r,0) gives the loss on a one-dollar investment
relative to the neutral return ro when loss actually occurs. Thus, U and D can also be interpreted
as the expected payoff on a call option, and the expected payoff on a put option respectively, both

with a strike price equal to rg on an underlying asset that is worth one dollar today.

Theorem 8 Let any P € P and Q € P be given. Then P =4 Q if and only if U(P) > U(Q), and

P =0 Q if and only if D(P) < D(Q).
Proof: Suppose P =, ). From Theorems 4 and 6 it follows that
CL1E(r —ro; PT) = CLU(P) > C1E(r — r0; Q™) = C1U(Q),
which implies U(P) > U(Q) since C; > 0. Similarly, if P =, @ then

CoE(rg —r; P7) = CoD(P) < C2E(rg — Q™) = C2D(Q),
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which implies D(P) < D(Q) since Cy > 0. O
The above theorem confirms the assumption I made at the start that the relationships =, and
>y exist. It is easy to see as well that U and D completely rank all the probability distributions P €
P. Their rankings are transitive, and satisfy all the axioms postulated in this paper. This completes
the development of the “inherently more rewarding” and “inherently more risky” relationships.
I now go on to build a link between the inherently more-rewarding and more-risky relation-

ships and the inherent dominance relationship.

Definition 4 Let any P € P and Q € P be given. P = Q if and only if there exists ¢ € [0,1] such

that

either: Pd‘f =g Q' and qu =0 Q (57)

or: Q;ﬁ <, P% and Q, 2 P (58)

P = @ if and only if the relationships in either (57) or (58) hold and at least one of them holds

strictly.

Axioms 1-9 help justify the legitimacy of this definition. Implicit in this definition, moreover,
is the notion that an investment strategy being inherently more rewarding and inherently less risky
than another strategy is inherently superior. Note that, by the definitions of U and D, for any
P € P and Q) € P there always exists a ¢ € [0,1] such that at least one of the conditions in (57)

and (58) holds.

Definition 5 The inherent reward to risk ratio of any distribution P € P, denoted Z(P), is defined



41

as
o if D(P)=0,U(P)>0

Z2(P) = B i D(P)#0 (59)

~

1 if D(P)=0,U(P)=0.

Theorem 9 Let any P € P and Q € P be given. Then P = Q if and only if Z(P) > Z(Q).

Proof: T only need to show that Z(P) > Z(Q) implies P = (. Although not necessary, I
assume for expositional convenience that investors can borrow and lend at the risk-free rate rg.
Consider a portfolio with ¢ per dollar invested in an arbitrarily given risky asset with random
return 7 that follows distribution P and 1 — ¢ in the risk-free asset yielding ro with certainty. Let
U, D, and Z denote the risky asset’s inherent reward, risk, and reward-to-risk ratio, respectively.
The total return on this portfolio over the holding period is rg 4+ ¢(r — 79). Thus, letting U(P,),
D(Py), and Z(P,) denote the inherent reward, risk, and reward-to-risk ratio of the portfolio with
random return 79 + ¢(r — rg), we have U(Py) = ¢U(P), D(Py) = ¢D(P) and Z(Py) = Z(P). As
¢ increases, U(Py) and D(Pp) clearly increase in the same direction; whereas Z remains constant,
suggesting that the portfolio’s relative attractiveness is independent of the allocation of capital.

Thus, if Z(P) > Z(Q) there exists ¢ € [0, 1] such that

either : oU(P) > U(Q) and ¢D(P) < D(Q),
or:  GUQ) <U(P) and 6D(Q) = D(P)
By Definition 4, then, P = Q. O

In the special case where U(P) > 0 and D(P) = 0, P is a risk-free arbitrage strategy.
Alternatively, any risk-free strategy must have an inherent reward-to-risk ratio Z = oco. Two

risk-free arbitrage strategies are considered inherently equivalent by assuming that co = oo.
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The above theorem confirms the assumption that the inherent dominance relationship >
exists on P, since the measure Z exists for any P € P. That the measure Z completely ranks
all the probability distributions P € P is obvious. This ranking is also transitive, and satisfies all
the axioms postulated in this paper. This completes my development of the inherent dominance
relationship.

In summary, I have shown that for any investment strategy whose return distribution is given
and whose mean exists, its U exists on [0,00), D exists on (—o0,0], and Z exists on [0, 00]. Thus
all such strategies can be ranked by their inherent reward, risk, and reward-to-risk ratio. These
inherent measures are also unique because for any investment strategy whose return distribution
is given of which the mean exists, its U, D, and Z are uniquely determined. Finally, inherent
measures are transitive simply because the inherent measures are real numbers.

Having the above uniqueness and transitivity properties is important for any criterion that
ranks investment alternatives because these properties avoid ambiguity and ensure consistency.
The completeness property is desirable because the measures can be used for ranking all feasible
assets, not just a subset of the feasible assets. For one thing, it is well known that the stochastic
dominance criteria for ranking investment alternatives are not complete and thus they have limited
applicability.

The form of the inherent risk measure D has been assumed, although not theoretically jus-
tified, as a measure of risk in some existing works (e.g., Domar and Musgrave, 1944; Bawa, 1975,
1976, and 1978; and Fishburn, 1977; Bawa and Lindenberg, 1977; and Harlow and Rao, 1989).
In these studies, investment reward is implicitly assumed to be the expected return (or wealth)
also without justification. Bernardo and Ledoit (2000), as an exception, define “gain” and “loss”

similar in form to our inherent reward and risk measures U and D. They study the relationship
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between two asset pricing approaches — the model-based pricing and arbitrage-free pricing. How-
ever, Bernardo and Ledoit’s gain and loss measures are defined by taking expectations under only a
benchmark risk-adjusted probability measure. Thus their gain and loss measures are equivalent to
the inherent measures U and D of the benchmark portfolio only, and they do not define the reward
and risk of investment strategies in general. Artzner et al. (1999) propose a set of properties to
restrict the class of risk measures, which they call the class of “coherent risk measures”. The main
limitation of the coherent risk measures is that they are not unique, and thus individuals may still
differ in their perception of risk among these coherent risk measures.

Concerning the investment reward, since for all P € P, U(P)— D(P) = E(r; P), the expected
return of an investment can now be given another meaning. That is, E(r; P) can be interpreted as
the net inherent reward of the investment — the reward minus the risk. Thanks to the equivalence
between Z(P) > Z(Q) and Z(P) — 1 > Z(Q) — 1, the inherent dominance relationship P > @
can also be expressed in terms of E(r; P)/D(P) > E(r;Q)/D(Q). This happens to help justify,
and only in the case when the form D is chosen to measure risk, the use of expected return as a
measure of reward in the past.

To the best of my knowledge, the axiomatic development of inherent reward and risk measures
in this paper is the first to theoretically validate a unique pair of measures (invariant up to a positive

multiplicative transformation) for investment reward and risk under uncertainty.

3 INHERENT ANALYSIS AND INVESTMENT DECISIONS

So far I have not attempted to associate the inherent reward and risk analysis with individual
preferences. It is time now to take a look at how the inherent dominance criterion may help

explain some observed behavior towards risk and, eventually, for making investment decisions. As
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a special case of (2), assume that the functional form of the value function to be maximized is given
by

V(Wo,U(P), D(P)) (60)

where V increases in U and decreases in D, for any given Wy and P.

For any initial capital of Wy and strategy P, the total inherent reward and risk of the in-
vestment are naturally defined as WyU(P) and WyD(P), respectively. It bears repeating that the
relative attractiveness of alternative strategies does not change with W} since Z(P) is independent

of Wo.

3.1 Inherent Analysis and Prospect Theory

Prospect theory, developed by Kahneman and Twersky (1979), is a theory of choice under uncer-
tainty in which value is assigned to gains and losses rather than to final assets. A typical form of
the objective functions discussed in the literature of prospect theory can be given as follows (see

Benartzi and Thaler, 1995).

(W-W)  WxW
V(WIW) = (61)

YW -W)P W<W
where a > 0, b > 0, and v > 1. Experiments suggest that investors are “loss averse” (for more
discussion see, e.g., Benartzi and Thaler [1995]), which translates into the condition v > 1.

The foundation of prospect theory is based more on observed behavior, however. There has
been so far no normative justification for the theory. Interestingly, our development of inherent
reward and risk up to Theorem 5 can be seen as offering a normative foundation for prospect theory.

The forms of the gain and loss functions derived in Theorem 5 coincide with the upper

part and lower part of the objective function of a prospect investor (with a restriction that the
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neutral return be set at zero). Without the subsequent properness axiom (Axiom 8), I could have
stopped there and defined the more general (but less applicable) forms of inherent reward and
risk measures. To see this, let U(P) and D(P) denote, respectively, the general inherent reward
and general inherent risk measures that can be derived without the Properness Axiom. They are

defined as

U(P) = Emax(r —ry,0)% P]

D(P) = E[max(rg —7,0)% P.

If an investor maximizes the expected objective function as given in (61), then a necessary condition
is that the general inherent reward-to-risk ratio, defined as Z = U /D, be maximized. The reason is
that maximization of the expected value of (61) implies that for any level of D the inherent reward
U be maximized (or that for any level of U the inherent risk D be minimized) under any given
feasibility condition.

I would rather maintain, however, that the more special U and D measures developed in this
paper are more suitable for characterizing the inherent reward and risk of investments. They are
not only simpler in computations, but are also consistent with Axiom 8 — an axiom that can avoid
the extreme judgements about events with infinitesimally small chances or consequences that only

marginally affect one’s current wealth level.

3.2 Inherent Analysis and the Allais Paradox

Let us look at the following example that is adapted from Machina (1982).

Example 1 (Allais Paradox).
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Game 1: Choose either of the following two strategies:

Sy :  $1,000,000

Sy:  (0.1)$5,000,000 @ (0.89)$1, 000,000 & (0.01)$0

Game 2: Choose either of the following two strategies:

Sy:  (0.1)$5,000,000 & (0.9)$0

Sy:  (0.11)$1,000,000 ® (0.89)$0

If the investor is an expected utility maximizer, his choice should be either S; in Game 1
and Sy in Game 2, or Sy in Game 1 and S3 in Game 2. It has been found, however, that the
majority of the individuals asked to rank such strategies prefer S; to Sz in Game 1, and prefer S3
to Sy in Game 2 (see more discussions in, e.g., Allais, 1953, 1979; Morrison, 1967; Raiffa, 1968; and
DeGroot, 1970 [pp. 92-94]).

The inherent dominance criterion may help explain this paradox. In order to compute the
inherent reward and risk of the strategies presented in these two games, a reasonable neutral
benchmark Vj need be specified. Since these games are presented to individuals without assuming
any cost and there exists a choice (S7) that gives a sure return of $1 million, it is plausible to
assume that 1 € (0,1) (in million dollars). For one thing, it is difficult to imagine that one can be
indifferent or even consider it a loss when receiving a million-dollar gift; thus Vy < 1. Likewise, it
is also difficult to imagine that one can be indifferent or even consider it a gain when coming out

of such games empty handed; thus Vj; > 0. Consequently (in million dollars),

U1:1—V0, D1:0, leoo

Uy = 0.1(5 — Vi) +0.89(1 — Vi), Dy =0.01Vy, Zs < 00
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1.5
Uy =0.1(5-Vp), D3=09V, Zz==(——1)
9" Vo
11
Us=0.11(1- Vo), Dy=080Vp Zi= (1~ Vh).

It is easy to see that for all Vy € (0,1), Z1 > Z5 and Z3 > Z4. In other words, the inherent
dominance criterion resolves this Allais paradox in this example. Alternatively, the observation of
individual choices in this kind of experiment supports the assumption that people prefer a higher

inherent reward-to-risk ratio.

3.3 Inherent Risk vs. Standard Deviation and Put Option Price

In this subsection, I compare the inherent risk measure with standard deviation (e.g., Sharpe,
1966) or put option price as risk measures (e.g., Bodie, 1995; Zou, 1997). Suppose there is an asset
such that investing 1 dollar today will yield 1 + u dollars with probability p or 1 + d dollars with
probability 1 — p tomorrow, where u > 0 > d. For simplicity assume that investors can borrow and
lend at a zero risk-free interest rate, i.e., rp = 0. I look at the risk measures first, and then at the
measures involving both reward and risk.

The expected return (or risk premium) on this security is

E(r) =pu+ (1 —p)d.

The standard deviation, put option price, and the inherent risk of this asset are given as follows,
where in the price of the put option the parameter x denotes the strike price of the option minus
1.

The standard deviation: o = (u — d)\/p(1 — p).

The price of put option: P(x) = 5 (x — d).

The inherent risk: D = —(1 — p)d.
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Example 2 (Superiority of the inherent dominance criterion).

As a numerical example, consider 3 assets all having 50% chance of “up” or “down”. They
differ only in the magnitude of the “ups”. Asset 1 will yield 60 percent, Asset 2 will yield 40
percent, and Asset 3 only 20 percent. All the assets lose 20 percent when the state is “down” (see
Figure 1).

Clearly, both the standard deviation and the put option price give us distorted measures of
risk (see Table 1). By these measures, Asset 1 is the most risky and Asset 3 the least risky. All
the three assets however, have the same probability of losing 20%, which is only correctly reflected
in the inherent-risk measure D.

The shortcoming of volatility and option prices as risk measures can be further demonstrated
when we change the magnitude of downside losses as well (see Figure 2). Now, suppose that Asset 1
remains the same as in Figure 1. Instead of losing 20% when the state is down, Asset 2 will lose
22% and Asset 3 will lose 24%, with the same probability of 0.5.

In Figure 2, it is clear that the inherent risk of Asset 3 is the largest, followed by Asset 2,
and Asset 1 has the least risk among the three alternatives. There is no doubt that such ranking of
risks should be agreed upon by all the rational players who prefer more to less. Table 2, however,
shows the irrational rankings that would be arrived at if one choose the standard deviation or the
put option price to measure risk.

Of course, looking at risk alone is not sufficient for ranking investment opportunities. I now
incorporate the reward in my analysis. The following can be easily verified.

The call option price: C(z) = —%(u — ).

The inherent reward U = pu.

The Mean-Variance Reward-to-Risk Ratio (Sharpe ratio): S, = Er)ro — _put(_pid

o (u—d)\/p(1-p)’
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The Inherent Reward-to-Risk Ratio: Z = % = —(—1%.

Example 3 (Inherent dominance measure and Sharpe ratio)

Consider the following two investment alternatives:

A : (0.99)$3 @ (0.01)(—$1)

B : (0.98)$100,000,000 @ (0.02)$0
Which one should an investor prefer? Obviously B. However,

Zy = 0.99(3)/(0.01) = 297.0 < Z = 00

Sa = 2.96/0.397 =7.46 > Sp=98/14.0=7

Thus, according to the Sharpe ratio one should choose A instead of B. This example highlights
the problem with variance or standard deviation as a risk measure. Despite the fact that Asset B
has no downside risk and much upside potential, its standard deviation grows as fast as its mean.
In fact one can add as many zeros as one wishes on the upside potential in B and the Sharpe ratio

of B will remain at 7. The Z ratio, on the other hand, shows the attractiveness of B correctly.
Example 4 (Inherent dominance measure and skewness)

Comparing further the Z measure and the Sharpe measure S, I have the following observation.

(1) For any two assets A and B whose returns follow binomial processes having a zero
skewness, the inherent dominance measure Z, > Zp if and only if the Sharpe measure S4 > Sp;

(2) For any two assets A and B whose returns follow binomial processes having the same

mean and standard deviation but different non-negative skewness, the inherent dominance measure
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Z A > Zp if and only if asset A has a strictly higher skewness than asset B. In other words, the
mean-variance preserving skewness is favorably ranked by measure Z, even though the Sharpe
measure has no power to detect such differences in skewness.

To show that these statements hold, let i denote the asset’s mean return. The skewness of

an asset’s return is defined as

plu—p)® + (1 —p)(d—p)®

o2

= (1-2p)(u—d)

Clearly, s is a monotonically decreasing function of p, s > 0 if and only if p < 0.5 and s =0

if and only if p = 0.5. Thus, substituting p = 0.5 into the S measure and the Z measure gives

u+d U
S_u—d and Z__E
It follows that
2
S=1— —
1+Z7

or that S and Z are positively related. This completes the proof of assertion (1).
Now fix i and o and regard u and d as functions of p that are determined from the following

equations:

p = put(l-p)d

o = (u—d)\/p(l-p)

Differentiation yields
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ou _ d—u and od _ d—u
op  2p dp  2(1-p)
It follows that
0z d
___(utdp

ap  2(1—p)2d?
Since s is a monotonically decreasing function of p, Z must be monotonically increasing in s.
3.4 Inherent Dominance and Stochastic Dominance

Let two cumulative distributions G and F' be given on R, representing two alternative investment
strategies, respectively. It is well known that G dominates F' in the sense of first-order stochastic

dominance if and only if for all x € R,

G(z) < F(x), (62)

with strict inequality for some x. It follows that

Vo~ Ur = [ (t=r)aGo) - F@) = - [ 160 - Pl >0, (63
De — D = /_ (= DG — F(1)) = /_ "G — Fildt <0, (64)

with at least one strict inequality. Consequently, Zg > Zp. That is, among all strategies that can
be ranked by the first-order stochastic dominance, the measure Z ranks them consistently with a
higher Z indicating better dominance.

This observation can be further extended to the second-order stochastic dominance. G' dom-

inates F' in the sense of second-order stochastic dominance if and only if for all € R,

/ " Gt < / " Rt (65)

—00 —00
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with strict inequality for some x. It follows that Dg — Dp < 0 [see (64)]. Taking the limit as x

goes to infinity in (65) yields [%_ G(t)dt < [ F(t)dt. As a result,

U — U — (Di; — D) = / Flt)dt — / G(t)dt > 0. (66)
Thus,
1
T —Zp = (UgDy — UpDe) (67)
DeDp
1
= [Uc(Dr — Da) + Da(Ua — Ur)) (68)
DgDp
1
> (Uc — Dg)(Dr — Dg) > 0 (69)
DeDp

where in (67) at least one inequality holds strictly.

In other words, among all investment strategies that can be ranked by the second-order
stochastic dominance, the measure Z ranks them consistently with a higher Z indicating a better
strategy. The mean-variance criterion, on the other hand, does not satisfy this property as clearly
shown in the previous examples. These examples confirm that the inherent dominance measure Z
is a criterion superior to both that of stochastic dominance and mean-variance. Indeed, variance
(or standard deviation) measures only how realized returns on an asset fluctuate around their own
mean, not a neutral-return benchmark.!® And the stochastic dominance criteria are difficult to

parameterize and incapable of ranking many interesting investment alternatives.

3.5 Performance evaluation

The inherent dominance measure Z can also be easily applied to measuring the performance of

investment strategies. If a fund manager claims that he has better absolute performance than

161n other words, variance or standard deviation can be misleading as a risk measure per se, as well as for ranking
investment alternatives whose return distributions are not symmetric. The mean-variance analysis may be suitable

only for very short trading intervals (see Samuelson, 1970; and Samuelson and Merton, 1975).
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another manager, for example, he must be able to show a higher Z. This criterion arises since if
he realized a lower Z on his fund than the other fund, at least some investors will prefer the other
fund from the stochastic dominance property of the Z measure. Moreover, since the Z measure is
defined without any restriction on the return distributions, it can be used to rank performance of
investment decisions involving superior information or dynamic strategies (cf. criticism of the use of
SML by Dybvig and Ross, 1975a, 1975b), and of strategies involving the use of derivative securities.
Thus, the inherent dominance theory offers a new approach for comparing portfolio performance.
Long-term performance can now be evaluated against the universal benchmark of risk-free returns,
rather than against any subjectively chosen benchmark. I discuss further performance evaluation

issues in Zou (2000).

4 COMPUTATION OF INHERENT REWARD AND RISK

The advantage of the mean-variance analysis is its simplicity. The inherent analysis, admittedly,
may involve complex computations since the inherent measures depend on the entire distribution
and not just on the first two moments of a distribution. Fortunately, thanks to the development of
option pricing models, much of the computational work can be easily built on the existing models.
In this section, I restrict attention to the binomial models and normal distributions of returns only.

For sake of simplicity, I neglect dividends or storage costs of assets.

4.1 Binomial process of returns

Consider a buy-and-hold strategy which lasts for n periods. Let Ry denote the gross risk-free rate of
return (1 plus the interest rate) per period, and assume that the return on this investment follows

a binomial process such that the gross return in each period is either « with probability p or d with
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probability 1 — p. Let P denote the return distribution of this strategy at the end of n periods.

Then,
n ! . . . .
U(P) = > ————pl(1 —p)" I max(0,uwld" I — RY),
n I . . . .
D(PP) = Y ——pI(1 — p)"F max(0, Ry — uw/d" ).

These measures are derived simply by substituting the true probability p for the risk-neutral proba-
bility in the binomial option pricing models, and then multiplying by R{} to yield the end-of-period
expected payoffs of a call option for U and a put option for D. The strike price of these options is
Ry.

Since the binomial option pricing techniques have been extensively explored, and any dis-
tribution can be approximated by a binomial process (the inter-temporal returns not necessarily
stationary nor identical, see, e.g., Rubinstein, 1994), computation programs are available that

greatly facilitate the computation of inherent reward and risk of investment strategies.

4.2 Normal distribution of returns

Now let us turn to the case where investment returns are normally distributed. As to be expected,
the Black-Scholes option pricing formula helps us easily derive closed-form expressions for the
inherent reward and risk measures.

Assume that the investment returns are normally distributed with mean p7" and standard
deviation ov/T over the holding period [0,T7], where p and o are the annualized and continuously
compounded expected return and standard deviation, and T is the length of the holding period

measured in years. Let rg denote the continuously compounded annual risk-free interest rate, and
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let P denote the end-of-horizon distribution of the investment returns. It can be shown that

UP) = e*"'N(dy) —e™ ' N(dp) (70)

D(P) = e™'N(—dy) — et N(—dy) (71)

where

— T o — T o
d1=(%+§)ﬁ; dQZ(%—g)ﬁ-

Because the derivation sheds light on the difference between the inherent measures and the
option prices, I sketch a proof for the expression of D(P) as follows.!”

A European put option on an asset with an exercise price equal to X can be described as
the present value of the option in a fictitious risk-neutral economy. Let V(0) and V(T') denote the

underlying asset’s current price and price at T', respectively, and suppose that the risk-free rate

were  instead of rg. A fictitious value for this imagined put option F.,—, can then be obtained.
Pro—y = e M E(maz(0, X — Vy]) = e T XN (—dy) — VoN(—dy) (72)

where

In(%2) + (u+%)T
dy = —X 2/ and do =dy — oVT 73
1 O'\/T 2 1 ( )

Substituting Vpe™® for X in (72)-(73), and noting that D(P) = e*T P,,_,,/Vp, yields the expression

in (71). The expression in (70) for the inherent reward, U(P), can be derived in the same way.

"Note that in the derivation, there is no need to assume that the actual risk-free rate 7o = y; I only use the option

pricing formula and take a short cut to the derivation of the expression of D(P).
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5 INHERENT ANALYSIS OF PORTFOLIOS AND INHERENT

EFFICIENCY

I now extend the previous development of inherent measures to a portfolio context. I investigate
the issues of diversification, introduce the concept of inherent efficiency of an investment strategy or
portfolio, and examine the implications regarding equilibrium asset prices if there exist inherently

efficient portfolios.

Definition 6 (Inherent Efficiency) A distribution P € P is inherently efficient if and only if

P = Q for all distributions Q € P; that is, if and only if Z(P) > Z(Q) for all Q € P.

It is useful to also define inherent efficiency on some constrained distribution class of P. For
instance, not all distributions in P may be attained with feasible strategies S € 2. Let Py C P be

the class of distributions in P that are attainable in the sense that
Po={Ps€P3S€Q,5:1— PscP}

I assume here that if P € Py and Q € Py, then for all ¢ € [0,1], ¢P + (1 — ¢)Q € Po.*® It is clear
that the definition of feasible strategies defines a correspondence from the strategy space {2 onto
the attainable return distribution space Py. For convenience, thus, I shall occasionally directly call

a return distribution in P € Pqy a strategy.

Definition 7 (Constrained Inherent Efficiency) A strategy S € Q2 with return distribution Ps € Py
is inherently efficient within Py if and only if Ps = @ for all distributions () € Po; in other words,

if and only if Z(Ps) > Z(Q) for all Q € Py.

18This assumption can be made stronger by allowing for leverage and short selling, of course, in which case ¢ € R.
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For notational convenience, I consider here strategies whose returns are continuously dis-
tributed. Analysis of discrete distributions is similar and I leave the details to the reader. Let two
arbitrary strategies A and B be given, let © = r4 — rg and y = rg — r9 denote the random excess
returns over the next period of A and B, respectively, and let f(z,y) denote the joint density func-
tion of z and y. The marginal density functions will be denoted by fa(z) and fg(y), respectively.
I also allow limited liability to prevent excess returns from falling below —100%, thus x € [—1, c0)
and y € [—1,00).19

Consider portfolio P = ¢A + (1 — ¢)B with 0 < ¢ < 1. That is, the return on portfolio P
will be ¢z + (1 — @)y if the realized joint returns of A and B are x and y. Letting ¢ = ¢/(1 — ¢),

it can be verified that

pw) = - (62 + (1 — @) (x, y)ddy (74)
¢z+ (1—¢)y<0
- / _mf gl fa(orde —(1-6) [ iy[ / Sl fato)dy  (75)

= o [ e - -0 [ urLnss (76)

where F4(-|y) and Fp(-|z) are the conditional cumulative distributions (of the excess returns) for
the two strategies. First note that if x and y are perfectly positively correlated, then y = a + bx
with b > 0. Arbitrage will ensure that a = 0, thus y = bx. In this case, Fu(—£|y) = 1if y <0 and

=0 if y > 0. Similarly, Fp(—cx|zr) =1if 2 <0 and =0 if x > 0. As a result,

-0 -0
D(P) = =0 [ afa@iz=(1-0) [ vl (1)

197 am thus using forward prices (current price multiplied by 1 4 79) to determine limited liability. Otherwise I
can require the returns and not excess returns to be greater or equal to —1. This is not essential, however, since the

subsequent analysis can be directly extended to any lower bound of the return variables.
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= ¢D(4) + (1 -¢)D(B) (78)

Lemma 10 (Sub-additivity) Let portfolio P = ¢A + (1 — ¢)B with 0 < ¢ < 1 be given. Then
D(P) < ¢D(A) + (1 — ¢)D(B) if and only if x and y are not perfectly positively correlated. That
is, inherent risk can be reduced through diversification among imperfectly or negatively correlated

strategies.

Proof: Suppose that x and y are imperfectly correlated. Note that Fp(—cxz|r) and Fa(—£|y)
are bounded and monotonic functions of y and = respectively, and lim,_, 1 Fg(—cz|x) = Fp(c| —
1H), limy 1 Fa(—2Jy) = Fa(%| — 17) exist and lim,_, Fp(—cz|z) = limy_ o Fa(—£]y) = 0. It

follows from the Second Mean Value Theorem that there exist £ € (—1, %) and n € (—1,c¢) such

that

3 Ul
DP) = ~0Falel ~1%) [ afatade— (1= OFa =1%) [ ufady (70

-0 1 -0
< —orplel 1Y) [ afal@de - 1= GFaGI - 1) [ waldy (50

~1 c -1

0 0

< —o [ apa@ae--0) [ sty (51)
= ¢D(A)+(1-¢)D(B) (82)
where at least one of the inequalities must strictly hold. [l

Theorem 10 Let strategy B € Py be given and let rg denote the random return under strategy
B. If B is inherently efficient on Py, then for all feasible strategies A € Py with (random) return

denoted 7 4,
E(ra—ro|lrg > 1ro)E(rg —ro|lrg <ro) > E(rg —rolrg > 10)E(ra — ro|lre < o) (83)

where equality holds if short selling A is feasible.
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Proof: If B is inherently efficient, then by definition it must have the highest inherent domi-
nance measure. That is, for any strategy A € Py, and any portfolio P = ¢A + (1 — ¢) B,
Z(B)>maxZ(P) V¢ eR

Again, let x = r4 — 19 and y = rg — ¢ denote the excess returns of A and B. Let F(x,y) denote
the joint cumulative distribution of (z,y). The inherent reward and risk of this portfolio are given

by
Up) = / x4+ (1 — G)yldF (z,y), (84)
pr+(1—¢)y>0

D(P) = - / (62 + (1 — )yldF(x,y). (85)
dr+(1—¢)y<0

It can be verified that (after dropping those terms that converge to zero as ¢ — 0)

aU(P) B
sl = [ r-niry), (56)
oo = [ y=mirtey) 57

By definition,

/y 2dF(z,y) = E(zly > 0)[l - Fp(0)],

| aEy) = Ely <0)£50)

/y wdF(@y) = Elly = 01 - Fa(0)] = U(B),
/y_oydm,y) — E(yly <0)F5(0) = ~D(B).

Thus, B being inherently efficient implies that

U (P) dD(P)
o 99
= [E(zly =2 0)(1 — Fp(0)) = U(B)|D(B) + [E(z|y = 0)F(0) + D(B)|U(B)

lp=0D(B)

|p=0U (B)

= [E(zly 2 0)(1 = Fp(0))|D(B) — [E(yly = 0)F(0)]JU(B) <0 (88)
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where equality holds if ¢ < 0 is allowed, i.e., if short selling asset A is feasible. Since U(B) =
E(yly > 0)[1 — Fp(0)] and D(B) = —E(y|y < 0)Fp(0), it follows that (83) must hold. O

An immediate corollary of Theorem 10 is a capital asset pricing model that depicts a simple
relationship between the inherent reward and inherent risk of assets and an inherently efficient

portfolio.

Corollary 1 If there exists an inherently efficient portfolio (or strategy) B € Py, and short selling

of assets is feasible for assets in ), then for all strategies A € Py,
U(A) = D(A) + B3:[U(B) — D(B)] (89)

where

El(ro —ra)|rs < 7o
El(ro —rB)|lre < ro

ﬁz:

This is an interesting relationship between all strategies in €2 and one particular inherently
efficient strategy in 2 in terms of their inherent reward and risk.
Substituting M (the market portfolio) for B in (89) yields the following capital asset pricing

relationship that first appeared in Bawa and Lindenberg (1977).

Corollary 2 If there exists a market portfolio M which is inherently efficient, then for any asset
A,

E(ra) —ro = BlE(ry) — 0] (90)

where

El(ro —ra)|rar < rolFar(ro)
Dy

6=

This corollary follows directly from the fact that E(r|P)—ry = U(P)— D(P). I shall explore
the many implications of (83) further in Zou (2000), and examine how it works in a complete capital

market.
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6 CONCLUSION

This paper presents a new paradigm (inherent reward and risk paradigm) for investment analysis
under uncertainty. Assuming that there are inherent investment reward and risk that can be
analyzed objectively, I take a normative approach to investigate how such reward and risk should
be perceived and measured — for any well defined investment strategy. By formulating a system
of axioms for common (objective) judgement, 1 derive the existence of a unique (ratio scale) pair
of inherent reward (U) and inherent risk (D) measures. These measures are simply the expected
(absolute) values of the investment’s positive excess returns (gains) and negative excess returns
(losses). I then define the inherent reward-to-risk ratio, Z = U/D, that can be used to consistently
rank all well defined investment strategies in terms of inherent dominance. This inherent dominance
criterion is shown to be consistent with the first-order stochastic dominance criterion and the no-
arbitrage principle. As a result, I establish a normative foundation for the analysis of investment
reward and risk, and for the more general purpose of making investment decisions under uncertainty.

A by-product is Theorem 4, which can be regarded as a generalization of von Neumann-
Morgenstern expected utility theory that allows the functional forms of utility of gains and utility
of losses to vary as the investor’s benchmark and /or investment horizon changes. It thus contributes
a normative foundation to prospect theory, in which similar investment objectives are frequently
assumed.

The inherent reward and risk paradigm is shown to produce fruitful results. Apart from
being able to resolve some problems in the expected utility paradigm, it also enjoys computational
simplicity thanks to the development of option pricing models. Most of the known results in
the mean-variance paradigm find a parallel expression here, such as inherent risk diversification,

the separation theorem, inherent efficiency (v.s. mean-variance efficiency), the capital asset pricing
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model, and so on. All these results are generally improved in the inherent reward and risk paradigm,
though. They now hold for all feasible distributions of returns (with finite means) and no longer
depend on the specific assumptions concerning the return distributions (e.g., normal). The difficult
issue of performance evaluation becomes a simple matter of comparing the inherent reward-to-risk
ratio, the Z measure (or its variations, see Zou (2000)).

Many issues remain to be investigated. I list here just a few thoughts to conclude the paper.
What are further implications of the capital asset pricing model derived under the inherent efficiency
hypothesis? How to test the model and what empirical results do we expect??’ Can we extend
the inherent theory to situations where multiple sources of risk are involved? What are the inter-
temporal properties of an asset’s or dynamic strategy’s inherent reward and risk? Are the inherent
analysis and results robust to heterogeneous beliefs and asymmetric information? What will be the

optimal investment decisions in an inherently efficient market? And so on ...
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Upside Prifit (p=0.5) | Downside Loss (1-p=0.5) | o P D
Asset 1 60% -20% 0.40 | 0.15 | 0.10
Asset 2 40% -20% 0.30 | 0.13 | 0.10
Asset 3 20% -20% 0.20 | 0.10 | 0.10

Table 1: Ranking of Risk with Different Measures (constant inherent risk)

Upside Prifit (p=0.5) | Downside Loss (1-p=0.5) | o P D
Asset 1 60% -20% 0.40 | 0.15 | 0.10
Asset 2 40% -22% 0.31]0.14 | 0.11
Asset 3 20% -24% 0.22 ] 0.11 | 0.12

Table 2: Ranking of Risk with Different Measures (increasing inherent risk)
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Figure 1: Assets with the same downside risk but different upside potentials.
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Figure 2: Assets with different downside risk and upside potentials.



