
Forecasting Dynamic Market Share Relationships �

Nobuhiko Teruiy

Faculty of Economics, Tohoku University, Sendai 980-77, Japan

E-mail:terui@econ.tohoku.ac.jp, Voice:+81-22-217-6311, Fax:+81-22-217-6321

March, 1997(First vesion: February, 1997)

Abstract

In market share analysis, it is well recognized that we have often inadmissible
predicted market share, which means that some of predictors take the values outside
the range [0, 1] and the total sum of predicted shares is not always one, so called
"logical inconsistency". In this article, based on Bayesian VAR model, I propose a
dynamic market share model with logical consistency. The proposed method makes
it possible to forecast not only the values of market share by themselves, but also
various dynamic market share relations across di�erent brands or companies. The
daily scanner data are analyzed by the proposed method.
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1 Introduction

Many kinds of market share models have been proposed mainly for measuring the e�ect

of marketing mix variables. The following conditions, known as the logical-consistency

requirement, are essential for market share models;

� Each estimated market shares is non-negative and belongs to the range between zero

and one(or 100%) (We call it the range condition.).

� The sum of estimated market shares must be equal to one(or 100%) (We call it the

summing up condition.).

Some of market share models do not always satisfy the above conditions. For exam-

ple, following Naert and Weverbergh (1981) and Cooper and Nakanishi(1988), market

share models proposed so far can be classi�ed into �ve types; linear models, multiplica-

tive models, exponential models, MCI(multiplicative competitivein teraction) models and

MNL(multinominal logit) models. The �rst three models take the same form after transfor-

mation of variables and these models do not satisfy the logical-consistency requirement.

On the other hand, MCI and MNL models, which can be interpreted as the normal-

ized models of multiplicative and exponential models respectively, are de�ned so that the

requirement is satis�ed by construction. Their modeling and statistical properties are

discussed in Nakanishi and Cooper(1974) and Cooper and Nakanishi(1988).

Apart from these normalized models, by using general regression based model, the sta-

tistical conditions for the requirementha ve been investigated by Naert and Bultez(1973),

Beckwith(1973) and Bultes and Naert(1975). However, as a practical implementation, it

is often the case to employ an adaptive method, where k� 1(k is the number of brands or

companies in a market) shares are estimated in the �rst by the same dimensional equation

system and the remaining share is determined through the summing up condition. The

justi�cation of this method is given by Barten(1969), which showed that the maximum

likelihood estimation provides the invariant parameter estimates with respect to the ex-

cluded equation. Ghosh, Neslin and Shoemaker (1984), Leeang and Rueyl (1984) and

Brodie and de Kluyer (1984) conducted the extensive empirical studies and compared the

predictive performances of these models.
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Market share analysis so far has been essentially based on regression models, where

market shares are explained by marketing mix variables and some environmental vari-

ables(causal data), and the predictions by these models are conducted by assuming the

future values of these explanatory variables. The speci�cation of future values for market-

ing variables of competing brands(or companies) can lead to distinctive prediction errors.

The predicted share by these models is not automatically generated by dynamical mecha-

nism of the model, and in this sense, these regression based models are the static models.

Although regression based approach has an important meaning of measuring the e�ects of

marketing mix variables on market shares, a dynamic statistical model as the automatic

forecasting system can be useful and desirable for real decision making situation.

On the other hand, time series analysis de�nes the dynamic system for data generating

process and its usefulness has been recognized in many disciplines especially for short-term

predictions. Multivariate(or vector valued) time series models employed here de�ne the

current market share not only by the past values of its own, but also by the past values

of other competing brands(or companies).

Another background to motivate the prediction system for market share analysis is the

fact that recent drastic development of computer network technology and its di�usionmake

it easy for marketing research to get precise instantaneous information about market share,

sales or some marketing mix in the form of scanner data at the daily base. For example,

"InfoScan/PromotionScan" by Information Resources, Inc.(IRI), and A.C.Nielsen provide

a service of supplying national tracking data recorded in the major retail scanner data

base in the U.S. and Japanese Nikkei "NEEDS-POS" information system provides the

customers with the same kinds of daily information. For the company, the most important

advantage of using this scanner data is its promptitude and make a short-term prediction of

market share or sales by using their accumulated knowledge(data) instantaneously without

risky speci�cation of marketing strategy of competing brands(or companies).

In this article, as a dynamic model, I employ VAR(vector autoregressive) model to

deal with market share time series and propose an automatic short-term prediction sys-

tem, where the logical-consistency problem is solved by the use of Bayesian approach. The

requirement brings non-standard problem to the classical statistics because the prediction

space is restricted in the form of inequality, which is very hard for classical statistics.
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On the other hand, Bayesian approach provides a powerful tool for solving this prob-

lem. The proposed method provides a logically consistent predictors of market share and

also accommodate the prediction of complicated dynamic relations across market shares

which can be useful for marketing strategy. Bayesian time series analysis has been well

developed with the progress of e�cient numerical integration techniques such as Markov

Chain Monte Calro, Gibbs sampling and Metropolis-Hastings algorithm. Several prob-

lems which are hard for classical approach are successfully solved by Bayesian approach,

for example, in Geweke(1989a,b), Geweke and Terui(1991, 1993), Terui(1992) and so on.

The proposed method in this article can be extended by including marketing mix vari-

ables to VARX(vector autoregressive with exogenous variables). However, this extension

su�ers from the same problem of speci�cation of future values for explanatory variables as

the regression based market share models. In this article, I aim to propose an automatic

prediction system and leave this extended model for future research.

In the next section, as an important motivation of our analysis, I �rst mention some

examples of interesting dynamic relations across market shares, which can be predicted

by the proposed method. In section 3, I describe Bayesian VAR model, the concept

of predictive density and the e�cient algorithm for the evaluation of predictive density.

Then I propose a dynamic market share model with logical consistency and discuss its

implementation method. In section 4, I apply the proposed method to scanner data

extracted from Nikkei "NEEDS-POS information" system and examine its performances.

It is shown that the proposed method works well even when the sample size is not so large.

Finally I briey conclude in section 5.

2 Dynamic Relations of Future Market Share

Now consider the case where there are three brands in a market and denote the vector of

market shares at the time t by zt = (z1(t); z2(t); z3(t))
0, where we assume that the �rst 2

brands (z1; z2) belong to one company and the third z3 is the brand of competing company.

Then, in addition to logically consistent forecasting of zt, it is very often the case that

forecasting various dynamical relations across market shares is useful and desirable. Some

of these relations are;
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� Prfz1(t+ h) + z2(t+ h) > r j Yg

) The sum of share of one company's brands(the brands 1 and 2) at h step ahead

exceeds r � 100%.

� Prf

Ph
j=1 z1(t+ j)

h
> r j Yg

) The average share of brand 1 for next h periods exceeds r � 100%.

� Prfz1(t+ h) > z3(t+ h) j Yg

) At h step ahead, the share of the brand 1 exceeds that of the competing band 3.

� Prf

Ph
j=1 z1(t+ j)

h
>

Ph
j=1 z3(t+ j)

h
j Yg

) Over the next h periods, the mean of the brand 1's shares exceeds that of the

competing brand 3.

� Prf\h
j=1(z1(t+ j) > z3(t+ j)) j Yg

) The share of the brand 1 keeps greater than that of the brand 3 during h consec-

utive periods.

� Prfz1(t+ h) + z2(t+ h) > z3(t+ h) j Yg

) At h step ahead, the total share of one company exceeds that of the competing

company.

� Prf

Ph
j=1(z1(t+ j) + z2(t+ j))

h
>

Ph
j=1 z3(t+ j)

h
j Yg

) The total share of one company keeps greater in the average than the competing

company's share during h succeeding periods.

where Prf� j Yg means the posterior probability given the data Y available up to t. In

the following, I propose a logically consistent forecasting method to evaluate these kinds

of posterior probabilities as well as the prediction of market shares zt by themselves.

Forecasting other interesting events can be done in just the same way by the proposed

method.
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3 Logically Consistent Dynamic Market Share Model

In this section, I �rst describe the framework of Bayesian VAR model and discuss the con-

struction of predictive density. Then I propose a dynamic market share model with logical

consistency and provide the algorithms for generating logically consistent forecasts as well

as for evaluating dynamic market share relationships across the brands or companies.

3.1 Bayesian VAR Model and Joint Predictive Distribution

For k dimensional stationary time series yt = (y1(t); y2(t); � � � ; yk(t))
0, VAR model with

the order p is de�ned as

yt = B0 +B1yt�1 + � � �+Bpyt�p + et (1)

= B0 +

pX
j=1

Bjyt�j + et; t = 1; � � � ; T:

where B0 is k dimensional vector of intercept, Bi; i = 1; � � � ; p are k � k coe�cients

matrices, and et is k dimensional innovation vector assumed to follow serially independent

multivariate normal distribution with mean O and covariance matrix �, that is, et �

Nk(O;�).

Set � = [B0;B1; � � � ;Bp]
0 and de�ne the data matrix by

Y =

0BBBB@
y01
y02
...

y0T

1CCCCA ; X =

0BBBB@
1 y00 y0�1 � � � y01�p
1 y01 y00 � � � y02�p
...

...
...

...
...

1 y0T�1 y0T�2 � � � y0T�p

1CCCCA (2)

given the vector of initial valuesfy0;y�1; � � � ;y1�pg, and set non-informative standard

Je�rey's prior on the parameters

�(�;�) / j�j�(p+1)=2 (3)

then the posterior distribution of (�;�) can be derived as (see, for example, Zellner(1971),

Ch.8)

p(�;� j Y) / j�j�(T+k+1)=2exp

�
�
1

2
tr
h
S + (�� b�)X 0X(�� b�)i��1

�
(4)

where Y =
n
y1�p; � � � ;y�1;y0;y1; � � � ;yT

o
means the total information of data, and b�

and b� mean the least squares estimates of coe�cient matrix and covariance matrix of
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innovation, respectively de�ned as

b� = (X 0X)�1X 0Y ; b� = S=(T � �) = (Y �X b�)0(Y �X b�)=(T � �):

Now standing on the point t, when we forecast h step ahead value of y, the optimal

predictor byt+h in the sense of quadratic loss function can be given as the conditional

expectation E(yt+h j Y), which, in turn, given some initial information fyt;yt�1; � � �g and

(�;�), is de�ned recursively as

byt+h =

8>><>>:
yt+h if h � 0

B0 +

pX
j=1

Bjbyt+h�j if h = 1; 2; � � �
(5)

Then in order to discuss the statistical properties of byt+h, the following posterior density

function of byt+h has to be evaluated.

p(byt+h j Y) =

Z
� � �

Z
p(byt+h;�;� j Y)d�d�: (6)

We call (6) the predictive density and denoting the successive sequence of predictor vector

by cY t+h = fbyt+1; byt+2; � � � ; byt+hg, we call their joint distribution

p(cY t+h j Y) =

Z
� � �

Z
p(byt+1; byt+2; � � � ; byt+h;�;� j Y)d�d� (7)

the joint predictive density.

The concept of the predictive distribution has been well recognized and investigated

from non-Bayesian approach either. However, their results are not always general since

the analysis is restricted to the case where the su�cient statistics are available(see for

example, Hinkley (1979)). On the other hand, Bayesian approach constitutes the complete

framework of predictive distribution. With respect to the evaluation of (7), the multiple

integration does not have an analytical expression in a closed form and it is also hard

to integrate analytically the joint predictive density over some region which de�nes the

events mentioned in section 2. However, computationally e�cient numerical integration

techniques, for example, Markov Chain Monte Calro(MCMC), Gibbs sampler, Metlopolis-

Hastings algorithm, have been well developed and provide numerical solutions for Bayesian

analysis. In this article, I employ Monte Carlo integration via generating synthetic random

numbers, which can be understood as one of MCMC. This method was investigated in
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general way by Kloek and van Dijk(1978) and Hammersley and Handscomb(1979) and

has been successfully applied in time series analysis, for examples, by Geweke(1989a,b),

Geweke and Terui(1991, 1993) and Terui(1992).

Now using the decomposition of joint posterior density function of (�, �),

p(�;� j Y) = p(� j �;Y)p(� j Y) (8)

we can write (7) as

p(cY t+h j Y) =

Z
� � �

Z
p(cY t+h;�;� j Y)d�d� (9)

=

Z
� � �

Z
p(cY t+h j �;�;Y)p(�;� j Y)d�d�

=

Z
� � �

Z
p(cY t+h j �;�;Y)p(� j �;Y)p(� j Y)d�d�

where

p(� j Y) / j�j��=2exp

�
�
1

2
tr
h
�
�1S

i�
(10)

and

p(� j �;Y) / exp

�
�
1

2
tr
h
(�� b�)X 0X(�� b�)i��1

�
: (11)

Next we vectorize the coe�cient matrix and its estimate as � = V ec(�), b� = V ec(b�) and
then we have

p(� j �;Y) / exp

�
�
1

2
(� � b�)0(��1 
X 0X)(� � b�)� : (12)

Therefore we can see that p(� j Y) follows the inverted Wishart distribution IW (S; �)

with the degrees of freedom � and covariance matrix S and p(� j �;Y) has the kernel of

m dimensional multivariate normal distributionNm(b�; (��1
X 0X)�1) with mean b� and

covariance matrix (��1
X 0X)�1, where m = pk+1; � = T �m+ k+1. The samplings

from these distributions are easy to be drawn and Monte Calro integrations via generating

synthetic random numbers can be executed in the following algorithm;

[I] Generate the random number matrix ��1(i) of ��1 from IW (S; �).

[II] Conditional on �
�1(i) in the step [I], generate the random number vector �(i) of �

from Nm(b�; (��1(i) 
X 0X)�1).
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[III] By using �(i), generate cY (i)

t+h by (5).

[IV ] Iterate the steps [I]; [II] and [III] n times (i = 1; � � � ; n).

The empirical distribution of fcY (1)

t+h;
cY (2)

t+h; � � � ;
cY (n)

t+hg approximates the joint posterior

distribution p(cY t+h j Y). In particular, with respect to the numerical evaluation of the

point forecast when we use the quadratic loss function, it is well known that

n!1;
1

n

nX
i=1

cY (i)

t+h
a:s:
�! E(cY t+h j Y): (13)

The samplings from p(� j �;Y) and p(� j Y) are discussed in Geweke(1988) and

explained in this article as the appendix.

3.2 Dynamic Market Share Model with Logical Consistency

Let zt be the vector of market share of k brands in a market at the time t and then VAR

model de�nes the dynamic market share model where the present share of each brand is

determined not only by the past values of its own, but also by the past values of other

brands. When we deal with market share time series, we must have the restrictions for

logical consistency de�ned in section 1. The static market share models estimate the k�1

equations by excluding the last equation which is redundant for most applications and

determine the last by the summig up condition, zk(t) = 1�
k�1X
i=1

zi(t). The justi�cation

of this method for maximal likelihood estimation is given by Barten(1969), which shows,

in the regression models, that maximal likelihood estimates for k � 1 brands provide the

invariant estimates with respect to the excluded variate. It is not di�cult to show that

the same invariance property holds for our model because the estimators by the proposed

model has the same asymptotic property as maximum likelihood estimatiors. I adopt this

approach for dynamic market share model.

Considering that it is sometimes appropriate to transform the variates by, for example,

Box-Cox transformation, before accommodating market share time series in VAR model,

I provide the model in the general way in the following. Now de�ne z
(k�1)
t as the vector

of the �rst k� 1 brand's market share at time t and set zt = (z
(k�1)
t ; zk(t))

0, then, for the

transformed variates

yt = f(zt) =
�
f(z

(k�1)
t ); f(zk(t))

�0
9



�
�
y
(k�1)
t ; yk(t)

�0
; (14)

the following system which includes k � 1 dimensional VAR model is proposed,

yt =

0BB@
y
(k�1)
t

yk(t)

1CCA =

0BBBBB@
B

(k�1)

0 +

pX
j=1

B
(k�1)

j y
(k�1)

t�j +D(k�1)(t)

f(1�
k�1X
j=1

f�1(yj(t))

1CCCCCA (15)

where Bj ; j = 1; 2; � � � ; p; are (k � 1) � (k � 1) coe�cient matrices and e
(k�1)
t is k � 1

dimensional innovation vector assumed to be serially independent normal distribution

(e
(k�1)
t � Nk�1(O);�

(k�1)), and D(k�1)(t) is the vector of deterministic trend function.

The trend function is sometimes useful for evaluating dynamical relations across the market

shares.

In order to evaluate the predictive density p(bzt+h j Y) = p(f�1(byt+h) j Y), we need to

constitute the predictive distribution of transformed variate byt+h in the �rst. By using just

the same logic mentioned in previous subsection, the h step ahead forecasts for transformed

variates byt+h are generated by, for the �rst k � 1 brands,

by(k�1)

t+h =

8>>>><>>>>:
y
(k�1)

t+h if h � 0

B
(k�1)

0 +

pX
j=1

B
(k�1)

j by(k�1)

t+h�j +D
(k�1)(t) if h = 1; 2; � � �

(16)

and then the summing up condition and the inverse transformation lead to the predicted

value of market share,

bzt+h =

0B@ bz(k�1)

t+h

bzk(t+ h)

1CA =

0BB@
f�1(by(k�1)

t+h )

f�1(1�
k�1X
j=1

f�1(byj(t+ h))

1CCA : (17)

For the vector of h step ahead predictor bzt+h = (bz(k�1)

t+h ; bzk(t+ h))0, the conditions for

logical consistency restrict the prediction space for individual j(0 � j � k) and for all

h(� 0) so that

R = fbzt+h; for j(0 � j � k) and h(� 0); 0 � bzj(t+ h) � 1 and
kX

j=1

bzj(t+ h) = 1g:

Because the summing up condition
Pk

j=1 bzj(t + h) = 1 is automatically satis�ed for our

model by construction, the necessary restriction is

R? = fbzt+h; for j(0 � j � k) and h(� 0); 0 � bzj(t+ h) � 1g: (18)
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Just now stacking the sequence of the vectors of unrestricted and logically consistent

predictors from 1 through h, denoted by bZt+h = fbzt+1; bzt+2; � � � ; bzt+hg and bZ?

t+h =

fbz?t+1; bz?t+2; � � � ; bz?t+hg respectively, the joint predictive density p(bz?t+h j Y) with the logical

consistency can be expressed in the form of multiple integral over restricted region R?;

p( bZ?

t+h j Y) =
p( bZt+h j Y;R

?)R
R? � � �

R
p( bZt+h j Y)d bZt+h

(19)

The analytical evaluation of this multiple integral is de�nitely hard and the numerical

integration via e�cient Monte Carlo integration provides a powerful tool for the evaluation.

Noting that the denominator is only proportional constant and the restrictive predictive

density p( bZt+h j Y;R
?) can be expressed, in the same way as (9), byZ

� � �

Z
p( bZt+h;�

(k�1);�(k�1) j Y;R?)p(�(k�1) j �(k�1);Y;R?)p(�(k�1) j Y;R?)d�(k�1)d�(k�1);

(20)

where �(k�1) =
h
B

(k�1)

0 ;B
(k�1)

1 ; � � � ;B(k�1)
p ;D(k�1)

i0
, we have the following steps for the

construction of joint predictive distribution with the logical consistency;

[I]0 Generate the random number matrix �
�1(k�1)(i)

of ��1(k�1)
from the inverted

Wishart distribution IW (S(k�1); � 0), where � 0 = T �m0 + k, m0 = (k � 1)p+ 1.

[II]0 Conditional on �
�1(k�1)(i)

, generate the random number vector �(k�1)(i) of �(k�1)

fromm0�1 dimensional normal distributionNm0�1(b�(k�1)
; (��1(k�1)
X(k�1)0X(k�1))�1).

[III]0 Using �(i), generate cY (i)

t+h by (16).

[IV ]0 Transform cY (i)

t+h into bZ(i)

t+h by (17).

[V ]0 If f bZ(i)

t+hg satis�es the restriction (18), we take it as the logically consistent predictor

into the joint predictive distribution and set bZ?

t+h
(i) = bZ(i)

t+h. Otherwise, discard it

and go back to [I]0.

[V I]0 Iterate the steps [I]0 through [V ]0 until we have the predetermined number n? of

iterations.
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The empirical distribution constituted by the sequence of the predictor vector, f bZ?

t+h
(1),

� � �, bZ?

t+h
(n?)g, approximates its posterior density function p( bZ?

t+h j Y) as the number of

iteration goes to large.

With regard to the statistical inference on dynamic relation across market share time

series, we can express the events mentioned in section 2 by using the smooth function ofbZt+h, say �( bZt+h), in the way as f�( bZt+h) > rg. Then, the required posterior probability

is written as

Prf�( bZ?

t+h) > r j Yg =

R
R?\R� � � �

R
p( bZt+h j Y)d bZt+hR

� � �
R
p( bZt+h j Y)d bZ t+h

(21)

where

R� = f bZt+h; for j(0 � j � k) and h(� 0); �( bZt+h) > rg: (22)

This multiple integral also can not be expressed as a closed form in general. The algorithm

for numerical evaluation of this integral is; in addition to [I]0 � [V I]0,

[V II]0 for the sequence f�( bZ?

t+h
(i)); i = 1; � � � ; n?g, take the ratio between the number of

times when the restriction �( bZ?

t+h
(i)) > r is satis�ed and n?. The ratio approximates the

required probability.

4 Empirical Application

In this section, we apply the proposed method to Japanese market share time series,

which was extracted from Nikkei "NEEDS-POS" information system. This system supplies

national tracking data scanned at 102 stores with the customers. Daily market share time

series of the item "Butter" from July, 19 of 1996 to August, 27 of 1996 are analyzed.

Market shares of 8 product makers are registered in scanner data during this period.

However the top two makers' shares(z1; z2) occupy most part of market share(77.4 %).

Thus the last 6 makers' shares are aggregated as the third series(z3).

Figure 1 Time Series Plots and Estimates of Market Shares

I set up the dynamic market share model (15) for z = (z1; z2, z3)'. The �rst 35 samples

were used for the estimation and the last 5 samples were used for the evaluation of fore-

casting. No transformation of variables was chosen for this data set. The maximum order
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of VAR model was set as p = 3 and the minimum BIC(Bayesian Information Criteria)

criteria selected p = 1. The estimated model is;

8>>>>>>><>>>>>>>:

y
(2)
t =

 
0:35464

0:25483

!
+

 
�0:00133

�0:00054

!
t+

 
0:42748 0:03614

�0:18133 0:28447

!
y
(2)

t�1

y3(t) = 1�
2X

j=1

yj(t); b�(2) =

 
0:00371 �0:00050

�0:00050 0:00246

!
; BIC = �10:802:

(23)

Figure 1 shows the time series plots of real observations of (z1; z2; z3) used for estima-

tion in the top panel and the estimates of each variable are drawn in the next 3 panels.

We can observe good �ttings for each market share except a few points. In particular, the

27th observation might be appropriate to be dealt with as outlier in our model.

Figure 2 Predictive Density for Market Share Time Series

Table 1 Summary Statistics for Predictive Density

Figure 2 shows the behaviors of the joint predictive densities for each market share

variable and their 5%, 25 %, 50%, 75%, 95% points, posterior means, and real observations

are drawn with the prediction steps. The number of iteration for Monte Calro integration

was �xed at n? = 2; 000 after con�rming that the distributions do not change any more

than 2,000 times. bzi(t + h)[q] means the qth percentile of the empirical distribution of

predictive density at the step h. Note that the posterior mean E(bzi(t + h) j Y) de�nes

a Bayesian point forecast under the quadratic loss function. From the �gures, it can be

seen that the joint predictive densities for z1 and z2 are relatively symmetric, and the

median and the posterior mean take the almost same values for every prediction step. On

the other hand, the predictive density for z3 is skewed downward. Some basic statistics

for each density are tabulated in Table 1, where the number of irregularity is denoted

in the last column. The irregularity here means the occurrence that the model produced

inconsistent predictor which did not satisfy the condition (18) for logical consistency. Most

of inconsistent predictors were generated in the last variable(z3).

Next, in Table 2, the results of forecasting market share relations are reported. The

top part of the table shows the probability of some market share relations for next 10 days

13



and we can expect with almost sure that z1 will not be caught up by both z2 and z3 for

next 10 days. And z2 will take greater share than z3 with probability 0.376 for next day,

but this probability will be decreasing as the time goes on(the minimum is 0.1185 at the

6 days ahead).

Figure 3 Predictive Density for z2 � z3

Table 2 Probability for Dynamic Market Share Relations

The marginal predictive densities for z2 � z3 through the prediction steps h = 1; 2; � � � ; 5

are drawn in Figure 3, where marginal densities are made from the histograms of the

empirical distributions by connecting the ordinates at the mid points of each cell. The

shaded area in each marginal density means the probability so that z2 is greater than z3.

Second part of the table shows the results of the same kind of relations for k consecutive

days. The average properties are evaluated in the third part.

I con�rmed that the di�erent lags(p = 2; 3) for the model did not produce great

di�erence on these results.

5 Concluding Remarks

In this article, I proposed an automatic forecasting system for market share time series,

where the logical consistency requirement is solved by employing Bayesian approach. The

proposed method provides multi-step forecasts, not only for the values of market share by

themselves, but also for complicated dynamic market share relationships across di�erent

brands or companies. It was shown that the proposed model worked well even by using

relatively small sample size used in the last section.

However it is possible to extend the proposed model in the following ways. In the

�rst, the model can be extended to VARX(vector autoregressive with exogenous variable)

models by including marketing mix variables. In that case, the future values of marketing

mix must be speci�ed in order to predict the market shares and dynamic relations between

them. This means that the analysis would be the simulation studies or control theoretic

approach rather than the automatic prediction. In the second, by considering that the

outliers often exist in scanner data, we can extend the proposed model so as to accommo-

date the outliers. As a robust model for time series data, an autoregressive model with t

14



distributed innovations is proposed and Bayesian solution is discussed in Geweke(1993).

These extensions of the proposed model are left for future research.
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Appendix:

Random number generation from p(� j Y) and p(� j �;Y)

With regard to the random numbers of �(i) and �(i), the following algorithms are

available(See, Geweke(1988)).

Let the Cholesky decomposition of the inverse of S de�ned in (4) be S�1 = LL0, and

take up the random matrix Q from the Wishart distribution with orthogonal covariance

matrix,

Q �W (I ; T �m);

then we have

LQL0 �W (LL0; T �m) =W (S�1; T �m):

In the above, we can compose Q from normal and chi square random numbers;

let U be lower triangular matrix with their non-zero elements u11; u12; � � � ; ukk follows

independently

uij � N(0; 1) for i > j; uii � �2(T �m� i+ 1)

then we have

UU 0 = Q �W (I ; T �m)

Next denoting by R the Cholesky decomposition of � and by the use of the relation,

� = R0R � (LU )�10(LU)�1

we can generate the random number of � from U and L.

On the other hand, with respect to the generation of random number for the coe�cient

matrix � or equivalently �, the Cholesky decomposition of

(X 0X)�1 = AA0

leads to the expression of covariance matrix

(��1 
X 0X)�1 = (R0 
A)(R0 
A)0:

Now let �1; � � � ;�k be independent random column vectors from Nm(O; Im) and set � =

V ec(�1; � � � ;�k) then we can generate the random vector of � by the following linear

transformation,

� = b� +
�
R0 
C

�
�:
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Table 1: Summary Statistics of Predictive Density

h step ahead bz[5]1 E(bz1 j Y) bz[95]1 S:D:(bz1 j Y) Irregularity

1 0.5124 0.5681 0.6225 0.0340 -
2 0.4964 0.5585 0.6239 0.0414 -
3 0.4836 0.5518 0.6269 0.0459 -
4 0.4735 0.5474 0.6268 0.0497 -
5 0.4659 0.5442 0.6256 0.0532 -
6 0.4585 0.5412 0.6266 0.0572 -
7 0.4523 0.5384 0.6277 0.0609 -
8 0.4449 0.5361 0.6288 0.0636 -
9 0.4372 0.5339 0.6313 0.0662 -
10 0.4316 0.5312 0.6327 0.0694 -

h step ahead bz[5]2 E(bz2 j Y) bz[95]2 S:D:(bz2 j Y) Irregularity

1 0.1598 0.2058 0.2488 0.0272 -
2 0.1460 0.1938 0.2426 0.0300 -
3 0.1392 0.1904 0.2442 0.0325 -
4 0.1343 0.1896 0.2460 0.0347 -
5 0.1306 0.1893 0.2493 0.0368 1
6 0.1270 0.1890 0.2518 0.0391 1
7 0.1235 0.1887 0.2538 0.0413 -
8 0.1195 0.1885 0.2558 0.0432 -
9 0.1168 0.1882 0.2582 0.0451 1
10 0.1135 0.1879 0.2605 0.0471 1

h step ahead bz[5]3 E(bz3 j Y) bz[95]3 S:D:(bz3 j Y) Irregularity

1 0.1607 0.2260 0.2925 0.0399 1
2 0.1740 0.2473 0.3092 0.0413 2
3 0.1803 0.2574 0.3244 0.0444 5
4 0.1820 0.2625 0.3345 0.0470 3
5 0.1834 0.2660 0.3412 0.0496 2
6 0.1829 0.2688 0.3464 0.0521 10
7 0.1815 0.2714 0.3516 0.0543 1
8 0.1803 0.2739 0.3568 0.0566 5
9 0.1791 0.2764 0.3622 0.0588 7
10 0.1783 0.2788 0.3685 0.0610 3bz[5]i and bz[95]i indicate ith company's 5th and 95th order statistics respectively.

E(� j Y) means the posterior means.

S:D:(� j Y) means the posterior standard deviation.
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Table 2: Forecasting Market Share Relations

Prediction Step bz1(t+ h) > bz2(t+ h) bz2(t+ h) > bz3(t+ h) bz1(t+ h) > bz3(t+ h)

1 1.0000 0.3760 1.0000

2 0.9995 0.1660 0.9995

3 0.9995 0.1305 0.9985

4 0.9995 0.1240 0.9980

5 0.9995 0.1195 0.9970

6 0.9990 0.1185 0.9940

7 0.9975 0.1220 0.9910

8 0.9970 0.1225 0.9890

9 0.9970 0.1225 0.9865

10 0.9965 0.1230 0.9830

Terms(k) \k
j=1fbz1(t+ j) > bz2(t+ j)g \k

j=1fbz2(t+ j) > bz3(t+ j)g \k
j=1fbz1(t+ j) > bz3(t+ j)g

2 0.9995 0.1645 0.9995

3 0.9995 0.1285 0.9985

4 0.9990 0.1190 0.9980

5 0.9990 0.1130 0.9970

Terms(k) (
Pk

j=1
fbz1(t+ j) > bz2(t+ j)g)=k (

Pk

j=1
fbz2(t+ j) > bz3(t+ j)g)=k (

Pk

j=1
fbz1(t+ j) > bz3(t+ j)g)=k

2 0.9995 0.1775 0.9995

3 0.9995 0.1387 0.9990

4 0.9995 0.1211 0.9985

5 0.9990 0.1185 0.9985
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Figure 1: Market Share Time Series and Estimates
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Figure 2: Predictive Density for Market Share Time Series
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Figure 3: Predictive Density for "z2 � z3"
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