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Abstract

The paper applies Ricardo's principle of comparative advantage to analyze the substitutabili ty

between types of labor. The problem of having to classify labor in a small number of types in e.g.

standard CES models are avoided by applying a continuum of worker and job types, where better

skilled workers have a comparative advantage in more complex jobs. The complementarity matrix,

which is derived by inverting the substitution matrix, exhibits attractive features. The matrix

depends only on the wage distribution and a single parameter, which is dubbed the complexity

dispersion parameter.

A particularly intriguing application is the accumulation of human capital. An investment in human

capital reduces the supply of low-skill ed and increases the supply of highly skill ed workers,

therefore compressing wage differentials. The training of one skill group will therefore have

(positive and negative) externalities to the wage of other skill groups. The complexity dispersion

parameter measures the percentage compression in log wage differentials per percent

accumulation of human capital. Empirical estimates suggest that this parameter is in the range of

2.4 - 3.8. This mechanism explains for example the massive compression of wage differentials in

some Asian tigers during the seventies and the eighties. The inverse of the complexity dispersion

parameter measures the maximum productivity gain that can be achieved by human capital

accumulation.
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1 Introduction

Some 150 years ago Ricardo used his well known example of textile and wine in Britain and

Portugal to lay out the principle of comparative advantage. Both countries should specialize in

the production of that commodity in which they have a comparative advantage. Apparently, the

factors of production in Britain and Portugal were not perfect substitutes.

Despite the natural relationship between the principle of comparative advantage and the analysis

of the substitutabili ty of factors of production, the link between both concepts has not been

developed formally since Ricardo's day. Arrow, Chenery, Minhas and Solow's (1961) work on

the CES function set the standard for the analysis of substitutabili ty. Later work by Diewert

(1971) and others provided new, more flexible specifications, but none of them started from the

concept of comparative advantage. This paper fills this gap. It will be shown that there are simple

and transparent closed-form relations between the structure of substitution and complementarity

and the principle of comparative advantage, based on a continuum of factors of production, which

have important advantages above the standard approach of a discrete number of factors of

production. 

Focussing on the labor market, the specification of the model makes it particularly suitable for the

analysis of the distributional effects of policy interventions such as a general increase in human

capital, training programs for specific skill groups, and minimum wages. The papers offers an

explanation for wage compression in the United States during the fifties and the sixties following

the high school revolution between 1910 and 1940, and similar, more recent experiences in some

Asian tigers. Recent studies showing the large spill over effects of increases in the minimum wage

to wage levels way above the minimum (DiNardo, Fortin, and Lemieux, 1996; Lee, 1999;

Teulings, 1998) provide strong evidence for the empirical relevance of the model.

In previous work (Teulings, 1995), I have developed a handsome specification of comparative

advantage in an assignment model of a continuum of worker types to a continuum of job types.

Workers are indexed by their level of skill s, and jobs by their level of complexity c. This

complexity index c measures the relative productivity gain of an additional unit of skill . The level

of skill , therefore, matters more in complex jobs - and better skill ed workers have a comparative

advantage in these jobs. The equilibrium allocation can be described by a mapping of complexities

to skills, denoted c(s), c'(s) > 0. There are two types of substitution in this model. First, changes
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     There is an alternative way to see this. The first-order condition for cost minimization by the firm implies that1

c(s) = w'(s). Since this relation applies identically for all s, the following can be differentiated: c'(s) = w"(s). Hence,
w"(s) is a measure of the dispersion of job complexity among workers. The greater the difference between job types,
the more diff icult it will be to substitute worker types.

in relative prices for the output of various job types will affect the composition of product demand

and therefore the skill composition of the demand for labor. This is the between-job substitution

process, modelled by a standard CES function. The most interesting result will be derived for the

case where the between-job elasticity of substitution is set equal to zero.

Second, changes in relative wages induce shifts in the assignment of worker-types to job-types.

This is the within-job/between-worker-type substitution process. The model satisfies the DIstance

Dependent Elasticity of Substitution (DIDES) characteristic: the shorter the skill distance between

two worker types, the more substitutable they are. A crucial role is played here by the log wage

function w(s), in particular by its first and second derivatives. Its first derivative w'(s) measures

the return to the skill i ndex (from the point of view of the worker) or the marginal relative cost

of an additional unit of skill (from the point of view of the firm). Since the complexity index c

measures the relative productivity gain of an additional unit of skill i n that job type, a cost-

minimizing employer offering jobs of type c will choose the optimal skill l evel such that w'(s) is

set equal to c. Were w'(s) constant (and hence, were w"(s) equal to zero), an employer would be

indifferent between skill types because the higher wage of a better skilled worker would be exactly

offset by her higher productivity. The higher w"(s), the higher the additional cost of hiring a

worker better or lower skilled than the optimal type. This implies that the second derivative must

be a measure of the degree of substitutabili ty between worker types: the higher w"(s) is, the less

substitutable they are. The formal analysis will confirm this idea.1

This multifactor model of comparative advantage is the starting point of the analysis, with one

important adjustment. In order to be able to calculate a matrix of elasticities of substitution, the

continuum of skill  types, where s can take any real number, is replaced by a stepfunction, where

s  = s  + 
�

s. By considering the limit for 
�

s �  0, the case of continuous variation in s can bei i-1

approximated arbitrarily close. Where an analytical expression for cost function of this economy

is available, the substitution matrix can be derived straightforwardly. However, the

complementarity matrix can only be constructed by inversion of the bordered substitution matrix,

since the production function cannot be specified explicitly. 
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     Some results in this paper have been conjectured for a special case in Teulings (1999): the importance of the2

second derivative of the log wage locus, the substitution matrix being zero almost everywhere, a second- order
differential equation governing the trajectory of a row vector of E and the non-differentiabilit y at the main

The paper's greatest challenge is to find an analytical description of the inverse of a matrix, which

is of infinite dimensions in the limit for � s �  0.

The matrices of substitution and complementarity of this model have two peculiarities: i) the

substitution matrix is close to diagonal, and ii) the complementarity matrix is governed by a

second-order difference equation. The reader will find it helpful to gain a basic intuition for these

characteristics. In this analysis, between-job substitution will be temporarily ignored for

expositional convenience.

In this model, a price increase (or, for the labor market: a wage increase) for one skill type leads

to substitution only to the two adjacent skill types. The demand for other skill types remains

unaffected because the adjacent skill types are better substitutes than all other skill types, which

are at a longer skill -distance. As long as the price of the best substitutes remains constant (which

is the basic assumption underlying the concept of elasticities of substitution), there is no need for

substitution to other, less adequate substitutes. Hence, the matrix of elasticities of substitution H

is close to diagonal: minusses at the main diagonal and plusses at the elements directly adjacent

to the main diagonal. Since substitution effects along a column sum to zero, the two plusses

adjacent to the main diagonal should each be half the size of the minusses at the main diagonal.

Hence, the i-th vector h of the substitution matrix shows a pattern like [...0,0,1,-2,1,0,0,...],i

where -2 is the i-th element. This feature renders H a less than useful description of the structure

of substitution when the number of skill types goes to infinity because the within-job/between-

worker-type substitution  is zero almost everywhere. H measures only the between-job type

substitution. I focus therefore on the complementarity matrix.

Whereas a substitution matrix documents the effect of price changes on  quantities, the

complementarity matrix E documents the effect of changes in quantities on prices. Loosely

speaking, the one is therefore the inverse of the other: H E = I . The j-th vector e, with elementsj

{e }  of E, should therefore satisfy (by the symmetry of H and E, columns are indentical to rows):ij

h 'e = 0. By the pattern of h, this implies: e  - 2 e  + e  �  � e  = - a constant, where thei j i i-1,j ij i+1,j i+1,j
2

constant comes from the fact that we have to invert not simply H, but the bordered substitution

matrix. The pattern of the substitution implies, therefore, that the complementarity matrix is

governed by a second-order difference equation.2
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diagonal. These results will be proven in the more general framework of this paper. Moreover, the argument will
be more intelli gible than that attempted in Teulings (1999).

The model has important implications for the relation between the accumulation of human capital

and wage dispersion. In general, investments in human capital reduce wage differentials: the

supply of highly skilled workers goes up (reducing the wages of these workers), while the supply

of low-skilled workers goes down (raising the wages of this group). The comparative-advantage

model allows a formal characterization of the relation between the accumulation of human capital

and the compression of wage differentials.

To derive this result, the differential equation governing the matrix of complementarity is solved

for the case of a zero between-job elasticity of substitution. The resulting complementarity matrix

can be fully described by the log wage distribution (which can be observed directly) and a variable

dubbed the complexity dispersion parameter. The latter parameter, which is estimated to be in the

range 2.4 - 3.8, is a charateristic of the wage function w(s), depending on its first and second

derivatives. It turns out that this parameter can also be interpreted as a compression elasticity: it

measures the percentage reduction in log wage differentials per percent increase in the stock of

human capital. Each percent investment in human capital reduces wage differentials by 2.4 - 3.8%.

The accumulation of human capital reduces the wage differentials (and therefore the return on

human capital), thereby reducing the scope for further investment. The model allows us to

calculate the maximum productivity gain to be achieved by investment in human capital, which

is equal to the inverse of the complexity dispersion parameter. Beyond that point, the return on

further investment in human capital is zero. The estimated values for the complexity dispersion

parameter suggest a maximum gain of between 26% and 42% of total labor product.

The organization of the paper is as follows. Section 2 sets out the structure of the model. Section

3 provides a general framework for the analysis of elasticities of substitution and complementarity,

which will serve as a background for the subsequent analysis. Sections 4 and 5 deal with,

respectively, the derivation of the elasticities of substitution and complementarity. In Section 6,

the complexity dispersion parameter is introduced. Section 7 deals with a somewhat more

structured specification, which allows the characterization of the relation between the

accumulation of human capital and wage dispersion. The paper closes with some final remarks

in Section 8.
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(1)

2 The structure of the economy

Consider an economy producing a single output by means of the input of labor in an infinite

number of job types. Production does not require any other input, like for example capital. Job

types are indexed by an index c, c �  [c ,c ], c  �  0. The index c will be referred to as the level of- + -

job complexity. The relation between inputs and output is given by a continuous-type CES

production function with constant returns to scale. One can think of this CES function either as

the production function of a firm that uses all inputs to produce a single output, or as a

consumption function, that describes the way in which heterogeneous outputs of various job types

are combined in a single composite consumption good. As long as the commodity markets for

these heterogeneous outputs are perfectly competitive, both interpretations are equivalent.

It is convenient for our purpose to specify directly the log cost function per unit of output

associated with this CES production function:

where:

p  = the log price per unit of output;x

p(c) = the log price per efficiency unit of labor of type c;�
(c) = an exogenous, twice differentiable function of share parameters;� = the elasticity of substitution between job types.

Labor in a job of type c can be provided by workers with different skill l evels, where skill types

differ in their productivity. There are I types of workers in the economy, each type endowed with

a skill l evel s , i=1,...,I. The labor markets for types are perfectly competitive. Let: s  = s  and let:i 0
-

s  = s  + � s, where � s is a constant that satisfies: � s = (s  - s )/I. Hence: s  = s . The domain ofi i-1 I
+ - +

the skill variable is therefore divided into a number of intervals of equal width and s jumps

stepwise. The case of continuous variation in the skill l evel s will be approximated by considering

the sequence of economies: I = I , I +1, I +2, ...., keeping all other parameters of the economy0 0 0

except � s fixed. Hence, in the limit: I � � , or equivalently: � s �  0.
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     The assumption of absolute advantage is not required for the present paper, but keeps it in line with Sattinger3

(1975) and Teulings (1995).

     The concept of comparative advantage is related but different from the concept of supermodularity, see for4

example Shimer and Smith (1997). Let f(s,c) be the output of worker type s in job type c, then comparative
advantage implies d[f /f]/dc > 0, or equivalently f f  > f f , while supermodularity requires f  > 0. A directs sc s c sc

comparison is troubled by the fact that output is heterogeneous in c in this paper, while it is homogeneous in
Shimer and Smith. However, both concepts yield equili brium allocations where there is a positi ve association
between s and c.

Assumption A:

productivity of worker type s   in job type c = exp( s  c ).i i

This specification captures the notion of comparative advantage. The higher the job complexity

c, the higher is the relative productivity gain of the marginal unit of skill . Hence, it is easy to show

that in a competitive equili brium highly skill ed workers will be assigned to more complex jobs.

Let w be the log wage for type i. A competitive firm offering jobs of type c will therefore choosei

the worker type i to minimize exp( w  - s  c ). In the initial market equili brium, these wage ratesi i

are assumed to be points on a locus w(s): w  = w(s ). For the evaluation of elasticities ofi i

substitution, we shall consider slight variations of these wage rates around this initial equili brium.

Assumption B:

B0: w(.) is twice differentiable;

B1: w'(s ) = c ;- -

B2: w'(s ) = c ;+ +

B3: w"(.) > 0.

Assumptions B1 and B3, combined with the assumption that c  �  0, imply that w(s) is an-

increasing function. This is motivated by the assumption of absolute advantage: whatever the job

type to which a worker is assigned, the higher s is, the more productive the worker is.3

Assumption B3 is justified by the assumption of comparative advantage (see Sattinger (1975) and

Teulings (1995)).  Were assumption B3 not satisfied for some interval of s, then the skill types4

in an even larger interval would not be employed in any job type in market equili brium.

Assumption B3 is therefore equivalent to the assumption that employment in all skill types is



8

     Throughout the paper I apply a somewhat inadequate, but convenient notation. Since s   = s  + i � s, strictly5 -
i

speaking: lim  f(s ) = f(s ), where I mean: lim  f(s ). In other words, where the notation suggests that i is kept�
s � 0 i � s � 0 i/ � s

-

constant (and hence s  goes to s ), in fact s is kept constant (and hence i goes to � ). i
-

strictly positive. Alternatively, assumption B3 can be interpreted as the second- order condition

for optimal worker assignment. If B3 were not satisfied, a firm could increase profits by either

hiring a less skill ed worker (because the productivity loss would more than offset the reduction

in the wage bill ) or by hiring a better skill ed worker (for a similar argument). 

We have by previous definitions:5

lim  � w / � s = w'(s );�
s  0 i i

lim  ! w /( ! s)  = w"(s ),"
s  0 i i

2 2

where !  is the first difference operator. Without proof, I state that consecutive skill types s , si-1 i

will be employed in consecutive, connected but non-overlapping, intervals of the job type index

c, where higher skill types are employed in the more complex jobs. This result is due to the fact

that, except for the borderlines between two consecutive intervals of c, the cost per efficiency unit

of labor, exp(w -s c), has a unique minimum for each c. Let c  be the borderline between thei i i

intervals of c employing skill type s  and skill type s . By cost minimization, the cost of employingi-1 i

both skill types should be equal at this borderline job type. Hence: s c  - w  = s c  - w , or:i i i i-1 i i-1

c (w ,w ) = ! w / ! s, i = 2,I;i i-1 i i

c  #  c ;1
-

c  #  c .I+1
+

Hence:

lim  c (w ,w ) = w'(s );"
s  0 i i-1 i i

lim  ! c (w ,w )/ ! s = w"(s )."
s  0 i i-1 i i

The first equality is equivalent to the first-order condition for the case where s varies

continuously: w'(s) = c. This condition is referred to in Section 1. The marginal relative cost of

an additional unit of skill , w'(s), should be equal to the relative productivity gain, c. From

assumptions A and B, there exists a c (.,.) within [c ,c ]; moreover, ! c  > 0 for each i=1,I-1. Alli i
- +

job types in the interval [c ,c ] will therefore be occupied by workers of type i. Substituting thesei i+1

relations in equation (1) yields:



px(w) $ 1

1 % & lnQ(w)

Q(w) ' ( I

i ) 1 *
ci + 1(wi,wi + 1)

ci(wi , 1,wi)

exp[ - (c) . (1 / 0 )(wi / sic)]dc

9

(2)

where Q(w) is an auxiliary function and where w is the (Ix1) vector with elements w  (all vectorsi

will  be underlined throughout the paper). Equation (2) defines log cost per unit of output as a

function of log wage rates of all worker types. Wages of worker types enter along two channels.

First, they enter by the integrand: production cost per job type, taking the assignment of workers

as given. Second, they enter via the upper and lower bounds of the integration intervals. Each

interval denotes the job types that employ a particular type of workers s  in market equili brium.i

Note that each boundary c  depends on the wage rates of only two worker types: type i and thei

preceeding type i-1. Changes in relative wages will change the optimal assignment, which will be

an important source of substitution effects. Whereas an explicit production function for cost

function (1) can be specified, no explicit expression is available for the production function

associated with cost function (2). This cost function will therefore be the starting point of the

analysis.
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(3)

(4)

3 A general framework for the derivation of elasticities

This section offers a general discussion on the derivation of elasticities of complementarity and

substitution in the case of constant returns to scale. The results are standard, but an explicit

discussion is included because the logs of quantities and prices are applied, instead of their levels.

This simplifies the derivation in Section 4.

Let C[P] be production cost per unit of output as a function of a vector of input prices P. Its first

derivative, C [P], is equal to the demand for input per unit of output X[P]:P

C [P] = X[P].P

Consider the effect of a change dP in P. For simplicity, C[P] is normalized to unity. Let dP  be+

the vector [dP 5  6 ], where 6  is the Lagrange multiplier of the constraint that dC[P] is dC; let dX+

be the vector [dX 7  dC]; and let C  be the matrix of second derivatives of the cost functionPP

(throughout the paper, bolds denote matrices). Then:

dX  = C  dP ,+ +  +
PP

where C  = [C  C  7  C ' 0] is the bordered Hessian matrix. The matrix of elasticities ofPP PP P p
+

substitution, which measures the effect of a change in the price of one input on the demand for

other inputs, is defined as:

H = C C C ,P PP P
-1 -1

where C  is a diagonal matrix with diagonal C .P P

Calculations can be simplified by using log prices instead of prices as argument of the cost

function (lower cases denote the log of the corresponding upper cases):

c(p) = lnC( exp[p] ).

The first derivatives of this function are thus equal to the value shares of each input:

where V is the vector of value shares. Likewise:

c  = C  P C  P - C  V V',pp', off diagonal
-1 -1

PP

where P is a diagonal matrix with diagonal P. Hence:

where V is a diagonal matrix with V on the diagonal. This equation will be applied in Section 4.
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(5)

The diagonal elements are solved as a residual item, since substitution effects add up to zero:

H V = 0,

where 0 is a vector with all elements equal to zero. 

Let F(X) be production as a function of input X that goes along with the cost function analyzed

above (like C, F[X] is normalized to unity). Its first derivative F [X] is equal to input prices P[X]:X

F [X] = P[X].X

Let F  be the matrix of second derivatives and define F  = [F  F  9  F ' 0]. The effect of aXX XX XX X X
+

change dX in X subject to the constraint that F[X] remains unchanged is:

dP  = F  dX .+ +  +
XX

Hence: F  = C . Elasticities of complementarity, measuring the effect of a change in oneXX PP
+ +  -1

input on the prices of other inputs, are defined as:

E = F F F .X XX X
-1 -1

When a production function is not available, these elasticities should be derived from the cost

function by matrix inversion. Define:

H  = [H 1 9  1' 0],+

where 1 is a vector with all elements equal to unity. Then:

H  = C C C ,+ +  -1 + +  -1
P PP P

where C  is a diagonal matrix with diagonal [C  9  1]. Then:P P
+

E = F { C } F  = V { G } V ,X PP X
-1 +  -1 -1 -1 + -1

where G  :  H , and where curly brackets around a matrix denote an operation that drops its+ +  -1

final column and row.  The second equality is due to the fact that F  = P, C  = X, and  F = C =X P

1. Hence, we shall use equation ? to calculate H  and then calculate the elasticities of+

complementarity by applying:

where {e } and {g } are elements of the matrices E and G  respectively and where { v } is aij ij i
+

diagonal element of V.
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1

(1 A B )Q(w) C s
×
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vi J 1
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i
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Q(w)
exp[ O (ci) P (1 Q R )(wi Q sici)]
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(6)

(7)

(8)

4 The matrix of the elasticities of substitution

The first derivative of log cost function (2) reads:

where the arguments of c (.) are omitted for notational convenience. The first term refers to thei

between-job substitution, the second term to the within-job/between-worker-type substitution.

The second term cancels due to the envelope theorem: it is equal to the first- order conditions for

the optimal assignment of workers to jobs. This term, however, does not cancel for the second

derivative, which will be discussed below. By equation (3):

where v  is the value share of worker type i. Define:i

We have, by equation (7), definition (8) and lim  S c / S s = w"(s ):T
s U 0 i i

lim  v / S s = exp[ V (c )+(1- W )(w -s c )]/Q(w) lim  (c -c )/ S sT
s U 0 i i i i i

T
s U 0 i+1 i

= exp[ V (c )+(1- W )(w -s c )]/Q(w) w"(s )i i i i i

= v(s ).i

This allows a nice interpretation of v(s ): it is the density function associated with the distributioni

of value over s along the support [s ,s ].- +

The second derivatives that are not adjacent to the main diagonal satisfy the following:



X 2pxX
wi

X
wj Y j Z i [ 1,i,1 \ 1 ] ^ 1 [ _

Q(w)2 `
ci a 1

ci

exp[ b (c) c (1 ^ d )(wi ^ sic)]dc `
cj a 1

cj

exp[ b (c) c (1 ^ )(

] ^ (1 ^ d )vivj

e 2pxe
wi [ 1

e
wi

] ^ (1 ^ d )vi [ 1vi c 1

Q(w) f s
exp[ g (ci) h (1 i j )(wi i sici)] k i (1 i j )vi 1v
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(9)

(10)

The terms reflecting the within-job/between-worker substitution cancel, because neither c  andi

c , nor c  and c  depend on both w  and w . However, for the elements { i-1,i} adjacent to thei+1 j j+1 i j

main diagonal, c  depend on both w  and w . Hence, the term reflecting the within-job/between-i i i-1

worker-type substitution does not cancel. Basically, when w  goes up, firms offering jobs of typei

c  can save costs by shifting from worker type i to type i-1. Using definition (8), we have:i

Equations (4), (9) and (10) motivate Proposition I:

Proposition I:

The elements { h } of the matrix of elasticities of substitution of the model discussed in Sectionij

2 read as follows:

I-1) h  = l ;ij, j m  i-1,i,i+1

I-2) h  = n  + q ,i-1,i i

where:

q  o  v(s )/[v v w (s ) p s] . i i i-1 i i
// -1

I-3) h  solves: H V = 0ii

The entries not adjacent to the main diagonal satisfy the standard constant elasticitity of

substitution result for the between-job substitution. This is the consequence of applying a CES

function (see equation (1)). For the entries adjacent to the main diagonal, a second term shows

up, reflecting the change in the assignment of workers to jobs when relative wages change. The

factor q  reveals the crucial importance of the second derivative of the wage function, as wasi

alluded to in the introduction of the paper. Since: lim  p c / p s = w"(s ), this second derivativeq
s r 0 i i

is a measure of the dispersion of job complexity. This is exactly the reason that this factor enters

in definition (8). The higher the second derivative, the greater the differences are between job
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types (that is, the greater the differences are in productivity ratios of worker types across jobs).

Note that in the limit I s  t , the number of entries adjacent to the main diagonal relative to the

total number of entries goes to zero. The H converges to the standard CES result almost

everywhere. Hence, elasticities of substitution are not very useful in a model of comparative

advantage.

5 The characterization of elasticities of complementarity

Elasticities of complementarity will be derived from the inverse of the bordered matrix of

elasticities of substitution in the way described in Section 3. The number of types of labor (and

therefore the dimensions of the bordered matrix H ) will tend to infinity when we let u s approach+

zero. We shall be able to give an analytical description of its inverse matrix. At the limit, the

inverse G  can be described by a function of two continuous arguments reflecting the row and+

column indices:

g(s ,s ) v  lim  g  ( u s) .i j w s x 0 ij
-2

Due to equation (5), elasticities of complementarity are equal to g /[v v ]. Hence, where limij i j w s x 0

v /u s = v(s ), these elasticities converge to:i i

lim  g /[v v ] = g(s ,s )/[v(s )v(s )].w s x 0 ij i j i j i j

The main ingredient of the characterization of g(.) will be a second-order differential equation in

its first argument, keeping the second argument constant. The intuition for this result is discussed

in Section 1. This differential equation is derived in two steps. First, G  is characterized in general.+

Next, the differential equation for g(.) is derived by letting u s approach zero. This procedure

justifies Proposition II :

Proposition II :

The function g(s,r) is fully characterized by the following:

II-1) g(s,r) = g(r,s);

II-2) the function g(s,r), keeping r constant, is continuous but non-differentiable at g(r,r);

II-3) apart from this non-differentiabili ty, this function satisfies the following:



1

v(s)w y y (s) g11(s,r) z w y y (s)v y (s) { w y y y (s)v(s)

[v(s)w y y (s)]2 g1(s,r) |
w y y y (s)v y (s) } v y y (s)w y y (s) { v y (s)2w y y (s)/v(s)

[v(s)w y y (s)]2 g(s,r) z ~
v(s)

g(s,r) | v(r) � 0

g1(s
} ,r) z v y (s � )

v(s � )
g(s } ,r) � 0

�s �
s � g(s,r)ds � 0
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(11)

(12)

(13)

II-4) its first derivatives at the boundaries of its domain satisfy

and a similar equation for s ;+

II-5)

The proof of the proposition is given in Appendix A.

The locus g(s,r) for s going from s  to s  and for r �  [s ,s ] is therefore described by two branches,- + - +

which both satisfy the second-order differential equation (11) and which connect at s = r. Solving

this second-order differential equation for both branches yields four constants of integration,

which are determined by: i) the equality of g(s,r) at s = r; ii) and iii ) the initial conditions for the

first derivatives of both branches at boundaries of the domain g (s ,r) (see equation (12)), and1
-

g (s ,r); and iv) the restriction that substitution effects sum to zero, which is equation (13). By1
+

the symmetry of G , the same relations also apply when we fix s and let r vary.  +

Equation (11) reveals again the crucial importance of the second derivative of w(s) referred to in

Section 1. Within-job/between-worker-type substitution becomes more costly the higher is w"(.).

At the limit, there will be only between-job-type substitution, measured by the CES-elasticity � .

Loosely speaking: lim  g  = vv / � , which is the standard result for a CES production function.w"(s) � � ij i j

Differential equation (11) will be solved to yield an explicit expression for g(.) for the case when



s<r: e(s,r) � � � s
s �

w � � (x)V(x)
v(x)

dx � �s �
r

w � � (x)[1 � V(x)]
v(x)

dx � �s �
s � v(y) � y

s �
w � � (x)V(x)

v(x)
dxdy
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     This feature explains the minimum wage paradox in Teulings (1999).6

(14)

there is no between-job-type substitution:

Proposition III :

For �  = 0, the elasticities of complementarity e(s,r) satisfy:

where:

V(s) �  � v(x)dx.s-
s

The proof of Proposition 3 can be found in Appendix B.

V(s) can be interpreted as the distribution function of value over s. Hence: V(s ) = 1. The+

expression for s > r follows from symmetry, by exchanging s and r. 

The first term in equation (14) varies with s only, the second term with r only, while the third term

is a constant. Hence, the first derivative of a row of elasticities of complementarity has a simple

structure:

for s < r: e (s,r) = -w"(s)V(s)/v(s).1

Hence, elasticities decline monotonically until they reach a minimum value at the main diagonal.

Since that V(s ) = 0, and V'(s) > 0, there is a force that unequivocally tends to make the trajectory-

steeper the more it approaches the main diagonal. There might be offsetting forces in w"(s) and

v(s). When the latter two are constant, e (s,r) decreases linearly starting from e (s ,r) = 0. Hence,1 1
-

e(.) reduces to a parabola, with its top at s = s . At the main diagonal, the trajectory crosses the-

upward-sloping branch from a similar parabola, with its top at s = s . The minimum of the+

trajectory is therefore a rather sharp trough, since it coincides with the non-differentiabili ty.6

There is a clear economic intuition for this pattern. Suppose that the supply of worker type s  isi

to be increased by some amount. Then, the wages of worker type i will go down, pushing c (s ,s )i i-1 i

down and c (s ,s ) up. A larger interval of job types will be available for type s  to accommodatei+1 i i+1 i

the additional supply that is available. Hence, there will be fewer jobs available for both of the

neighboring skill types. Their wages will go down as well, but by less than for type i, because



wi<wj: ew(wi,wj) � � �wi

w �
F(w)
f(w)

cd(w)dw � �w �
w

j

[1 � F(w)]
f(w)

cd(w)dw � �w �
w � f(x) � x

w �
F(w
f(w
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(15)

otherwise the change in c (.) and c (.) would be exactly undone. However, the wage reductioni i+1

for the neighboring skill types induces a fall of c (.) and a rise of c (.), thereby shifting thei-1 i+2

assignment intervals of type i-1 downward and of type i+1 upward in the job hierarchy. This will

invoke wage reductions for the subsequent skill types on both sides, s  and s , but by less thani-2 i+2

for the directly neighboring types, and so on and so forth. The substitution process materializes

by spill -over effects from the one segment to the other, both in the upward and the downward

direction of the job hierarchy.

Note that the cross-derivatives of e(s,r) within the above and below diagonal triangles of the

matrix are zero due to the additive structure of e(s,r). This feature has important practical

implications, which will be treated in Section 6.

6 The complexity dispersion parameter and the distributive effects of human capital

While equation (14) provides a useful characterization of elasticities of complementarity for

theoretical work, the concepts introduced by the equation are not easily interpreted empirically.

We have no direct observations on the skill l evel of a worker and therefore of the distribution of

value added across skill groups. This makes it hard to get a feel for the elasticities of

complementarity implied by the model. Equation (14) will therefore be specified in terms of the

distribution of value across log wage levels instead of across skill groups. Define:

F[w(s)] �  V(s) ( hence: v(s) = f[w(s)] w'(s) ),

ew[w(s),w(r)] �  e(s,r),

cd[w(s)] �  w"(s)/[w'(s)] .2

Hence, F(w) is the distribution of value added across log wage levels. This distribution differs

from the log wage distributions usually applied, which refer to hours worked or persons employed

instead of value added. The interpretation of the parameter cd(w) will be discussed below.

Equation (14) can be respecified by a transform of variable, w = w(s), as:

where: w  �  w(s ) and: w  �  w(s ). The parameter cd(.) = w"/[w']  is dubbed the complexity- - + + 2

dispersion parameter by Teulings and Vieira (1998), which refers to the fact that w" =



d[wi] � skill constant � �w �
w � ew[wi,w]f(w)d[logf(w)] � wages constantdw
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(16)

lim   c/  s measures the dispersion of job complexity. However, w" is not fully appropriate as¡
s ¢ 0

an empirical measure of the dispersion of job complexity. The metric of s can only be identified

up to a linear transformation (see Teulings (1995: 301)). Thus, suppose analyst 1 uses s as his skill

measure, while analyst 2 uses z = £  + £ s as his skill measure. The second derivative of w(s)0 1

established by analyst 1 will be a factor £  higher than the one established by analyst 2. Since1
2

there is no way to establish the values of £  and £  empirically, a measure of complexity0 1

dispersion should not depend on these parameters. The complexity dispersion parameter satisfies

this criterium. 

It should be stressed that the complexity dispersion parameter is not a structural technological

parameter (as is the elasticity of substitution of a CES production function). The complexity

dispersion parameter applies locally, in a particular market equili brium, with a particular

distribution of skill among labor supply (analogous to a value share in a CES function). Changes

in the skill distribution will affect the value of the complexity dispersion parameter.

In general, the effects of a change in the distribution of skill types among labor supply on wages

can be calculated by

The quotes "skill constant" for d[w] and "wages constant" for d[log f(w)] remind us that we referi

to the change in w(s ) for a constant skill l evel, and to the change in f[w(s)] due to a change in thei

number of workers with skill l evel s - and not due to a change in the number of workers earning

a log wage w(s). In the special case of human capital acquisition, the increase in the supply of the

skill  level to which a group of workers has been trained (the "destination" skill type) will be

exactly offset by the decrease in supply of the skill l evel which these workers had before the

training (the "source" skill type). Let h[w(s)] be the increase in the human capital of all workers

with skill type s before the acquisition of additional human capital ¤ ; h(w) is measured by the

wage increase that would be generated if the log wage schedule w(s) would be unaffected: h[w(s)]

= w(s+¤ ) - w(s). Hence, d[log f(w)] is equal to minus unity, and d{log f[w+h(w)]} is equal to plus

unity. The effect on log wages can therefore be calculated using equation (16):



d[wi] ¥ skill constant ¦ §w ¨
w © ew wi,w ª h(w) « ew(wi,w) f(w)dw

¬ ­w ®
w ¯ e2(wi,w)f(w)h(w)dw

° ­wi

w ¯ F(w)cd(w)h(w)dw ± ­w ®
wi

[1 ± F(w)]cd(w)h(w)dw
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(17)

where the approximation follows from a Taylor expansion that applies to small values of h(w).

d[w ]  measures the general equili brium effect for the wage of the skill type earning wi ² skill  constant i

before the increase in human capital, were her skill l evel not affected by the increase in human

capital h(w ); were dw  to include the direct effect of human capital acquisition, then we shouldi i

add h(w ).i

Equation (17) is particularly useful for the calculation of relative wage effects of the acquisition

of human capital. Such calculations were virtually impossible using the standard CES framework

or, more generally, production functions with a limited number of inputs. These models were able

to calculate the effect of particular types of human capital acquisition, namely the transfer of a

number of workers from one type to another (e.g. from low to high skill ed), but were unable to

access the effect of a marginal increase in human capital of a group of workers.

The general expression for wage effects of the acquisition of additional human capital in equation

(17) yields transparent expressions in two special cases: i) an increase in human capital only for

a single type of worker, and: ii) an equal increase for all worker types. Since these cases provide

nice insights into the mechanisms at work in this type of economy, they will be considered in

Propositions IV and V, respectively.



i) d[wi] ³ skill constant ´ [1 µ F(wj)]cd(wj) ¶ h, for: wi<wj

ii ) d[wi] ³ skill constant ´ µ F(wj)cd(wj) ¶ h, for: wi>wj
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(18)

Proposition IV:

Consider the economy described in Section 2 with ·  = 0 (no between-job substitution) and

consider in this economy the increase in the stock of human capital characterized by:

i) h(w) = h, for: w  < w < w  + ̧ ;j j

ii) h(w) = 0, everywhere else,

where both h and ̧  are small numbers. Then:

Proposition IV follows from a simple Taylor expansion of the integrals in equation (17). The

proposition considers the case where all workers earning between w  and w  +̧  are provided withj j

h units of additional human capital (measured in relative wage gain). 

Given the generality of the production structure, proposition IV is a very strong implication. All

workers types that are skill ed less than the type earning w  see their wages increased by somej

equal percentage, while all worker types that are skilled better than type w  see their wage reducedj

by some equal percentage. Proposition IV implies, for example, that any increase in the stock of

human capital at a particular wage level between the 10-th and 90-th percentile of the wage

distribution will decrease the 10-90 log wage differential. The predictions of the comparative

advantage model are therefore widely different from a CES model with, say, four skill categories.

There, an increase in human capital, which transfers workers from the second to the third

category, will not affect the wage differential between the first and the fourth category. Note that

a value share F(w) of the workers gets the wage increase, while a share 1-F(w) gets the decrease,j j

so that the sum of positive and negative wage effects is equal to zero, as is required for

substitution effects.

The total increase in human capital as a share of the total stock in Proposition IV is equal to f(w)j

x ̧  x h.

The reduction in the relative wage differential between all less-than-type-w  skill ed workers andj

all better skill ed workers is therefore equal to [ cd(w)/f(w) ] x the relative increase in the totalj j

stock of human capital.



{ d[wi] ¹ d[wj]} º skill constant » ¹ h ¼wi

w
j

cd(w)dw
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(19)

Proposition V:

Consider the economy described in Section 2 with ½  = 0, and consider in this economy an equal

relative increase in human capital measured in value terms for all worker types:

h(w) = h, for all w,

where h is a small number. Then,

Proposition V follows directly from equation (17). The proposition states that the compression

of a log wage differential w - w (e.g. 10-90 log wage differential) due to a general increase of thei j

stock of human capital by h x 100% is equal to the integral over the complexity parameter x the

increase. Proposition V highlights the compressing effect of increasing the stock of human capital

in this type of model, is similar to Tinbergen's (1975) race between education and technology.

Propositions IV and V both suggest an alternative interpretation of the complexity dispersion

parameter as being the compression elasticity: the percentage compression of log wage

differentials per percent investment in the stock of human capital. The next section will elaborate

on this theme.

7  Empirical applications: the accumulation of human capital

The analysis in Section 6 was quite general in the sense that no structure was imposed on the

crucial factors in equation (15), the trajectory of the complexity dispersion parameter, or, the

value distribution. In this section, we will consider a simple specification for both ingredients that

allows the numerical evaluation of some policy experiments for realistic parameter values. First,

assume that the complexity dispersion parameter is independent of the wage level:

cd(w) = ¾ .

Though the constancy of cd(.) is of course a strong restriction, it provides a useful benchmark.

Second, assume that the log wage distribution is log normal. This more structured version of the

model allows a number of further insights into the mechanism at work in the model, in particular

the relationship between human capital acquisition and wage dispersion.



for wi<wj: ew(wi,wj) ¿ À Á Â 2 Ã (wi/ Ä ) Å Ã ( Æ wj/ Ä ) Æ ÇÈ / É
Ê Ë / É

Ì
(x) Í (x)dx
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     f(w) = A  exp(w) Î [(w-µ)/ Ï ]/ Ï  = A  exp[ - ½(w- Ï -µ) Ï ]/ Ï  = Î [(w- Ï -µ)/ Ï ]/ Ï ,7 2 2 -2 2
1 2

where Î (.) is the standard normal density function and where A  are appropriately chosen constants of integration.i

     A more convenient choice would be to use an unbounded support for w. One would expect e(s,r) to converge8

for large values Ð , since the probabilit y mass in the tail s becomes very small . Inspection of the separate integrals
in (20) reveals that they do not converge. However, numerical calculations suggest that the effect of changes inÐ  on the various terms cancel, as is to be expected. To avoid this complexity, we apply a bounded support.
Subsequent calculations will be based on Ð  = 3 Ñ .

(20)

Teulings and Vieira (1998) work out a simple methodology for estimating the complexity

dispersion parameter for the case in which this parameter is constant (thus requiring only a couple

of OLS-regressions). They estimate Ò  to be 2.40 for Portugal (comparing rates of return to

schooling in Lisbon and in the rest of the country). They argue that the estimation results for the

Netherlands in Teulings (1995) and for the United States in Teulings (1999) imply values for Ò
of the same order of magnitude (3.50 and 3.80, respectively). I shall apply a value for Ò  of 2.50

in the subsequent calculations.

When the distribution of log wages weighted by hours is normal, then the distribution weighted

by value added is also normal, with the same variance. That is, when  7

w  ~ N(µ, Ó ),weighted by hours
2

then:

w  ~ N( Ó +µ, Ó ).weighted by value added
2 2

Ó  varies typically from 0.85 for Portugal, via 0.60 for the United States and 0.40 for the

Netherlands, to 0.30 for the Scandinavian countries. It is convenient to normalize the level of log

wages w such that the median log wage weighted by value added equals zero: µ = - Ó .2

Substituting these expressions in (15), and applying a transform of variable for the integrals, x =

w/ Ó , and using Ô (x) = 1- Ô (-x) yields:

where:Õ
(y) = Ö  × (x)/ Ø (x) dx,- Ù / Ú y

and where Û  is the (absolute value) of the upper and lower support of w.  In this simple model,8

the elasticities of complementarity are proportional to the complexity dispersion parameter and

the variance of log wages. No further parameters enter the model (apart from Û ; see footnote 8).

Table 1 gives an overview of the relevant values. The first two columns apply simultaneously to
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both values of Ü , the next three columns apply for Ü  = 0.60, while the next three columns provide

the same information, but then for Ü  = 0.30. The subsequent explication refers to the columns for

Ü  = 0.60, but applies likewise to the final three columns.

Column 1 lists the cumulative value share, F(w). Column 3 lists the corresponding wage level,

while column 4 gives the cumulative hours share. Since the mean of the log wage distribution

weighted by value has been normalized to zero, F(0.00 ) = 50% . Obviously, thecolumn 3 column 1

cumulative share weighted by hours exceeds the cumulative share weighted by value - since the

least-paid hours count less in value-weighted distribution. The larger the dispersion of the wage

distribution is, the more this applies - as can be seen by comparing the results for Ü  = 0.60 and Ü
= 0.30. Column 2 lists the relevant values of Ý (.). Finally, the integral in the third term of equation

(20) is listed at the bottom of Table 1. The meaning of column 5 regarding the introduction of a

minimum wage will be explained below. Though only results for Ü  = 0.60 and Ü  = 0.30 are

presented, the numbers for Ý (.) and the simple proportionality of the elasticities in the complexity

dispersion parameter and the variance of log earnings allow the reader to easily calculate himself

elasticities for other values.

A. Minimum wages

The employment effect of minimum wages is one of the most researched areas in labor economics.

Minimum wages are therefore a useful test for the comparative advantage model, the more so

where the model explains some stylized facts that have not been predicted by the more standard

CES type approach. We shall perform this test before turning to the accumulation of human

capital.

Though there is no agreement on the precise conclusions from the research on minimum wages,

there seems to be a communis opinio that the effects on employment are small. In their review

paper for the United States, Brown, Gilroy and Kohen (1982) report an elasticity of -0.1 until -0.3

for the employment of teenagers. More recent work by Card and Krueger (1994) suggests even

smaller effects. However, the effects on the wage distribution seem to be substantial (see

DiNardo, Fortin, and Lemieux (1996), Lee (1999) and Teulings (1998)). The latter two authors

claim that the reduction in minimum wages can explain most of the increase in wage inequality

in the United States during the eighties, in particular for the lower half of the distribution. The

present model is particularly useful for understanding the effect on the wage distribution.

Consider the consequences of the introduction of a minimum wage that drives 1% (in value
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     The 1% loss of employment referred to in the text is a value share, where the number in Teulings (1998a) is9

weighted by hours. The best comparison is the year 1990, for there the initial level of the minimum wage is low:
Table 1 suggests a 1% reduction in hours to yield a wage increase for the least skill ed worker that remains
employed of about 7% for Þ  = 0.60, while Teulings (1998a) reports a number of approximately 8%. 

added) of the workforce out of employment. What will be the consequences of this policy for the

wages of the other 99% of the workforce? To calculate these effects, we use equation (16). A

minimum wage drives out the least skill ed workers from employment. Hence,

d[log f(w)]  = 0, except for the 1 (value)% next to w , where:ß
wages constant

-

f(w) d[log f(w)]  = -1%.ß
wages constant

Substituting equation (20) for ew(.) in equation (16), and noting that its first term vanishes (since

w  = w ), the effect on the wages for the skill types that remain employed are:i
-

- à  á  ( â [-w / á ] - ã ä (y) â (y)dy ) x 1%.2
j

Table 1 lists the wage effects by percentile for á  = 0.60 and à  = 2.50 in column 5 (and for á  =

0.30 in column 8). The employment loss of 1 (value)% corresponds to a loss of approximately

4% of the hours worked (compare columns 1 and 4). The wage of the least skill ed worker that

remains employed goes up by some 17% for á  = 0.60 (somewhere between line 1 and 2 in Table

1, 4.2% for á  = 0.30), which squares well with the results of Teulings (1999).  Wages go up for9

all workers in the first 27 (value)% in hours of the distribution, or even the first 50% measured

in hours for á  = 0.60 (or: 38% for á  = 0.30). They gain from the increase in the minimum.

Because substitution effects must sum to zero, wages must go down in the upper 70 (value)%.

Hence, an increase in the minimum wage reduces wage dispersion along two mechanisms: the

truncation of low-skilled workers from employment and the compression of wage differentials for

those who remain employed. These results are consistent with the findings of Lee (1999) and

Teulings (1998) that the reduction in the minimum wage by about 30% in the United States

during the eighties is the most important explanation for the rise in wage inequality in the lower

half of the wage distribution.

B. The returns to training programs

Heckman, Lochner and Taber (1998a,b) have argued that standard methods for analyzing the

returns to training programs are biased since they ignore general equili brium effects. As long as

the program is experimental, and only a limited number of people can actually apply, the shift in
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the skill distribution will be too small to affect skill prices. However, when the program is open

to all members of the workforce, skill prices will be affected. The wage of a group of workers

with a skill l evel that is equivalent to that of those who enter the program will go up because they

are in more limited supply, while the wage for the skill l evel that the program is aiming for will

go down due to the increase in supply.

The comparative advantage model provides strong support for this notion. Proposition IV states

that an increase in human capital at a particular skill l evel is going to raise the wages of all less

skilled workers by an equal percentage and is going to reduce the wages of all better skill ed, also

by an equal percentage. Table 2 provides some calculations for this policy intervention for various

percentiles of the wage distribution. Since all better skilled workers experience an equal wage loss

and all l ess skill ed workers profit from an equal wage gain, only two numbers have to be

presented for each policy that affects the skill l evel of a particular percentile of the skill

distribution. The higher up in the skill distribution is the group that receives additional training,

the smaller will be the positive wage effects for the less skill ed workers, and the higher will be the

negative wage effects for the better skill ed workers. 

C. A general rise in the level of human capital

The rapid economic growth of the Asian tigers in the decades preceeding their recent collapse was

fuelled to a large extent by a substantial investment in human capital for the new generations

entering the labor market (see Young (1995)). The comparative advantage model developed here

implies that a general increase in the level of human capital reduces wage inequality. The relative

supply of low-skill ed workers goes down, increasing their wages, while the relative supply of

highly skill ed workers goes up, reducing their relative wages. This mechanism offers an

explanation for the rapid decline in income dispersion in some of the Asian tigers (see Birdsall,

Ross, and Sabot (1995)). Proposition VI provides some insights into the relationship between the

accumulation of human capital and wage dispersion.

Proposition VI:

Consider the economy described in Section 2 with å  = 0, and consider in this economy a sequence

of investments in human capital such that for all worker types in each investment round h(w) =

h, for all w.

Let H be the log of the accumulated stock of human capital (such that dH = h) and let the initial
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equili brium of the economy be characterized by

i) H = 0,

ii) cd(w) = æ (0),

iii ) w ~ N[µ(0), ç (0) ];2

where the parameters æ (H), µ(H) and ç (H) are viewed as functions of the stock of accumulated

human capital, H. Define w'(s,H) as the return on human capital for skill l evel s at a level of

accumulated human capital H. 

Then:

VI-1) the characteristics of equal complexity dispersion for all w and log normality remain

preserved during the accumulation process,

VI-2) æ (H) = æ (0)/[1 - æ (0) H],

VI-3) w'(s,H) = w'(s,0) [1 - æ (0) H],

VI-4) ç (H) = ç (0) [1 - æ (0) H].

Proposition VI follows from Proposition V. The formal proof has been relegated to Appendix C.

The crucial ingredient in the proof is equation (19) of Proposition V, which under an equal

complexity dispersion parameter for all wage levels, and using the notation introduced in

Propostion VI, reduces to the following:

d[w(s,H) - w(r,H)]/dH = - æ (H) [w(s,H) - w(r,H)].

Dividing by (s-r) and taking the limit (s-r) è  0 yields: 

dw'(s,H)/dH = - æ (H) w'(s,H),

where the superscript ' denotes the partial derivative with respect to the first argument (to

maintain consistency with the notation used before). Hence, the rate of compression of the return

to human capital is equal to æ (H), which contributes to the interpretation of the complexity

dispersion parameter as the compression elasticity. This rate of compression is equal across skill

levels. Therefore, actual log wage schemes w(s,H) are a linear transformation of log wage

schemes prevaili ng during previous stages of the accumulation process. This explains why the

complexity dispersion parameter remains equal across skill l evels and why log wages remain

distributed normally in the course of the accumulation process. Note that the normality of the

distribution of log wages is only required for proposition VI-4) and VI-5). The other parts of

Proposition VI) require only the independence of the complexity dispersion parameter of the wage
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level.

The contribution of subsequent investment rounds in human capital to the compression of wage

dispersion is governed by three forces. First, the complexity dispersion parameter goes up,

increasing the rate of compression. Second, compression is proportional to the level of dispersion,

decreasing the rate of further compression. The first and second forces exactly cancel, yielding

a constant absolute rate of compression. Finally, the return to human capital is reduced in line with

wage dispersion. Each new round of investment in the value stock of human capital will therefore

require a greater extension of the "physical" stock of human capital (e.g. years of education or

experience) than previous rounds, since the investments yield lower returns.

Note that changes in the stock of human capital are valued at their contribution to productivity,

not at the cost of investment. Proposition VI-2/3) imply that the return to human capital and the

standard deviation of the log wage distribution vanish when: H = é (0) . From then on, further-1

investment in human capital is impossible (since human capital is valued at its return and this

return is equal to zero). Hence, the log stock of human capital, and therefore the log output gain,

cannot exceed é (0) , which is equivalent to a 40% output gain under the assumption that the-1

complexity dispersion parameter is equal to 2.50.

The intuition for this result is that each increase in human capital will raise productivity in all job

types, but mostly in the most complex job types, because the marginal return of an additional skill

is the highest in these occupations. Since there is no between-job substitution, output ratios

remain constant. Hence, an ever increasing part of the workers will be needed in the least complex

job types, since the investment in human capital yields no productivity gain in that job type. In the

end, everybody works in the least complex job type, where there is no productivity gain.

The maximum to productivity gains that can be achieved by investment in human capital typically

apply when technology is kept constant. When the demand for labor shifts to more complex

functions as a result of skill -biased technological progress, then the return to human capital

increases again. At that point, new rounds of investment in human capital become profitable.

Technology might also be endogenous, which can be covered in the model by letting ê  be

positive. A fall in the return to human capital will then reduce the wages of highly skill ed workers

and thereby also output prices for complex products. With ê  positive, this will i nduce a shift of

product demand towards more complex products.  The endogeneity of technology will therefore

increase the maximum output gain that can be achieved by investment in human capital. Similarly,

the assumption that the complexity dispersion parameter is constant along the wage schedule is
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     Kim and Topel (1995, p. 249, Fig. 7.12): a 20% point increase in the share of high school x 4 additional years10

of education compared to elementary education, 10% point increase in college x 8 additional years.

a condition for this maximum to productivity gains. Other patterns for the complexity dispersion

parameter might yield different outcomes.

Propositions VI-2) and VI-3) imply that there is an inverse relation between the complexity

dispersion parameter and wage dispersion in the course of the accumulation process. Hence, the

maximum productivity gain achieved by investment in human capital depends on the initial level

of wage dispersion: in Portugal, where the stock of human capital is still at a low level and where

the standard deviation of log wages is high, a greater productivity gain can be realized by

investment in human capital than can be realized in a country with a highly educated workforce

and a compressed wage distribution, such as the Netherlands. The inverse relation between

complexity dispersion and the standard deviation of log wages implies that their product is a

"natural" constant (Portugal: 2.0, United States: 2.3, the Netherlands: 1.4).

Considering the two economies described in Table 1 ( ë  = 2.50, ì  = 0.60 or 0.30), each percent

increase in the stock of human capital will reduce all log wage differentials by 2.5%. Taking as

a point of reference the 10-90% log wage differential (or equivalently: 2.56 ì ), each extra percent

human capital will yield a reduction of the 10-90% log wage differential of 2.5 x 2.56 x 0.60%

= 0.038 points (or half as much for ì  = 0.30). 

Kim and Topel (1995) present some evidence for the case of Korea during the seventies and

eighties. The 10-90% log wage differential declined from 1.68 in 1971 to 1.22 in 1989, a trend

that is due mainly to the compression of rewards for educational groups. The mean number of

years education of the workforce rose by approximately 1.6 years.  Using a 10% return to a year10

of education (this high number is consistent with Kim and Topel's, p. 250, fig. 7.13), we find that

this increase is equivalent to a 16% increase in the value of human capital. Where the level of

wage dispersion is consistent with ì  = 0.60, the comparative advantage model would predict a

16 x 3.8 = 61% point reduction in the 10-90% log wage differential, which squares reasonably

well with the actual decrease.

The same mechanism explains the large compression in wage differentials in the United States

during the forties and fifties (Goldin and Margo, 1992), following the high school revolution

between 1910 and 1940 (Goldin and Katz, 1998).
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     The characterization of H applied in Teulings (1998) is based on a more complicated and less robust11

approach, where the within-job/between-worker-type elasticity of substitution is set at a large but finite value. The
present paper uses an infinite elasticity.

The effects of the policy interventions discussed above are conditional on the assumption of í
being equal to zero. Without that assumption, we would not be capable of applying the closed-

form solution equation (14). However, we can use the characterization of H in Section 4 and set

I at a high value to calculate the inverse numerically. Similar calculations in Teulings (1999)

suggest that setting í  equal to unity reduces the elasticities of complementarity along the main

diagonal by some 40%.  A comparison of the empirically observed spill -over effects of an11

increase in the minimum wage in Lee (1999) and Teulings (1998) and the calculated effects

discussed here suggests that í  must be close to zero.

7 Some final remarks

Our analysis has revealed a number of peculiarities in the structure of substitution and

complementarity of the comparative advantage model. The substitution matrix H converges to

the constant between-job elasticity í  everywhere, except in the entries directly adjacent to the

main diagonal. When the number of factors of production tends towards infinity, the surface of

this area adjacent to the main diagonal relative to the total surface of the matrix tends toward

zero. Hence, if one believes the comparative advantage model, then it makes little sense to look

at the substitution matrix.

However, the complementarity matrix is very informative. The second derivative of the log wage

function has been shown to be crucial for its shape. The higher the curvature of the log wage

function, the higher are the elasticities of complementarity. The intuition for this result is that

whereas the first derivative shows up in the first-order condition for optimal assignment, the

second derivative measures the cost of shifts in the assignment.

The trajectory of a column vector of the complementarity matrix is governed by a second-order

differential equation, with a negative second derivative and a non-differentiabili ty at the main

diagonal. Due to these features, the complementarity matrix has a deep trough at the main

diagonal, while there is relatively little action in the regions further from the diagonal. The relative

wage effects of an increase in the supply of a particular skill type are therefore heavily

concentrated at skill types within a shorter distance: the DIstance Dependent Elasticity of
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Substitution (DIDES) structure. This feature leads to the aggregation bias in traditional estimates

of elasticities of complementarity discussed in Teulings (1999). 

The comparative advantage model, thus, shed new light on the relation between human capital

accumulation and wage dispersion, in particular when the elasticity of between-job substitution

is equal to zero. For that case, a simple closed-form solution for the differential equation is

available. There is a nice correspondence between the determinants of supply and demand for

human capital. On the supply side, w'(s) measures the return to human capital (or: skill ) to the

worker. On the margin, the cost of the acquisition of an additional unit will be set equal to this

return. On the demand side, w'(s) measures the cost of an additional unit of skill to the firm. In

equilibrium, it will be set equal to the productivity gain of an extra unit of skill , that is, to the level

of complexity of the job. This is equivalent to the first-order condition for optimal assignment:

w'(s) = c. This double role of w'(s) can be applied fruitfully.

A first attractive feature of the closed-form solution for the elasticities of complementarity is that

the cross derivative of the row and column index equals zero. The implication of this

characteristic is that a training program that raises the skill l evel of all workers of skill type s  by0

an amount î  will yield an equal relative wage gain for all less skill ed workers and an equal loss

for all better skilled workers. It is remarkable that this quite general class of production functions

yields this strong prediction.

A second feature arises when the complexity dispersion parameter is assumed to be constant. The

complexity dispersion parameter is introduced as an alternative statistic for the second derivative

of the log wage function. Whereas this second derivative can be identified empirically only up to

a multiplicative factor, the related concept of the complexity dispersion parameter does not

depend upon a non-identifiable linear transformation. This parameter can therefore be estimated

empirically. Three estimates are available from previous work (for Portugal, and indirectly, for

the United States and the Netherlands), varying between 2.4 and 3.8. This parameter and the

shape of the wage distribution are sufficient statistics for the calculation of the complementarity

matrix. 

In principle, the complexity dispersion parameter varies along the wage schedule. However, as

a first-order approximation, it can be assumed to be constant. For this case, the accumulation

process of human capital can be characterized. Suppose that the human capital of all workers

(measured by its marginal productivity) is increased by an equal percentage for each type. Then,
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the complexity dispersion parameter measures the percentage decline in the return to human

capital per percent increase in the stock of human capital (again measured by its marginal

productivity).

Given the estimates that are available of the complexity dispersion parameter, each percent

increase in the value of the stock of human capital reduces the return on further investments by

2.4 - 3.8%. This result motivates the interpretation of the complexity dispersion parameter as the

compression elasticity. At the same time, each percent increase in the stock of human capital will

also increase the complexity dispersion parameter itself. As the accumulation process continues

long, the return to human capital and therefore wage dispersion will decrease. In the end, both

converge to zero. From that moment on, further investment in human capital yields no return. The

maximum productivity gain from investment in human capital can therefore be calculated as the

inverse of the complexity dispersion parameter, which is in the range of 26 - 42% for the estimates

of the complexity dispersion parameter that are available.

These results allow empirical inference on the relation between human capital accumulation and

wage dispersion. The redistributive effect of a general increase in human capital is substantial.

This might explain the strong compression of the wage differential in the United States in the

fifties and the sixties following the high school revolution between both World Wars and the

strong compression in some Asian tigers during the seventies, again following heavy investment

in human capital in the preceeding period. In fact, the predictions of the model match the actual

compression remarkably well for the case of South Korea.

The quality of the schooling system might therefore be an important explanation for cross country

differences in wage dispersion. Leuven, Oosterbeek, and Van Ophem (1997) present evidence in

favor of this idea, using a new multi-country OECD dataset with test scores that are comparable

across countries.

These results have important positive and normative implications for economic policy. They point

to a set of both positive and negative externalities that the schooling decision of one worker type

might present to the value of human capital of others. On the positive side, these externalities

explain why many democracies subsidize higher education. Each dollar of tax money that is spent

on the education of the upper half of the skill distribution has a positive external effect on the

wage of the median voter. Hence, the median voter will find it optimal to subsidize higher

education - at least to some extent.
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On the normative side, there are implications for the targetting of training programs for the relief

of the low-skill ed. It is not necessary to target these programs tightly to the left tail of the skill

distribution to let only the least skill ed workers gain from the policy. Schooling programs aimed

at worker types somewhat higher in the skill distribution still have a positive impact for the least

skill ed, due to their general equili brium effects. When training policies for the least skill ed are

costly due the inefficiency of the education production function for this group, it might be a

worthwhile alternative to aim the policy at a somewhat higher skill l evel and to let the least skill ed

benefit from the general equilibrium effects. The policy maker then faces a trade-off between the

general equili brium effect, on the one hand (the higher up in the skill distribution is the focus of

the training program, the smaller is its general equilibrium effect on the left tail), and the efficiency

of the education production function, on the other hand.
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Appendix A The proof of Proposition II

Proposition II-1) follows from the symmetry of H .+

The proof of the other propositions requires two steps: first, the characterization of G , and then+

taking the limit: lim .õ
s ö 0

Let g and h denote the i-th vector of G  and H  respectively. It is easy to see that: g  = [V ÷ 0],i i I+1
+ +

since: H  [V ÷ 0] = [0 ÷ 1] by the definition of the diagonal elements of H. Furthermore, the identity:+

G  H  = I  and the symmetry of H  define the following relations:+ + +

A1) g'h  = 0 øj I+1ù
 g  = 0;i=1 ij

I

A2) g'h = 0, for i ú  1,j,I ûj iü
 ý  g  - ý  g /v  + q g  - 2 qq g  + q g  + v  = 0;k=1 kj ij i i i-1,j i ij i+1 i+1,j j

I

A3) g'h = 1 for i ú  1,I ûi iü
 ý  g  - ý  g /v  + q g  - 2 qq g  + q g  + v  = 1;k=1 ki ii i i i-1,i i ii i+1 i+1,i i

I

A4) g'h  = 0, ûj 1ü
 ý  g  - ý  g /v  - (v /v )q g  + q g  + v  = 0k=1 kj 1j 1 2 1 2 1j 2 2j j

I

(a similar equation is available for g'h );j I

where: qq  þ  /  [(v /v )q  + (v /v )q ].i 2 i-1 i i i+1 i i+1
1

The term 
ü

 ý  g  in equation A2)-A4) drops out due to equation A1). Define the first differencek=1 kj
I

operator: ÿ g  = g  - g . Hence, this operator refers to the first suffix of g . Likewise, a secondij ij i-1,j ij

difference operator is defined. Then, equation A2) can be written as:

This completes the first step, the characterization of G . We now turn to the second step, taking+

the limit for ÿ s as it approaches zero. Since: g(s ,s ) þ  lim  g  ( ÿ s) , we have:i j � s � 0 ij
-2

lim  ÿ g  ( ÿ s)  = g (s ,s );� s � 0 ij 1 i j
-3

lim  ÿ g  ( ÿ s)  = g (s ,s ),� s � 0 ij 11 i j
2 -4

where the g (.) refers to the partial derivative of g(.) to its i-th argument. Furthermore:i
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v(s)w � � (s) [g1 � (s,s) � g1 � (s,s)] � 1
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lim  qq  (
�

s)  = [v(s )w"(s )] ;�
s 	 0 i i i

3 -1

lim  (qq  - q )(
�

s)  = - /  [w"(s )v'(s )+w'''(s )v(s )] / [v(s )w"(s )] ;�
s 	 0 i i 2 i i i i i i

2 1 2

lim  (q  - 2qq  + q )
�

s = [v'(s )/v(s )] [w"(s )v'(s )+w'''(s )v(s )] / [v(s )w"(s )]  -�
s 	 0 i i i+1 i i i i i i i i

2

[v"(s )w"(s )] / [v(s )w"(s )] .i i i i
2

Multiplying equation (21) by 
�

s and applying these relations yields equation (11) in proposition

II-3).

When: lim  
�

g  (
�

s)  
  lim  
�

g  (
�

s) , then: �
s 	 0 ij

�
s 	 0 i+1,j

-3 -3

lim  
�

g  (
�

s)  = g (s ,s );�
s 	 0 ij 1 � i j

-3

lim  � g  ( � s)  = g (s ,s ),

s � 0 i+1,j 1 � i j

-3

where the arrows denote the left and right partial derivatives of g(.) respectively. Hence, relation

A3) implies:

g(s,r) is therefore continuous but non-differentiable at s = r as it approaches zero, proving

proposition II-2). Furthermore:

lim  q  ( � s)  = [v(s )w"(s )] .�
s � 0 i i i

3 -1

The limit for � s of equation A4) yields equation (12) in proposition II-4). A similar equation

applies for s = s . Finally, the limit of equation A1) yields equation (13) in proposition II-5).+

Q.E.D.

Appendix B The proof of proposition III

g(s,r) can be calculated from equation (14) by multiplying both sides by v(s)v(r) (see equation

(5)). Differential equation (11) can be recovered from there by dividing  by v(s), differentiating

once, multiplying the result by v(s)/w"(s), differentiating a second time, and dividing the result by

v(s). The four initial conditions are satisfied. The equality of g(s,r) for s = r for both branches of

the locus follows from the symmetry of equation (14). The initial condition for the first differential

equation for s = s  given in equation (12) is satisfied because the derivative of the first term-

vanishes since V(s ) = 0. Likewise, the initial condition for s  is satisfied since V(s ) = 1 (for being- + +

V(.) the distribution function of value). Equation (13) can be checked by first evaluating it for r

= s . Then: s < r for the full support of s and hence, we have only to apply equation (14) and not+



�s �
s �

g2(s,r)ds � v � (r)
v(r)

�s �
s �

g(s,r)ds � w � � (r)[1 � V(r)]
� r
s �

v(s)ds � w � � (r)V(r)
�s �
r

v(s)ds
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its symmetric counterpart for s > r. The second term drops out. It then follows immediately that

equation (13) is satisfied. Next, the equation has to be verified for r < s . Since equation (13)+

applies identically for all r, it can be differentiated with respect to r. Substitution of equation (14)

yields the following:

The first term accounts for the derivative of the factor v(r), which comes in due to the transfer

from e(s,r) to g(s,r). The second term accounts for the derivative of e(s,r) for s < r and the third

term for s > r. The second and third terms cancel. The first term vanishes when equation (13) is

satisfied. Since equation (13) is satisfied for r = s , by induction it will also be satisfied for r < s .+ +

Q.E.D.

Appendix C The proof of proposition VI

Under the assumption of the complexity dispersion parameter being constant, and using the

notation developed in Proposition VI, equation (19) in Proposition V reduces to the following:

d[w(s,H) - w(r,H)] = - � (H) [w(s,H) - w(r,H)] dH.

Dividing by (s-r)dH and taking the limit (s-r)dH �  0 yields

w '(s,H) = - � (H) w'(s,H),2

where the suffix 2 refers to the partial derivative to the second argument. The superscript ' is used

to denote the partial derivative with respect to the first argument to maintain consistency with the

notation used in previous sections. Differentiating with respect to s yields:

w "(s,H) = - � (H) w"(s,H).2

By the definition of the complexity dispersion parameter we have

� '(H) = � (H) [w "/w" - 2 w '/w'] = � (H) .2 2
2

Hence,

� (H) = � (0)/[1 - � (0)H].

which proves proposition VI-2). Note that w'(s,H) and w"(s,H) drop out of the equation for � '(H),

so that the complexity dispersion parameter remains independent of w in the course of the

accumulation process, which proves the first part of proposition VI-1). Substituting the relation
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for � (H) in that for 

w '(s,H) yields VI-3). Furthermore,2

w (s,H) = - � (H) w(s,H) + M(H),2

where M(H) is a proper constant of integration. Two events cause the distribution of w to change

in the course of the accumulation process. First, consider the change due to the accumulation of

human capital. Were relative wages unaffected, the change would be

w ~ N[µ(H)+dH, � (H) ],2

since each worker type gets an equal increase in her human capital. The increase in human capital

itself does therefore not disturb the normality of w. Next, consider the change in relative wages.

Note that the new log wage schedule is a linear function of the old schedule. Hence, the change

in the relative wage does not affect the normality of w either, proving the second part of

proposition VI-1). Since it applies in general that: d std.dev.[g(H)w]/dH = g'(H) std.dev.[g(H)w],

we have

� '(H) = � (H) � (H).

This relation can be integrated, yielding proposition VI-4).

Q.E.D.
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Table 1 Percentiles (value and hours), � (w/  ), w,
the effect of an increase in the minimum wage yielding a 1 (value)%
employment loss, and the effect of an increase in human capital of 1 (value)%

                                  = 0.60                                  = 0.30                 
                                                                                                          (value)%     �                
w    (hrs)%   min.w        w   (hrs)%   min.w               1) 1)

                                                                                                     
  0.008    0.209            -1.440  0.036     0.194     -0.720  0.018    0.048      
  0.014    0.285            -1.320  0.055     0.128     -0.660  0.029    0.032      
  0.023    0.366            -1.200  0.081     0.087     -0.600  0.045    0.022      
  0.036    0.454            -1.080  0.115     0.059     -0.540  0.067    0.015      
  0.055    0.550            -0.960  0.159     0.040     -0.480  0.097    0.010      
  0.081    0.653            -0.840  0.212     0.027     -0.420  0.136    0.007      
  0.115    0.767            -0.720  0.274     0.017     -0.360  0.184    0.004      
  0.159    0.892            -0.600  0.345     0.010     -0.300  0.242    0.003      
  0.212    1.032            -0.480  0.421     0.004     -0.240  0.309    0.001      
  0.274    1.188            -0.360  0.500     0.000     -0.180  0.382    0.000      
  0.345    1.365            -0.240  0.579    -0.004     -0.120  0.460   -0.001      
  0.421    1.567            -0.120  0.655    -0.006     -0.060  0.540   -0.002      
  0.500    1.802             0.000  0.726    -0.009      0.000  0.618   -0.002      
  0.579    2.077             0.120  0.788    -0.011      0.060  0.691   -0.003     
  0.655    2.406             0.240  0.841    -0.013      0.120  0.758   -0.003     
  0.726    2.804             0.360  0.885    -0.014      0.180  0.816   -0.004     
  0.788    3.298             0.480  0.919    -0.016      0.240  0.864   -0.004     
  0.841    3.923             0.600  0.945    -0.017      0.300  0.903   -0.004     
  0.885    4.734             0.720  0.964    -0.018      0.360  0.933   -0.005     
  0.919    5.813             0.840  0.977    -0.019      0.420  0.955   -0.005     
  0.945    7.292             0.960  0.986    -0.020      0.480  0.971   -0.005     
  0.964    9.384             1.080  0.992    -0.021      0.540  0.982   -0.005     
  0.977   12.443             1.200  0.995    -0.022      0.600  0.989   -0.005     
  0.986   17.072             1.320  0.997    -0.023      0.660  0.994   -0.006     
  0.992   24.340             1.440  0.999    -0.023      0.720  0.997   -0.006     
                                                                                                        

 effect on w due to the introduction of a minimum wage causing a 1 (value)% loss of1)

employment.                 !
[ " (x) #  (x)] $ x: 2.799% :                2.500& / ' :              3.000
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Table 2  Effect of an increase in human capital of 1(value)% for 1(value)% 
wage level and (value) percentile of the workers 
who receive the training

                                                                                                   (
 = 0.60

                                                                                                  
             wage effects for:          

  w      %               less skill ed              better skill ed
                                                                                                             
 -0.96  0.05                12.78                     -0.74
 -0.72  0.12   6.84                     -0.89
 -0.48  0.21   4.08                     -1.10
 -0.24  0.34   2.67                     -1.40
  0.00  0.50   1.88                     -1.88
  0.24  0.66   1.40                     -2.67
  0.48  0.79   1.10                     -4.08
  0.72  0.88   0.89                     -6.84
  0.96  0.95   0.74                    -12.78

                                                                                                        (
 = 0.30

                                                                                                  
              wage effects for:        

  w       n%              less skill ed              better skill ed
                                                                                                  
 -0.48  0.05  6.39                     -0.37
 -0.36  0.12   3.42                     -0.44
 -0.24  0.21   2.04                     -0.55
 -0.12  0.34   1.33                     -0.70
  0.00  0.50   0.94                     -0.94
  0.12  0.66   0.70                     -1.33
  0.24  0.79   0.55                     -2.04
  0.36  0.88   0.44                     -3.42
  0.48  0.95   0.37                     -6.39
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