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Abstract

In most multi-item inventory systems, the ordering costs consist of a major cost and

a minor cost for each item included. Applying for every individual item a cyclic inven-

tory policy, where the cycle length is a multiple of some basic cycle time, reduces the

major ordering costs. An e�cient algorithm to determine the optimal policy of this type

is discussed in this paper. It is shown that this algorithm can be used for deterministic

multi-item inventory problems, with general cost rate functions and possibly service level

constraints, of which the well-known joint replenishment problem is a special case. Some

useful results in determining the optimal control parameters are derived, and worked out

for piecewise linear cost rate functions. Numerical results for this case show that the

algorithm signi�cantly outperforms other solution methods, both in the quality of the

solution as in the running time.

Keywords: Inventory, Multi-item, Joint replenishment problem, Deterministic de-

mand.

1 Introduction

Although in most of the literature on inventory theory single-item models are analyzed, in

practice one often needs to determine stocking policies for multiple items. In most multi-item

inventory systems, the ordering costs consist of a major ordering cost c > 0 and a minor

ordering cost ci > 0 if item i; 1 � i � n, is ordered (Brown [3], Goyal [7, 8, 9], Goyal &

Satir [11], Kaspi & Rosenblatt [16], Naddor [17], Silver [20]). For such a cost structure,

coordination of replenishments will save major ordering costs and, as will be shown, this can

be done e�ciently if the inventory level for each item i is controlled by a cyclic rule. The

associated stocking policy (R; k1; : : : ; kn) 2 IR+� INn is to place a replenishment order every

R time units, and to include item i in one out of every ki replenishments, 1 � i � n. In

the literature the average cost of such a policy is evaluated in two ways. The �rst takes

account of so-called empty replenishment occasions which occur when the smallest frequency
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ki; 1 � i � n, is larger than one. This induces for the major ordering costs a complicated

correction factor �(k);k = (k1; : : : ; kn), equal to

�(k) =
nX
i=1

(�1)i+1
X

f��f1;:::;ng:j�j=ig

(lcm(k�1 ; : : : ; k�i))
�1

with lcm(k�1; : : : ; k�i) denoting the least common multiple of the integers k�1; : : : ; k�i (Dag-

punar [4]). With this correction factor the average cost of the above stocking policy is given

by

�(k)c=R+
nX
i=1

�i(kiR)

where �i(kiR) denotes the minimum average cost of item i replenished every kiR time units.

However, in most papers (see the overviews of Goyal & Satir [11] and Kaspi & Rosenblatt [16])

this correction factor is set equal to one, and so the average cost of the stocking policy

(R; k1; : : : ; kn) reduces to

c=R+
nX
i=1

�i(kiR)

If the value 'i(kiR) denotes the minimum holding and shortage cost of item i during a

replenishment cycle of length kiR time units, then it follows that

�i(kiR) =
ci + 'i(kiR)

kiR

The associated optimal stocking policy is now given by an optimal solution of either the

optimization problem with correction factor

inff�(k)c=R+
Pn

i=1 �i(kiR) : R > 0; ki 2 IN; i = 1; : : : ; ng (Qc)

or the optimization problem without correction factor

inffc=R+
Pn

i=1 �i(kiR) : R > 0; ki 2 IN; i = 1; : : : ; ng (Q)

Due to the complicated correction factor �(k) the optimization problem (Qc) is much more

di�cult to solve than the optimization problem (Q). Recently, Dekker, Frenk & Wildeman [5]

have developed an e�cient algorithm, which is presented in Section 2, to solve the optimization

problem (Q) if the functions 'i and �i, 1 � i � n, satisfy the following property.

Property 1.1 For every 1 � i � n the function 'i : (0;1)! IR is convex and the optimiza-

tion problem inff�i(x) : 0 < x <1g has a �nite optimal solution x�i > 0.

Moreover, after the execution of the algorithm we also obtain an indication of the quality of

the generated solution for (Q) with respect to the optimization problem (Qc). This algorithm

was originally developed for maintenance models where the value 'i(kiR) can be seen as

the expected cost due to failures if component i is maintained every kiR time units. In

a subsequent paper, Wildeman, Frenk & Dekker [24] specialized their method to the joint
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replenishment problem with the inventory level of every item controlled by the economic

order quantity model. In this model, it is assumed that the demand process is deterministic

with demand rate �i > 0 for item i, i = 1; : : : ; n, the lead time of any replenishment order

is equal to zero and no shortages are allowed. The last condition (for every item) implies

that the long-run fraction of demand satis�ed directly from stock on hand equals one and so

this condition can be seen as a service level constraint. Moreover, the value hi > 0 denotes

the unit inventory holding cost of item i per unit of time, and the corresponding cost rate

function fi : IR! [0;+1) is given by

fi(x) =

(
hix if x � 0

0 otherwise
(1)

Observe, for general cost rate functions fi : IR! [0;1), the inventory holding and shortage

costs during the interval [t; t + �t) with �t small is approximated by fi(xt)�t if xt denotes

the (positive or negative) inventory level of item i at time t. It is well-known that for the

economic order quantity model the function 'i is given by 'i(R) =
1
2hi�iR

2 and this function

is clearly convex on (0;1). Moreover, the function �i is given by �i(R) = ci=R + 1
2
hi�iR

and this function has a �nite minimum attained at R� = (2ci=�ihi)
1=2.

In Section 3 it is shown that the method of Dekker, Frenk & Wildeman [5] can be applied

to deterministic multi-item inventory models with or without a service level constraint and

general cost rate functions. Although the analysis can easily be extended for non-negative

deterministic replenishment lead times, we assume that the lead time of any replenishment

order equals zero. If a service level constraint is included, this replaces the shortage costs and

so for both models (with or without a service level constraint) we associate a class of cost rate

functions. For cost rate functions corresponding to a deterministic inventory model without

a service level constraint we impose the following natural condition.

Property 1.2 For every i 2 I � f1; : : : ; ng the function fi : IR ! [0;1) is strictly positive

and decreasing on (�1; 0) and strictly increasing on (0;1). Moreover, the function fi is

continuous on IR n f0g and satis�es fi(0
+) := limx#0 fi(x) = 0.

Examples of such cost rate functions are the convex, concave or quadratic holding and shortage

cost functions, discussed by Porteus [18] in his overview on stochastic inventory models.

Naddor [17] analyzes the case of expensive storage of items, where the cost of holding x

units is given by �xm with � > 0 and m > 1 �xed. Arrow, Karlin & Scarf [1] consider

a convex penalty cost function for the case where small shortages are of little consequence,

but large ones create more than proportionally great di�culties for the customers. Inventory

models with both �xed and time-dependent shortage costs, which are discussed among others

by Hadley & Whitin [13] and Federgruen, Groenevelt & Tijms [6], can be represented by

cost rate functions satisfying Property 1.2. A special case of such a model is the lost-sales

model with unit holding cost hi, �xed cost �i per stockout and demand rate �i, which can be

represented by the cost rate function

fi(x) =

(
hix if x � 0

�i�i otherwise
(2)
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At the end of Section 3, we will consider in detail cost rate functions with linear shortage costs

and piecewise linear holding costs. The latter situation may arise when storage of products

requires the use of several sources of limited capacity with di�erent unit costs. Observe if

these sources are used in order of ascending unit cost, the holding cost function will be convex

(see also Veinott [23]). Non-convex piecewise linear holding costs may be the result of using

sources of di�erent capacities. Finally, a piecewise linear cost rate function can be used to

approximate a general cost rate function.

For cost rate functions corresponding to a deterministic inventory model with a service level

constraint, the next natural condition is imposed.

Property 1.3 For every i 2 f1; : : : ; ngnI the function fi : IR! [0;1) is continuous, strictly

increasing on [0;1) and vanishes on (�1; 0).

Observe that the cost rate functions fi associated with the economic order quantity model,

given by (1), satisfy Property 1.3.

In the next section the algorithm of Dekker, Frenk & Wildeman [5] will be presented. In

Section 3 it is shown under which conditions on the cost rate functions Property 1.1 is satis-

�ed. Moreover, results which are useful in deriving the optimal control parameters for each

item i are derived. Section 3 is concluded by presenting results for a special class of cost

rate functions, i.e. piecewise linear holding costs and linear shortage costs. The results of

our numerical experiments are presented in Section 4. It will be shown that the algorithm

signi�cantly outperforms well-known iterative solution procedures, both in the quality of the

solution as in the running time. Finally, in Section 5 the main conclusions are given.

2 An e�cient algorithm for multi-item inventory problems

In this section we summarize the algorithm which was developed by Dekker, Frenk & Wilde-

man [5] to determine optimal cyclic maintenance frequencies in multi-component systems.

The optimization problem (Q), discussed in the introduction, can be solved e�ciently by this

algorithm if Property 1.1 is satis�ed. In Section 3 it will be shown that for both types of mod-

els discussed in Section 1, with cost rate functions satisfying Property 1.2 or Property 1.3, the

function 'i is convex on (0;1). Hence, to apply the algorithm, we only need to verify that

the function �i has a �nite minimum for every i. As will be proved, a su�cient condition

is given by limjxj!1 fi(x) = 1, i 2 I , and limx!1 fi(x) = 1 for i 2 f1; : : : ; ng n I . For

more detailed information on the algorithm the reader is referred to [5]. Before discussing

the algorithm we �rst transform the problems (Q) and (Qc) by means of the transformation

R! 1=T into the equivalent problems

inffcT +
Pn

i=1 �i(ki=T ) : T > 0; ki 2 IN; i = 1; : : : ; ng (P )

and

inff�(k)cT +
Pn

i=1 �i(ki=T ) : T > 0; ki 2 IN; i = 1; : : : ; ng (Pc)
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If v(�) denotes the optimal objective value of the optimization problem (�) then clearly v(Q)

equals v(P ) and v(Qc) equals v(Pc). Moreover, a feasible solution (T (P ); k1(P ); : : : ; kn(P )) of

(P ) is optimal if and only if (1=T (P ); k1(P ); : : : ; kn(P )) is an optimal solution of (Q). Since

the objective function of (P ) is separable in ki; i = 1; : : : ; n, it follows that (P ) reduces to

inffcT +
nX
i=1

inff�i(ki=T ) : ki 2 INg : T > 0g

By relaxing the constraints ki 2 IN , i = 1; : : : ; n by ki � 1 we now consider the relaxation

inffcT +
Pn

i=1 inff�i(ki=T ) : ki � 1g : T > 0g (PR)

It can be shown (Lemma 3.1 of [5]) without any conditions on the functions 'i(�), i = 1; : : : ; n,

that v(PR) � v(Pc) � v(P ). If for i = 1; : : : ; n the function gi : (0;1)! IR is given by

gi(T ) := inff�i(ki=T ) : ki � 1g

then by Property 1.1 we obtain that

gi(T ) =

(
�i(1=T ) if T � 1=x�i
�i(x�i ) otherwise

with x�i := argminf�i(x) : x > 0g (which by Property 1.1 exists and is �nite). Moreover, it

follows that gi is convex and so the optimization problem (PR) given by

inffcT +
nX
i=1

gi(T ) : T > 0g

is a one-dimensional convex programming problem. Since any optimal solution T (PR) of (PR)

satis�es 0 < T (PR) � maxf1=x�i : i = 1; : : : ; ng (Lemma 3.2 of [5]) we may use the bisection

algorithm, or golden-section search (see Chapter 8 of Bazaraa, Sherali & Shetty [2]) to locate

an optimal solution T (PR) of (PR). Under certain conditions (see Lemma 4.3 of [5]) one can

show that the feasible solution (T (PR); 1; : : : ; 1) is an optimal solution for (P ) and so, if these

easy veri�able conditions are satis�ed, the problem is solved. If not, we determine an optimal

solution of the optimization problem (FP ) given by inff�i(ki=T (PR)) : ki 2 INg, i = 1; : : : ; n,

and this generates a feasible solution (T (PR); k1(FP ); : : : ; kn(FP )) of (P ) with

ki(FP ) := argminf�i(ki=T (PR)) : ki 2 INg

Observe by Property 1.1 that the optimization problem (FP ) can be solved easily (cf. [5])

and the next feasibility procedure yields exactly its optimal solution for i = 1; : : : ; n.

Feasibility Procedure

For each i = 1; : : : ; n apply the following steps:

1. Compute k = bT (PR)x�i c with b�c the lower-entier function.
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2. If k = 0 then ki(FP ) = 1

3. If k � 1 then ki(FP ) = k or ki(FP ) = k + 1 depending on whether �i(k=T (PR)) �

�i((k + 1)=T (PR)) or �i(k=T (PR)) � �i((k+ 1)=T (PR))

If the value v(FP ) is given by

v(FP ) := cT (PR) +
nX
i=1

�i(ki(FP )=T (PR))

then by our previous observations we obtain

v(FP ) � v(P ) � v(Pc) � v(PR)

Hence, if v(FP ) is close to v(PR) we know that the objective value of the feasible solution

(T (PR); k1(FP ); : : : ; kn(FP )) is close to the optimal objective value of (P ) and (Pc). If, given

a tolerance, it is not close enough, we try to improve the feasible solution by the following

procedure.

Improved-Feasibility Procedure

1. Let ki(IFP ) = ki(FP ), i = 1; : : : ; n, with ki(FP ) the values given by the above feasi-

bility procedure.

2. Solve the optimization problem

minfcT +
nX
i=1

�i(ki(IFP )=T ) : T > 0g

and let T (IFP ) be an optimal value for T .

3. Determine new constants ki(IFP ) by applying the feasibility procedure to the value

T (IFP ), and let v(IFP ) be the corresponding objective value.

This procedure can be repeated with in step 1 the constants ki(FP ) replaced by ki(IFP ),

and this can be done until no further improvement is found. It can be shown ([5]) that

v(IFP ) � v(FP ) and so every time the improved feasibility procedure is used, the corre-

sponding solution is at least as good as the previous one. Observe by Property 1.1 that the

optimization problem in step 2 of the improved-feasibility procedure is a one-dimensional

convex optimization problem. If the �nal objective value v(IFP ) is still not close to v(PR),

then a univariate Lipschitz optimization algorithm (see Horst & Pardalos [15]) can be ap-

plied. Before applying such an algorithm, a lower and an upper bound on the optimal value

T (P ) of (P ) must be determined. Since (PR) is a convex-programming problem, an upper

bound Tup is given by the smallest T � T (PR) for which the objective function of (PR) equals

v(IFP ) (Lemma 4.6 of [5]). If there also exists a value Tlow given by the largest T � T (PR) for

which the objective function of (PR) equals v(IFP ), then this value is a lower bound on T (P )

(Lemma 4.7 of [5]). Otherwise, we take the lower bound Tlow = (1=c) (v(IFP )�
Pn

i=1�i(x�i ))
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(Lemma 4.5 of [5]). Finally, a Lipschitz constant of the objective function of (P ) on the in-

terval [Tlow; Tup] must be determined. For this the reader is referred to Appendix A of [5].

Due to the special structure of the objective function of (P ) it can be shown that the Lip-

schitz constant of this objective function is decreasing in T on [T; Tup] and so we may use

an improved version of Evtushenko's algorithm (cf.[5]). We now summarize the results by

presenting the following solution procedure for (Q):

1. Solve the convex-programming problem (PR) and use 0 < T (PR) � max1�i�n 1=x
�
i . An

optimal value T (PR) can be found by applying a bisection algorithm if the objective

function of (PR) is di�erentiable, or otherwise by applying golden-section search.

2. If T (PR) � min1�i�n 1=x
�
i then the vector (T (PR); 1; : : : ; 1) is optimal for (P ) and (Pc);

stop.

3. If T (PR) > min1�i�n 1=x
�
i , check whether the objective function of (PR) evaluated in

min1�i�n 1=x
�
i equals v(PR). If so, the vector (T (PR); 1; � � � ; 1) is optimal for (P ) and

(Pc); stop.

4. Otherwise, we �rst �nd a feasible solution for (P ) by applying the feasibility procedure

or the improved-feasibility procedure. If the corresponding objective value is within a

certain tolerance of v(PR), then this also applies to v(P ); stop.

5. If this does not happen and therefore the solution is not good enough, apply a global-

optimization technique on the interval [Tlow; Tup] to �nd a value for T (P ).

To conclude this section, we consider a policy introduced by Goyal & Soni [12], who allow

for multiple cycle times. In their paper they consider three basic cycle times, i.e. T1 = T ,

T2 = 3T and T3 = 5T , which implies that ki, i = 1; : : : ; n, can attain values from the

set f1; 1:5; 2; 2:5; 3; 4; 4:5; 5; 6; 7; 7:5; : : :g. It is easy to see that the optimal objective value

v(GS) of this problem must satisfy v(PR) � v(GS) � v(P ), and thus our method also

provides information about the optimal costs of the more general class of coordination policies

suggested by Goyal & Soni [12].

In the next section we will consider a general class of deterministic multi-item inventory

problems to which the above solution procedure can e�ciently be applied.

3 Analysis of the underlying models

In this section we consider a simple deterministic multi-item inventory model, where all

demand is backlogged, and the inventory for each item i; 1 � i � n, is controlled by a periodic

review, order-up-to level policy. If for any 1 � i � n the function fi satis�es Property 1.2

(corresponding to an inventory model without a service level constraint) or Property 1.3

(corresponding to an inventory model with a service level constraint) then for this model the

function 'i, introduced in Section 1, will be derived and shown to be convex. This implies, if

the functions �i, i = 1; : : : ; n, have a �nite minimum on (0;1), that Property 1.1 is satis�ed

and so the method of Dekker, Frenk & Wildeman [5] can be applied. A su�cient and weak
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condition to guarantee that �i has a �nite minimum will also be discussed in this section.

Since we �rst verify the convexity property of the underlying inventory model of an arbitrary

item i, the subscript i will henceforth be omitted. In the so-called (R; S)-policy, every R > 0

time units a replenishment order is placed with cost c, to raise the inventory position to the

order-up-to level S, with �1 < S < 1. Although the results can easily be extended for

non-negative deterministic replenishment lead times, we assume that the lead time equals

zero. The demand rate is constant and deterministic, and denoted by � > 0. We start our

analysis by considering an inventory model without a service level constraint. The analysis

of an inventory model with a service level constraint is much easier and will be carried out

afterwards.

Models without a service level constraint

To determine for the inventory model without a service level constraint the function '(�), we

observe that the holding and shortage costs for an arbitrary (R; S) policy during a cycle of

length R are given by

I(R; S) :=
Z R

0
f(S � �t)dt

and the average costs for an arbitrary (R; S) policy equal

g(R; S) :=
c+ I(R; S)

R
(3)

Hence, the minimum holding and shortage costs during a cycle of length R are

'(R) := inffI(R; S) : �1 < S <1g

and so

�(R) := inffg(R; S) : �1 < S <1g =
c+ '(R)

R

We �rst consider the optimization problem associated with the objective function '(R). Since

by Property 1.2 the function f is decreasing and continuous on (�1; 0) it follows for every

S1 < S2 � 0 that

I(R; S1) =

Z R

0
f(S1 � �t)dt �

Z R

0
f(S2 � �t)dt = I(R; S2)

Moreover, since f is strictly increasing and continuous on (0;1) with f(0+) = 0, one can

show similarly that I(R; S1) > I(R; S2) for every S1 > S2 � �R, and so the optimization

problem associated with the optimal objective value '(R); R > 0, reduces to

'(R) = inffI(R; S) : 0 � S � �Rg (P'(R))

Since the function S ! I(R; S) is continuous and the feasible set of (P'(R)) is compact, we

obtain that the set of optimal solutions of (P'(R)) is nonempty and so

'(R) = minfI(R; S) : 0 � S � �Rg
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Before characterizing in Theorem 3.1 an optimal solution of (P'(R)), we introduce for every

function f satisfying Property 1.2 the value

R�
f := supfR � 0 : f(�R)� f(0�) � 0g

with f(0�) := limx"0 f(x). Since f is continuous and strictly increasing on (0;1) it follows

that R�
f is the unique solution of the equation f(�R)� f(0�) = 0. This implies that R�

f = 0

if and only if f is continuous in 0.

Theorem 3.1 If Property 1.2 holds, the optimization problem (P'(R)); R > 0, has a unique

optimal solution denoted by S(R), and it satis�es S(R) = �R if 0 < R � R�
f and 0 < S(R) <

�R if R > R�
f . Moreover, for R > R�

f the optimal solution S(R) is the unique solution on

(0; �R) of the equation f(S)� f(S � �R) = 0.

Proof: Since the function f might only have a discontinuity at zero, it follows for every

R > 0 that the partial derivative @I
@S (R; S) of the function I(R; S) =

RR
0 f(S��t)dt exists for

every 0 < S < �R and on (0; �R) this partial derivative is given by

@I

@S
(R; S) =

1

�
(f(S)� f(S � �R))

Since the function f satis�es Property 1.2 it follows for every 0 < R � R�
f and 0 < S < �R

that

f(S)� f(S � �R) < f(�R)� f(0�) � f(�R�
f)� f(0�) � 0

and so @I
@S
(R; S) < 0 for every 0 < S < �R � �R�

f . This implies by the continuity of the

function S ! I(R; S) that �R is the unique optimal solution of (P'(R)) for every 0 < R � R�
f .

Moreover, since Property 1.2 implies

@I

@S
(R; 0+) := lim

S#0

@I

@S
(R; S) =

1

�

�
f(0+)� f(��R)

�
=
�f(��R)

�
< 0

and the function S ! @I
@S
(R; S) is continuous and strictly increasing on (0; �R), there exists

for every R > R�
f a unique value 0 < S(R) < �R satisfying @I

@S (R; S(R)) = 0 and this proves

the desired result. 2

The next result discusses some important properties of the function R! S(R).

Lemma 3.1 If Property 1.2 holds then the function R! S(R) is continuous and increasing

on (0;1).

Proof: We only give a proof of the above result for R�
f > 0 since the proof for R�

f = 0 can

easily be adapted. To start the proof, we �rst show that the function R! S(R) is increasing

on (0;1). By Theorem 3.1 it is su�cient to verify this property on [R�
f ;1). Consider

therefore R1 > R2 � R�
f > 0. Since by Property 1.2 the function f is decreasing on (�1; 0)

it follows for every 0 < S < �R2 < �R1 that f(S � �R1) � f(S � �R2) and hence

f(S)� f(S � �R1) � f(S)� f(S � �R2) (4)
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for every 0 < S < �R2. If we assume by contradiction that S(R1) < S(R2) it follows by

Theorem 3.1 that S(R1) < �R2 and this yields by (4) that

f(S(R1))� f(S(R1)� �R1) � f(S(R1))� f(S(R1)� �R2)

Since the function S ! f(S)� f(S � �R2) is strictly increasing on (0; �R2) this implies for

R2 > R�
f that S(R1) < S(R2) < �R2 and hence by Theorem 3.1 we obtain the contradiction

0 = f(S(R1))� f(S(R1)� �R1) � f(S(R1))� f(S(R1)� �R2)

< f(S(R2))� f(S(R2)� �R2) = 0

For R1 > R2 = R�
f it follows by a similar argument that

0 = f(S(R1))� f(S(R1)� �R1) � f(S(R1))� f(S(R1)� �R2)

< f(�R�
f)� f(0�) = 0

and again we have derived a contradiction. Hence, the function R ! S(R) is increasing and

to verify the continuity of this function we �rst observe by the monotonicity that b+(R�
f) :=

limR#R�
f
S(R) exists and satis�es S(R�

f) � b+(R�
f). Moreover, for every R > R�

f we know

by Theorem 3.1 that S(R) < �R and this implies b+(R
�
f) � �R�

f . Since S(R�
f) = �R�

f

(Theorem 3.1) it follows that b+(R
�
f) = S(R�

f) and so R ! S(R) is continuous at R = R�
f .

Also, for R1 > R�
f we obtain that b+(R1) := limR#R1

S(R) exists. By Theorem 3.1 and

R! S(R) increasing it follows that R! S(R)� �R is decreasing and this shows

b+(R1)� �R1 = lim
R#R1

(S(R)� �R) � S(R1)� �R1 < 0

and

b+(R1) = lim
R#R1

S(R) � S(R1) > 0

Applying now the continuity of f on IR n f0g yields

0 = lim
R#R1

f(S(R))� f(S(R)� �R) = f(b+(R1))� f(b+(R1)� �R1)

and again by Theorem 3.1 it follows that b+(R1) = S(R1). Hence, we have shown that

the function R ! S(R) is right-continuous in R = R1. Similarly, it can be shown that

b�(R1) := limR"R1
S(R) = S(R1) and so R ! S(R) is left-continuous in R = R1, implying

the desired result. 2

To verify that the function '(�) is convex on (0;1) we �rst need to prove the following result.

Lemma 3.2 If K denotes the convex cone given by

K = f(R; S) : R > 0; 0 � S � �Rg

and Property 1.2 holds, then the function (R; S)! I(R; S) is convex on K.
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Proof: For

F (x) :=

( R x
0 f(z)dz if x � 0

�
R 0
x f(z)dz otherwise

(5)

it follows by Property 1.2 that the function x! F (x) is strictly convex on [0;1) and concave

on (�1; 0). Observe for every (R; S) 2 IR+ � IR that

I(R; S) =
1

�
(F (S)� F (S � �R)) (6)

Hence, for every two distinct points (Ri; Si) 2 K; i = 1; 2, and 0 < � < 1 we obtain that

I(�R1 + (1� �)R2; �S1 + (1� �)S2) =
1

�
(F (�S1 + (1� �)S2)� F (�(S1 � �R1) + (1� �)(S2 � �R2)))

and this implies by the strict convexity of F on [0;1) and the concavity on (�1; 0) that

I(�R1+ (1� �)R2; �S1 + (1� �)S2)

�
1

�
(�F (S1) + (1� �)F (S2)� �F (S1 � �R1)� (1� �)F (S2 � �R2))

= �I(R1; S1) + (1� �)I(R2; S2)

which shows the desired result. 2

The convexity of the function ' is now an immediate consequence of Lemma 3.2, as will be

shown in the next theorem.

Theorem 3.2 If Property 1.2 holds then the function ' is convex on (0;1).

Proof: Let R1; R2 2 IR+ and 0 < � < 1 be given. By Theorem 3.1 it follows that

�S(R1) + (1� �)S(R2) � �(�R1 + (1� �)R2). Applying now Lemma 3.2 and the de�nition

of '(R), we obtain

'(�R1 + (1� �)R2) � I(�R1+ (1� �)R2; �S(R1) + (1� �)S(R2))

� �I(R1; S(R1)) + (1� �)I(R2; S(R2))

= �'(R1) + (1� �)'(R2)

which proves the desired result. 2

In Theorem 3.2 it is shown that the function ' is convex on (0;1) and this implies by

Theorem 11B of Roberts & Varberg [19] that for every R > 0 the right-derivative

'0+(R) := lim
h#0

'(R+ h)� '(R)

h

and the left-derivative

'0�(R) := lim
h#0

'(R� h)� '(R)

�h

exist. By de�nition, the function ' is di�erentiable on (0;1) if '0+(R) = '0�(R) for every

R > 0. A slightly stronger result is now proved in the following theorem.
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Theorem 3.3 If Property 1.2 holds then the function ' is continuously di�erentiable on

(0;1). Moreover, the derivative '0(R) of ' at the point R is given by f(S(R)).

Proof: We only show the result for R�
f > 0 since the proof for R�

f = 0 is similar. If

0 < R � R�
f it follows by Theorem 3.1 that

'(R) =
Z R

0
f(�R� �t)dt =

1

�

Z �R

0
f(x)dx

This implies by the continuity of the function f on (0;1) that '0+(R) = f(�R) = f(S(R)) for

every 0 < R < R�
f and '

0
�(R) = f(�R) = f(S(R)) for every 0 < R � R�

f . Hence, the function

' is di�erentiable on (0; R�
f) and its left-derivative '0�(R

�
f) is given by f(�R�

f) = f(S(R�
f)).

Consider now some R � R�
f . By the de�nition of ' it follows for every h > 0 that

'(R+ h)� '(R) �

Z R+h

0
f(S(R)� �t)dt�

Z R

0
f(S(R)� �t)dt (7)

=
Z R+h

R
f(S(R)� �t)dt

Since by Theorem 3.1 we know that S(R) < �R this implies by the continuity of the function f

on (0;1) that '0+(R) � f(S(R)��R) for every R > R�
f . Similarly, we obtain for R�h > R�

f

with h > 0 that

'(R� h)� '(R) � �

Z R

R�h
f(S(R)� �t)dt

and as before it follows that '0�(R) � f(S(R)� �R) for every R > R�
f . Since the function

' is convex we know that '0�(R) � '0+(R) for every R > 0 (Roberts & Varberg [19]) and so

the inequality

f(S(R)� �R) � '0�(R) � '0+(R) � f(S(R)� �R)

holds for every R > R�
f . By Theorem 3.1 it follows that f(S(R) � �R) = f(S(R)) for

every R > R�
f and this implies by the above inequality that the function ' is di�erentiable

on (R�
f ;1) with '0(R) = f(S(R)). From (7) it is easy to verify that '0+(R

�
f) � f(0�) =

f(�R�
f) = f(S(R�

f)) and since '
0
�(R

�
f) = f(S(R�

f)) we obtain by the convexity of ' in a similar

way as before that '0(R�
f) equals f(S(R

�
f)). Hence, we have shown that '

0(R) = f(S(R)) for

every R > 0, and by Lemma 3.1 and the continuity of f on (0;1) we �nally obtain that the

function ' is continuously di�erentiable on (0;1). 2

As will be shown at the end of this section, the above result is extremely useful in deriving

analytical formulas for ' if f has some special form. Moreover, it can also be used to compute

the Lipschitz constant for our global optimization procedure discussed in Section 2.

Models with a service level constraint

We will now consider a deterministic inventory model with a service level constraint and so

we assume that the cost rate function satis�es Property 1.3. Let �(R; S) denote the long-run
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fraction of demand for some item satis�ed directly from stock on hand if an (R; S)-policy is

used. By the regenerative structure of the inventory position process it follows that

�(R; S) =
total demand satis�ed directly from stock in one cycle

total demand in one cycle

Since the denominator equals �R we obtain that

�(R; S) =

8><
>:

0 if S < 0

S=�R if 0 � S � �R

1 otherwise

(8)

As before, the holding costs during one cycle are given by

I(R; S) =
Z R

0
f(S � �t)dt

and the average costs for an arbitrary (R; S)-policy equal

g(R; S) :=
c+ I(R; S)

R

The minimum holding costs during a cycle of �xed length R, subject to the service level

constraint �(R; S) � �, with 0 < � � 1 �xed, are now given by

'(R) := inffI(R; S) : �1 < S <1; �(R; S) � �g

and thus

�(R) := inffg(R; S) : �1 < S <1; �(R; S)� �g =
c+ '(R)

R

Since by Property 1.3 the cost rate function f is increasing on IR and vanishes on (�1; 0),

the optimization problem associated with '(R) is trivial to solve and by (8) we obtain that

'(R) = inff
Z R

0
f(S � �t)dt : S � ��Rg

=

Z R

0
f(��R� �t)dt

=

Z �R

0
f(��R� �t)dt

implying that S(R) = ��R forR > 0. Hence, it follows by a similar argument as in Lemma 3.2

that ' is convex on (0;1). Moreover, it is also easy to verify by the continuity of f that

'0(R) = �f(��R)

and so we have completed the analysis of a deterministic inventory model with a service level

constraint.
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Veri�cation of Property 1.1

The �rst part of Property 1.1 is satis�ed, since for both models it was shown that the function

' is convex and continuously di�erentiable. This implies by Theorem I.1.1.6 of Hiriart-Urruty

& Lemarechal [14] that the function R ! �(1=R) also satis�es these properties. By this

observation, the next result is easy to prove.

Theorem 3.4 The optimization problem inff�(x) : 0 < x <1g has a �nite optimal solution

x� if and only if the �nite value x� is a solution of the equation �0(x) = 0.

The above result is useful to compute a �nite optimal solution if one exists. A su�cient

condition to guarantee that such a �nite optimal solution exists is given by the next result.

Theorem 3.5 For any f satisfying Property 1.2 the optimization problem in Theorem 3.4

has a �nite optimal solution if limjxj!1 f(x) =1. The same result holds for any f satisfying

Property 1.3 if limx!1 f(x) =1.

Proof: We only prove the �rst part, since the proof of the second part is almost identical.

From (3), (5), (6) and c > 0 it follows that

g(R; S)>
1

�R
(F (S)� F (S � �R))

This implies by the nonnegativity of the function f that for every (R; S) 2 K (de�ned in

Lemma 3.2) and S � 1
2
�R we have

g(R; S)>
�1

�R
F (S � �R) �

�1

�R
F (�

1

2
�R)

Similarly, for every (R; S) 2 K and S � 1
2
�R it follows that

g(R; S)>
1

�R
F (S) �

1

�R
F (

1

2
�R)

and so we obtain that

g(R; S)>
1

�R
minfF (

1

2
�R);�F (�

1

2
�R)g

for every (R; S) 2 K. Since limjxj!1 f(x) = 1 it follows that limR!1 F (1
2
�R)=�R = 1

and limR!1�F (�1
2
�R)=�R = 1 and this shows that the function � has a �nite positive

minimum point. 2

For most inventory models the above condition on the cost rate function is very natural, and

in some sense also necessary. To show this, we consider again the lost-sales model, for which

the cost rate functions are given by (2). In this case the property limjxj!1 fi(x) =1 is not

satis�ed. By Theorem 3.1 we obtain that

S(R) =

(
�R if R � R�

f

�R�
f otherwise
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where R�
f = �=h, and thus the function '(R) is given by

'(R) =

(
1
2
�hR2 if R � R�

f

��R� 1
2
�hR�

f otherwise

Observe that '(R) is continuously di�erentiable and convex on (0;1). Using straightforward

calculations, one can verify that �0(R) < 0 on (0;1) if (��)2 < 2c�h, and so the optimization

problem inff�(x) : 0 < x <1g does not have a �nite optimal solution in this case, implying

that the method of Dekker, Frenk & Wildeman [5] can in general not be applied for the

lost-sales model. We conclude this section by considering a special case of a cost rate function

f satisfying Property 1.2.

A piecewise linear cost rate function

Assume that the cost rate function f is given by

f(x) =

8>>>>>>>>>><
>>>>>>>>>>:

�px x < 0

h1x 0 � x < a1
...

...

f(ai�1) + hi(x� ai�1) ai�1 � x < ai; i = 2; : : : ; m� 1
...

...

f(am�1) + hm(x� am�1) am�1 � x <1

where p > 0 and hi > 0 for all i. Hence, we have piecewise linear holding costs and linear

shortage costs. In Figure 1 this cost rate function is illustrated. Observe that for general cost

rate functions f , numerical integration procedures are needed to evaluate '(R) and �(R). If

we use the trapezoidal rule (see Stummel & Hainer [21]), the cost rate function is replaced

by a piecewise linear function. Therefore, the analysis below will provide a useful tool for

analyzing more general cost rate functions.

a1 a2 a3

f(x)

Figure 1: A piecewise linear cost rate function.

Since f is continuous in 0 it follows immediately that R�
f = 0. For i = 1; : : : ; m� 1 we de�ne

Ri such that S(Ri) = ai. By Theorem 3.1 it follows that this corresponds to

f(ai)� f(ai � �Ri) = 0 ) Ri = (f(ai) + pai)=�p
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Moreover, we de�ne R0 := 0, a0 := 0, Rm := 1 and am := 1. The next lemma determines

for a given R > 0 the value of S(R).

Lemma 3.3 For Ri�1 � R < Ri, i = 1; : : : ; m, it follows that

ai�1 � S(R) < ai

In particular,

S(R) = ai�1 +
p

p+ hi
�(R�Ri�1)

Proof: Since S(Ri�1) = ai�1 and S(Ri) = ai the �rst part immediately follows by Lemma 3.1.

To prove the second part we observe that

f(S(R))� f(S(R)� �R) = f(ai�1) + hi(S(R)� ai�1) + p(S(R)� �R)

= (p+ hi)S(R) + f(ai�1)� hiai�1 � p�R

By setting this expression equal to zero we obtain that

S(R) =
p

p+ hi
�R+

hiai�1 � f(ai�1)

p+ hi

=
p

p+ hi
�(R� Ri�1) + ai�1

which shows the desired result. 2

By Theorem 3.1 and Theorem 3.3 we obtain that the derivative of '(R) is given by

'0(R) = f(S(R)� �R)

for R > R�
f = 0. This implies by Lemma 3.3 for Ri�1 � R < Ri, i = 1; : : : ; m that

'0(R) = �p

�
ai�1 � �Ri�1 �

hi

p+ hi
�(R�Ri�1)

�

and also

'00(R) = �hi
p

p+ hi

Hence, by Theorem 3.2 it follows that '(�) is a convex, piecewise quadratic function, and so

'(R) = '(Ri�1) + p(�Ri�1 � ai�1)(R�Ri�1) +
1

2
�hi

p

p+ hi
(R�Ri�1)

2 (9)

The derivative of �(R) for R > 0 is given by

�0(R) =
R'0(R)� (c+ '(R))

R2

and thus by the above observations we obtain for Ri�1 � R < Ri that

�0(R) =
1

R2

�
p(�Ri�1 � ai�1)Ri�1 � c� '(Ri�1) +

1

2
hi

p

p+ hi
�(R2

� R2
i�1)

�
(10)

The next result is a direct application of Theorem 3.4 and Theorem 3.5.
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Lemma 3.4 Let k := inffi = 1; : : : ; m : �0(Ri) > 0g. Then it follows that R� := argminf�(R) :

R > 0g is given by

R� =

s
2[c+ '(Rk�1)� p(�Rk�1 � ak�1)Rk�1]

�hkp=(p+ hk)
+ R2

k�1 (11)

Proof: By the de�nition of k and Theorem 3.5, the value R� must be contained in the

interval [Rk�1; Rk). Using (10) and the necessary and su�cient �rst order optimality condition

�0(R�) = 0 (see Theorem 3.4), the desired result follows. 2

Observe that (11) is equivalent with

R� = �kRk�1

for k > 1, where

�k :=

s
1� 2

(p+ hk)

hkp�
�0(Rk�1)

This section is concluded by summarizing the above results in the following algorithm which

e�ciently determines the optimal replenishment interval R� if the cost rate function is piece-

wise linear.'

&

$

%

Step 0 Let c; �; p; h1; : : : ; hm > 0 and 0 < a1 < � � �< am�1 <1 be given,

and set i := 0, ai := 0, Ri = 0, f(ai) := 0, '(Ri) := 0 and �0(Ri) = �1

Step 1 While �0(Ri) � 0 and i < m do:

i := i+ 1

f(ai) := f(ai�1) + hi(ai � ai�1)

Ri = (f(ai) + pai)=�p

'(Ri) = '(Ri�1) + p(�Ri�1 � ai�1)(Ri �Ri�1) +
1
2
�hi

p
p+hi

(Ri �Ri�1)2

�0(Ri) = [p(�Ri � ai)Ri � c� '(Ri)]=R
2
i

Step 2 k := i and R� is determined by (11)

Algorithm 3.1: An algorithm to calculate R� for a piecewise linear cost rate function.

4 Numerical results

In this section we will investigate the solution procedure for (Q), described in Section 2,

and compare it with the heuristic approaches of Goyal [7], Brown [3] and Goyal & Gu-

nasekaran [10]. Goyal [7] and Brown [3] apply an iterative algorithm, where they initialize

each ki = 1 and then �nd the corresponding optimal R by setting the derivative of the ob-

jective function of (Q) equal to zero. Subsequently, they �nd for each i a value of ki, by

setting the derivative of the objective function of (Q) with respect to ki equal to zero, and

rounding to the best integer value. Once a value for ki is found, it is compared to the ki in
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the previous iteration. When for each item i the ki in two successive iterations are equal,

the algorithm terminates. Otherwise, a new optimal R is found for the current values of ki
and the procedure is repeated. Goyal & Gunesakaran [10] use the same procedure, but they

obtain for each i a value of ki by rounding the value of ki, obtained by setting the derivative

of the objective function of (Q) equal to zero, to the nearest integer. This procedure is faster

than the one of Goyal [7] and Brown [3], but will lead to poorer solutions. Although the above

algorithms are fast, they cannot guarantee an optimal solution, and have the disadvantage

that they are often stuck in a local optimal solution (see Van Egmond et al. [22]). The algo-

rithm of Dekker, Frenk & Wildeman [5] however guarantees an optimal solution, and it can

also give in very little time a good approximation by solving the relaxed problem (PR) and

applying a (improved) feasibility procedure. Using the objective value of the relaxed problem,

it is possible to give an upper bound on the deviation of this approximated solution. This

aspect is not shared by the other solution methods in the literature. Numerical experiments

by Kaspi & Rosenblatt [16] indicate that using the initial values of ki suggested by Silver [20]

together with the iterative approach of Goyal [7] and Brown [3] leads to good results. How-

ever, to obtain the initial values of ki one needs to set the derivative of the objective function

of (Q) with respect to R equal to zero, and substitute the corresponding value of R into the

objective function. The initial values of ki are then obtained by setting for i = 1; : : : ; n the

derivative of the objective function with respect to ki equal to zero. This leads to solving a

system of n equations, which can be done analytically for the joint replenishment problem

with no shortages allowed and cost rate functions given by (1) (see Silver [20]). However, for

general cost rate functions numerical procedures are needed to obtain the initial values of ki,

and therefore this approach is not suitable for our situation.

In particular, we have tested the algorithm for the piecewise linear cost rate function which

was discussed in Section 3. The algorithm was implemented in Borland Pascal 7.0 on a

Compaq 486DX/66 personal computer. We selected 6 di�erent values for the number of

items n, and 7 di�erent values for the major setup cost c. For the number of breakpoints m

in the holding cost function we analyzed 3 cases. This yields 126 di�erent combinations of

these parameters, and for each combination 25 problem instances were created by randomly

choosing values for hik; pi; �i and aik. Hence, in total 3150 test problems were evaluated. In

Table 1 the data are reported.

n = 3, 5, 7, 10, 25, 50

c = 10, 50, 100, 200, 500, 750, 1000

m = 3, 5, 10

ci 2 [1, 500]

hik 2 [1, 20]

pi 2 [5, 500]

�i 2 [10, 500]

ai;k � ai;k�1 2 [1, 50]

Table 1: Tested parameter values.

In Table 2 the relevant results of the algorithm for the 3150 test problems are presented.
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The deviations of the relaxation, the solutions obtained by the feasibility procedures and

the solutions of the heuristics by Goyal [7], Brown [3] and Goyal & Gunesakaran [10] were

determined by comparing the objective values with the optimal objective value v(P ) obtained

by Lipschitz optimization, where a maximum relative devation of 0.01% was allowed.

Relaxation (PR): Average running time (sec.) 0.02

Average deviation (v(P )� v(PR))=v(PR) 0.599%

Minimum deviation 0.000%

Maximum deviation 2.273%

Feasibility Procedure (FP): Average running time (sec.) 0.00

Average deviation (v(FP )� v(P ))=v(P ) 0.276%

Minimum deviation 0.000%

Maximum deviation 3.984%

Improved-Feasibility Procedure (IFP): Average running time (sec.) 0.21

Average deviation (v(IFP )� v(P ))=v(P ) 0.090%

Minimum deviation 0.000%

Maximum deviation 3.003%

Goyal and Brown (G&B): Average running time (sec.) 0.53

Average deviation (v(G&B)� v(P ))=v(P ) 0.705%

Minimum deviation 0.000%

Maximum deviation 11.880%

Goyal & Gunesakaran (GG): Average running time (sec.) 0.38

Average deviation (v(GG)� v(P ))=v(P ) 1.205%

Minimum deviation 0.000%

Maximum deviation 17.300%

Table 2: Average results of 3150 test problems.

It can be seen from the table that solving the relaxation takes very little time (on average

0.02 seconds). Applying the feasibility procedure takes a negligible amount of time, and so we

obtain within very little time a feasible solution for (Q), with an average deviation of 0.276%

and a maximum deviation of 3.984% in our test examples. Applying the improved-feasibility

procedure also takes little time (on average 0.21 seconds), and leads to an average deviation

from the optimal costs of 0.09% and a maximum deviation of 3.003%. Hence, the algorithms

of Goyal [7], Brown [3] and Goyal & Gunesakaran [10] are outperformed, while the running

times of the improved-feasibility procedure are smaller.

The deviations of 11.88% for the heuristic of Goyal [7] and Brown [3], and the deviation of

17.3% for the method of Goyal & Gunesakaran [10] occur for one of the problem instances

with c = 10 and n = 7. In Table 3 and Table 4 the parameters and results for these instances

are given. Both heuristics are stuck in a local minimum after a small number of iterations,

which is caused by the initialization of each ki at the value one. For both test problems the

solutions obtained by solving the relaxation and applying the (improved) feasibility procedure

were much better than the ones of Goyal [7] and Brown [3], and Goyal & Gunesakaran [10]

(compare v(FP ) and v(IFP ) with v(G&B)).
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c = 10, n = 7, m = 5

item ci hi1 hi2 hi3 hi4 hi5 ai1 ai2 ai3 ai4 pi �i

1 25 18 13 11 5 10 27 73 81 121 420 19

2 2 10 18 10 5 4 25 68 113 162 58 346

3 481 12 12 7 20 13 22 34 67 84 205 275

4 104 5 11 13 19 5 47 81 86 132 323 158

5 60 10 5 8 17 7 11 59 80 100 140 371

6 458 14 15 1 9 3 20 28 60 99 243 358

7 133 2 2 14 19 9 27 58 103 126 411 203

Optimal solution Goyal and Brown

R = 0:0795 R = 0:3858

k = f5; 1; 7; 5; 4; 11; 5g k = f1; 1; 1; 1; 1; 2; 1g

v(Q) = 5286:95 v(G&B) = 5915:06

v(FP ) = 5295:27 v(IFP ) = 5290:99

(v(G&B)� v(Q))=v(Q)� 100% = 11:88%

Table 3: Parameters and results of problem instance for which the heuristic of Goyal and

Brown performs worst.

c = 10, n = 7, m = 3

item ci hi1 hi2 hi3 ai1 ai2 pi �i

1 490 1 1 1 30 63 74 405

2 2 17 17 17 43 58 216 451

3 63 8 16 6 3 24 412 78

4 144 5 7 20 10 39 385 163

5 171 5 14 9 12 48 430 148

6 36 14 13 1 39 49 336 85

7 32 15 1 11 8 47 459 15

Optimal solution Goyal & Gunasekaran

R = 0:059 R = 0:244

k = f26; 1; 6; 6; 8; 4; 9g k = f6; 1; 1; 1; 2; 1; 2g

v(Q) = 3159:33 v(GG) = 3705:89

v(FP ) = 3159:77 v(IFP ) = 3159:37

(v(GG)� v(Q))=v(Q)� 100% = 17:30%

Table 4: Parameters and results of problem instance for which the heuristic of Goyal &

Gunesakaran performs worst.

The running time of the Lipschitz optimization depends on the number of items and on the

setup costs. The number of breakpoints m did not have a signi�cant inuence on the running

times. In Table 5 the average running times of the 75 examples in each class of test problems

are reported. The running time appears to be increasing more than linearly in the number of

items, which is caused by the fact that the interval [Tlow; Tup] containing the optimal T (see

Section 2) tends to increase as n increases. Since the objective function is steeper for larger

values of S, which causes smaller upper bounds, the running times decrease as the value of S

increases.



An e�cient algorithm for a generalized joint replenishment problem 21

n = 3 n = 5 n = 7 n = 10 n = 25 n = 50

c = 10 0.24 0.64 1.09 2.13 9.44 21.42

c = 50 0.13 0.30 0.59 1.05 5.20 14.79

c = 100 0.09 0.26 0.47 0.88 4.26 11.89

c = 200 0.08 0.21 0.42 0.63 3.07 9.01

c = 500 0.08 0.14 0.25 0.44 2.36 6.74

c = 750 0.06 0.11 0.20 0.38 1.79 6.06

c = 1000 0.06 0.09 0.17 0.34 1.47 4.59

average 0.11 0.25 0.46 0.83 3.94 18.64

Table 5: Average running times (sec.) of the Lipschitz optimization.

5 Conclusions

In this paper we analyzed a generalized joint replenishment problem, with general cost rate

functions and possibly service level constraints. It was shown that the algorithm of Dekker,

Frenk & Wildeman [5] can be used to solve this problem e�ciently. The main advantage of

this algorithm lies in the fact that it gives in very little time a good near-optimal solution

with a known upper bound on the deviation, and, if necessary, it provides a guaranteed

optimal solution using Lipschitz optimization. Useful results to determine the optimal control

parameters were derived, and worked out for cost rate functions with piecewise linear holding

costs and linear shortage costs. For this special case, the performance of the algorithm was

compared with well-known heuristics, and it outperformed them both in the quality of the

solution as in the running time.

Finally, we like to remark that although deterministic inventory models are not always re-

alistic, they may be used to obtain a lower bound for stochastic inventory models. In a

subsequent paper we will apply the procedure to stochastic inventory models with an (R; S)

inventory policy.

Acknowledgement: The authors thank Ralph Wildeman for writing the computer program.

References

[1] K.J. Arrow, S. Karlin, and H. Scarf. The nature and structure of inventory problems.

In K.J. Arrow, S. Karlin, and H. Scarf, editors, Studies in the mathematical theory of

inventory and production. Stanford University Press, Stanford, Ca., 1958.

[2] M.S. Bazaraa, H.D. Sherali, and C.N. Shetty. Nonlinear Programming: Theory and

Algorithms. John Wiley & Sons, New York, 1993.

[3] R.G. Brown. Decision Rules for Inventory Management. Holt, Reinhart and Winston,

New York, 1967.



22 J.B.G. Frenk, M.J. Kleijn and R. Dekker

[4] J.S. Dagpunar. Formulation of a multi item single supplier inventory problem. Journal

of the Operational Research Society, 33:285{286, 1982.

[5] R. Dekker, J.B.G. Frenk, and R.E. Wildeman. How to determine maintenance frequencies

for multi-component systems? a general approach. In S. �Ozekici, editor, Reliability and

Maintenance of Complex Systems. Springer-Verlag, Berlin Heidelberg, 1996.

[6] A. Federgruen, H. Groenevelt, and H.C. Tijms. Coordinated replenishments in a multi{

item inventory system with compound Poisson demands. Management Science, 30:344{

357, 1984.

[7] S.K. Goyal. Determination of economic packaging frequency for items jointly replenished.

Management Science, 20:232{235, 1973.

[8] S.K. Goyal. Determination of optimum packaging frequency of items jointly replenished.

Management Science, 21:436{443, 1974.

[9] S.K. Goyal. A note on formulation of the multi-item single supplier inventory model.

Journal of the Operational Research Society, 33:287{288, 1982.

[10] S.K. Goyal and A. Gunasekaran. Determining economic maintenance frequency of a

transport eet. International Journal of Systems Science, 4:655{659, 1992.

[11] S.K. Goyal and A.T. Satir. Joint replenishment inventory control: deterministic and

stochastic models. European Journal of Operational Research, 38:2{13, 1989.

[12] S.K. Goyal and R. Soni. Economic packaging frequency of jointly replenished items

with multiple manufacturing and packaging cycles. In A. Chik�an, editor, Proceedings of

the Third International Symposium on Inventories, pages 521{529. Akademiai Kioado,

Budapest, 1986.

[13] G. Hadley and T.M. Whitin. Analysis of Inventory Systems. Prentice{Hall, Englewood

Cli�s, N.J., 1963.

[14] J.B. Hiriart-Urruty and C. Lemarechal. Convex Analysis and Minimization Algorithms

I. Springer-Verlag, Berlin, 1993.

[15] R. Horst and P.M. Pardalos. Handbook of Global Optimization. Kluwer Academic Pub-

lishers, Dordrecht, 1995.

[16] M. Kaspi and M.J. Rosenblatt. The e�ectiveness of heuristic algorithms for multi-item

inventory systems with joint replenishment costs. International Journal of Production

Research, 23:109{116, 1985.

[17] E. Naddor. Inventory Systems. John Wiley & Sons, New York, 1966.

[18] E.L. Porteus. Stochastic inventory theory. In D.P. Heyman and M.J. Sobel, editors,

Handbooks in OR & MS, vol. 2. Elsevier Science Publishers B.V., North{Holland, 1990.



An e�cient algorithm for a generalized joint replenishment problem 23

[19] A.W. Roberts and D.E. Varberg. Convex Functions. Academic Press, New York, 1973.

[20] E.A. Silver. A simple method of determining order quantities in joint replenishments

under deterministic demand. Management Science, 22:1351{1361, 1976.

[21] F. Stummel and K. Hainer. Introduction to Numerical Analysis. Scottish Academic

Press, Edinburgh, 1980.

[22] R. Van Egmond, R. Dekker, and R.E. Wildeman. Correspondence on: Determining

economic maintenance frequency of a transport eet. International Journal of Systems

Science, 26:1755{1757, 1995.

[23] A.F. Veinott Jr. The status of mathematical inventory theory. Management Science,

12:745{777, 1966.

[24] R.E. Wildeman, J.B.G. Frenk, and R. Dekker. An e�cient optimal solution method

for the joint replenishment problem. to appear in the European Journal of Operational

Research, 1996.


