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Abstract

The asymmetric moving average model (asMA) is extended to allow for asymmetric quadratic

conditional heteroskedasticity (asQGARCH). The asymmetric parametrization of the condi-

tional variance encompasses the quadratic GARCH model of Sentana (1995). We introduce

a framework for testing asymmetries in the conditional mean and the conditional variance,

separately or jointly. Some of the new model's moment properties are also derived. Em-

pirical results are given for the daily returns of the composite index of the New York Stock

Exchange. There is strong evidence of asymmetry in both the conditional mean and condi-

tional variance functions. In a genuine out-of-sample forecasting experiment the performance

of the best ¯tted asMA-asQGARCH model is compared to pure asMA and no-change fore-

casts. This is done both in terms of conditional mean forecasting as well as in terms of risk

forecasting.
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1 Introduction

There is an overwhelming amount of empirical evidence that the conditional variance (volatility)

of economic and ¯nancial time series, say V (YtjYt¡1; Yt¡2; : : :), is asymmetric in the sense that

large negative shocks are often followed by larger increases in volatility than from equally large

positive shocks. Various parametric models for this conditional variance asymmetry have been

proposed in the generalized autoregressive heteroskedasticity (GARCH) literature; see, e.g.,

Hentschel (1995) and Pagan (1996) for overviews. The structure of most existing GARCH

models only describe one particular feature of the asymmetric conditional probability density

function. Therefore, it seems natural to develop models for ¯nancial time series that include

other aspects of the conditional distribution function as well. In particular, a di®erent delay in

reacting to positive rather than negative innovations (up markets versus down markets) can be

represented by an asymmetric parametrization of the conditional mean. The asymmetric moving

average (asMA) model proposed by Wecker (1981) is a suitable candidate for this purpose; see,

e.g., BrÄannÄas and De Gooijer (1994). The model employs two separate (linear) ¯lters one for

positive and one for negative shocks, i.e. the response of the system is asymmetric with respect

to the sign of the innovation.

In this article we combine the asMA model for the conditional mean E(YtjYt¡1; Yt¡2; : : :)

with an analogously de¯ned asymmetric parametrization of the conditional variance. The latter

model is an asymmetric extension of the quadratic GARCH model of Sentana (1995). Thus

the resulting model allows for both types of asymmetry in stock return data, and is for ease

of reference denoted asMA-asQGARCH. In particular, we are concerned with the asymmetric

behavior of the NYSE composite daily returns Yt, de¯ned as Yt = 100[ln(It)¡ ln(It¡1)], where

It is the daily price index. The data cover the period January 1, 1981 { December 31, 1999

(4957 observations) and were obtained from Datastream. Figures 1.a and 1.b show plots of

respectively the returns and squared returns. In Figure 1.a there is a sharp decline in the series

in October 1987 due to the world-wide crash in stock markets. The squared returns plotted in

Figure 1.b display this phenomenon even more signi¯cantly. Figures 1.c and 1.d show scatter

plots of respectively, Yt versus Y §
t¡1

, and Y 2
t
versus Y §

t¡1
, where Y §

t
are the positive/negative

returns. The straight lines represent linear regression equations. Evidently Figure 1.c shows an

asymmetry in the conditional mean whereas the lines in Figure 1.d refer to an asymmetry in

the conditional variance.1

The idea to add a nonlinear model for the conditional variance to a nonlinear model for

the conditional mean has been adopted by various authors; see, e.g., Glosten, Jagannathan and

Runkle (1993), Li and Li (1996), Lee and Li (1998), and Lundbergh and TerÄasvirta (1998). The

asMA-asQGARCH model proposed here is a very °exible model. The asMA part is well-suited

to describe asymmetry of the type that frequently is encountered in macro-economic time series.

For instance, the model has been successfully applied by BrÄannÄas and De Gooijer (1994) to

characterize asymmetries in U.S. business cycle data. Further, since the asQGARCH part nests

the QGARCH model of Sentana (1995), it shares the same attractive features of this latter

model. Finally, the asMA-asQGARCH model easily allows for testing the hypothesis that only

1
The two-regime self-exciting threshold autoregressive (SETAR) model of Tong (1990) can be regarded as a

special case of Wecker's (1981) asMA model; see, e.g., BrÄannÄas and De Gooijer (1994, Appendix) and Section 2

below. Hence, the regression lines in Figures 1.c and 1.d also indicate the presence of regime-switching dynamics

in Yt.
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Figure 1: Daily returns of the New York Stock Exchange, 1981{1999 (sample mean 0.043,

standard deviation 0.912). Plot (a) graphs the time series Yt, plot (b) contains the squared

series Y 2
t , in (c) Yt is plotted separately against Y +

t¡1 (white marker) and Y ¡t¡1 (black marker)

with regression lines for each subgroup, and in (d) Y 2
t is graphed against Y +

t¡1 (white marker)

and Y ¡t¡1 (black marker) with regression lines for each subgroup. (Yt¡1 minus the sample mean

is denoted Y +
t¡1 if the di®erence is positive and is not de¯ned otherwise, Yt¡1 minus the sample

mean is denoted Y ¡t¡1 and de¯ned if negative and not de¯ned otherwise).
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the conditional mean model captures the asymmetric impact of shocks on volatility or, more

elaborate, that both the conditional mean and conditional variance speci¯cations capture this

phenomenon jointly. In other words, one can detect asymmetries of various kind relatively easy.

The outline of this paper is as follows. In the next section the asMA-asQGARCH model

is introduced. Some basic statistical properties are given in Section 3. Section 4 describes

the estimation method and the associated tests of symmetry in the conditional mean and the

conditional variance or both. Estimation and testing results for asMA-asQGARCH model ¯tted

to the NYSE composite daily stock returns are presented in Section 5. This section also contains

genuine out-of-sample forecasts for prediction horizons of 1-4 days through a rolling forecasting

approach. Section 6 provides some concluding remarks.

2 asMA model with asQGARCH errors

Let futg be a real-valued discrete time stochastic process generated by

ut = "tht (1)

where f"tg is a sequence of independent, identically distributed (iid) random variables with

mean zero and unit variance, and the conditional standard deviation ht is independent of "t as

well as non-negative for all t. Further, let

u+t = max(0; ut) = "+t ht and u¡t = min(ut; 0) = "¡t ht

where "+t = max(0; "t) and "¡t = min("t; 0). Now the general asymmetric moving average process

of order q, which we shall abbreviate by asMA(q), is de¯ned by the stochastic sequence fYtg

satisfying

Yt = ut +

qX

i=1

µ+i u
+

t¡i +

qX

i=1

µ¡i u
¡

t¡i

= ut +

qX

i=1

µ¡i ut¡i +

qX

i=1

!iI(ut¡i > 0)ut¡i (2)

where !i = µ+i ¡ µ¡i (i = 1; : : : ; q), and where I(¢) is the indicator function. Since the values of

the µ+i and µ¡i parameters at the ith lag may be di®erent, the response to equally sized positive

and negative shocks may be asymmetric. This e®ect will prevail in the conditional mean of Yt

given past observations. If there is a threshold level r instead of 0 in the u+t and u¡t functions

it can be accounted for by including a constant term, say µ0, in (1) and retaining an r = 0

threshold in u+t and u¡t .
2

To illustrate the asymmetry inherent in (2), consider the case q = 1. Let L denote the

lag operator such that LjYt = Yt¡j : Rewrite the asMA(1) model to obtain Y1 = u1 at t = 1,

(1 ¡ µ+L)Y2 = u2 for u1 > 0, and (1 ¡ µ¡L)Y2 = u2 for u1 < 0 at time t = 2. Repeating

this procedure the asMA(1) model gives rise to a \dual" nonlinear AR representation with st¡1

2
Let fu+

t
g and fu¡

t
g be two sequences with a threshold level r instead of 0. Set the means of u+

t
and u

¡

t

to ¹
+
r and ¹

¡

r , respectively. For r = 0 the means are ¹
+

0 and ¹
¡

0 . We may write u
+0
t

= u
+
t
+ ¹

+

0 ¡ ¹
+
r and

u
¡0

t
= u

¡

t
+ ¹

¡

0 ¡ ¹
¡

r . Substitution into (2) shows that a constant term is su±cient to replace r by 0 in the fu+
t
g

and fu¡
t
g sequences.

3



regimes of di®erent linear AR polynomials. In particular, let µ(k) = µ
+I(uk > 0)+ µ¡I(uk < 0)

(k > 1). Then for arbitrary t the resulting model has the form

Yt = µ(t¡ 1)Yt¡1 ¡ µ(t¡ 1)µ(t¡ 2)Yt¡2 + : : :¡ µ(t¡ 1) ¢ ¢ ¢ µ(1)Y1 + ut:

As µ(t ¡ 1) ¢ ¢ ¢ µ(t ¡ k) = (µ+)j (µ¡)
k¡j

(j = 0; : : : ; k) arises with binomial probability Pr(j) =

[k!=j!(k¡j)!]2k for symmetric ut, the probability for each possible outcome in the autoregression

can be calculated. The density function Pr(j) is symmetric, and the expected value of the

parameter combinations is given by
Pk

j=0 Pr(j)(µ
+)j (µ¡)

k¡j
. BrÄannÄas and Ohlsson (1999) give

a numerical illustration.

Various models have been proposed to represent the conditional heteroskedasticity h2t =

V (YtjYt¡1; Yt¡2; : : :) in (1). Sentana (1995) introduced the QGARCH(p; p) model in which the

conditional variance is given by

h2t = ®0 +

pX

i=1

®iut¡i +

pX

i=1

¯iu
2
t¡i +

pX

i=1

°ih
2
t¡i: (3)

The second term on the right-hand side describes the asymmetry in the conditional variance. Of

course, this term may also cause a problem with the positivity of h2t in (3) unless parameters are

constrained. In (3) positive shocks have a di®erent e®ect than negative shocks. The response of

the process is parabolic, though not symmetric around zero.

An alternative parametrization of the conditional variance, similar in structure to (3) and

which allows for asymmetry in an even more °exible way, can be de¯ned as

h2t = ®0 +

QX

i=1

(®+i u
+

t¡i + ®¡i u
¡

t¡i) +

pX

i=1

¯iu
2
t¡i +

pX

i=1

°ih
2
t¡i

= ®0 +

QX

i=1

®¡i ut¡i +

QX

i=1

±iI(ut¡i > 0)ut¡i +

pX

i=1

¯iu
2
t¡i +

pX

i=1

°ih
2
t¡i (4)

where ±i = ®+i ¡ ®¡i . Thus, by introducing u+t¡i and u¡t¡i each with their own coe±cients,

we allow that the response of the process to positive and negative shocks in volatility can be

di®erent from a parabolic function. We will refer to (1) jointly with (4) as the Asymmetric

Quadratic Generalized ARCH (asQGARCH) model of order (Q; p; p). Clearly, if ±i = 0 for all

i (i = 1; : : : ;Q) and Q = p, (4) reduces to (3). We also see that in the case ®+i = ®¡i = 0,

equations (1) and (4) simplify to the GARCH model of order (p; p) introduced by Bollerslev

(1986). Note, however, that in the case Q = p = 1, (4) di®ers from the so-called Asymmetric

Threshold GARCH (asTGARCH) of order (1;1,1) of Koutmos (1999) which is an asymmetric

analogue of the TGARCH(1,1) model of ZakoÄian (1994).

3 Mean, variance, and autocovariances

To highlight the di®erences between the asMA(q) model and the asMA(q)-asQGARCH(1;1,1)

model it is important to derive some of the moment properties of the latter model. Denote the

ith moment of f"+t g by º+i = E[("+t )
i]. Then, using the fact that º+i = ¡º¡i = ¡E[("¡t )

i] when

f"tg is symmetrically distributed, it follows immediately from (2) and (1) that the mean of fYtg

4



is given by

¹ = E[Yt] =

qX

i=1

(µ+i E[u+t ] + µ¡i E[u
¡

t ]) =

qX

i=1

(µ+i ¡ µ¡i )º
+
1
E[ht]: (5)

After some tedious but rather straightforward algebra it can be shown that the lag k (k =

0; 1; : : :) autocovariance °k of (2) and (1) is given by

°k =

8>>>>>>>><
>>>>>>>>:

E[utut¡k] +
Pq

i=1(µ
+
i + µ¡i )E[u+t ut¡k+i] +E[u+t u

+
t¡k

]
Pq

i=1f(µ
+
i )

2 + (µ¡i )2g

+2E[u¡t u
+
t¡k

]
Pq

i=1 µ
+
i µ
¡

i

+
Pq¡1

i=1

Pq
j=i+1

³
(µ+i µ

+
j + µ¡i µ

¡

j )fE[u+t u
+
t¡k+(j¡i)] +E[u+t u

+
t¡k¡(j¡i)]g

+(µ¡i µ
+
j + µ+i µ

¡

j )fE[u¡t u
+
t¡k+(j¡i)] +E[u¡t u

+
t¡k¡(j¡i)]g

´
¡ ¹2; if k 6 q

f
Pq

i=1(µ
+
i E[u+t u

+
t¡k] + µ¡i E[u¡t u

¡

t¡k])g
2 ¡ ¹2; if k > q

(6)

where

E[u§t u
§

t¡i] =

(
(º+1 )

2E[htht¡i]; i 6= 0

º+2 E[h2t ]; i = 0
E[u+t ut+i] =

(
0; i 6= 0

º+2 E[h2t ]; i = 0

E[u+t u
¡
t§fk§(j¡i)g] =

(
¡(º+1 )

2E[htht§fk§(j¡i)g]; k 6= jj ¡ ij

0; k = jj ¡ ij

and where an explicit expression for E[h2t ] is given in Appendix A.

Clearly, if ut ´ "t with f"tg a sequence of iid (0,1) distributed random variables (6) becomes

the autocovariance of the pure asMA(q) model.3 In that case °k = 0, for k > q. Hence, in con-

trast to the pure asMA(q) and the symmetric MA(q) model, the asMA(q)-asQGARCH(1;1,1)

model does not have autocovariances equal to zero beyond lags k > q. In other words, the

asymmetry in the conditional variance added through the innovations clearly changes the cor-

relation structure of the process. Consequently it may, at least on the basis of the theoretical

autocovariances and autocorrelations, be possible to empirically discriminate between a pure

asMA(q) and an asMA(q)-asQGARCH(1;1,1) model.

By setting k = 0 in (6) it follows directly that the asMA-asQGARCH model has a variance

given by

°0 = E[u2t ] +E[(u+t )
2]

qX
i=1

f(µ+i )
2 + (µ¡i )

2g+ 2

q¡1X
i=1

qX
j=i+1

³
(µ+i µ

+
j + µ¡i µ

¡

j )E[u
+
t u

+
t+(j¡i)]

+ (µ¡i µ
+
j + µ+i µ

¡

j )E[u
¡

t u
+
t+(j¡i)]

´
¡ ¹2

=
³
º2 + º+2

qX
i=1

f(µ+i )
2 + (µ¡i )

2g
´
E[h2t ]

+ 2(º+1 )
2

q¡1X
i=1

qX
j=i+1

(µ+i ¡ µ+i )(µ
¡

j ¡ µ¡j )E[htht+(j¡i)]¡ ¹2 (7)

where ºi = E[j"tj
i] (i = 1; 2; : : :). By setting µ+i = µ¡i ´ µi (i = 1; : : : ; q), (7) reduces to

°0 = fº2 + 2º+2
Pq

i=1 µ
2
i gE[h

2
t ], i.e. the variance of an MA(q)-asQGARCH(1;1,1) model. When

3Wecker's (1981) formula (A.1) for the autocovariance at lag k 6 q of an asMA(q) model with iid N(0; ¾2)

innovations is incorrect.
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Figure 2: Lag one autocorrelation coe±cient, ½1, against ®0. Unknown expectations in (6)-(7)

are estimated by sample averages from generated series of length T = 100 000.

again ut = "t, this latter expression becomes equal to º2(1 +
Pq

i=1 µ
2

i ), i.e. the well-known

formula for the variance of an MA(q) process.

Depending on the signs of the µ§i (i = 1; : : : ; q) the model can capture an inverse relationship

between autocorrelation and volatility (cf. LeBaron, 1992). Using estimated parameters (see

Section 5, below) a time series of length T = 100 000 is generated. From the generated series the

unknown expected values are estimated as sample averages, and used in (6)-(7). In Figure 2 the

lag one autocorrelation coe±cient, ½1 = °1=°0, is graphed against ®0 (a larger ®0 corresponds

to a larger E(h2t )). The expectations E(Y
i
t ) (i = 1; 2) are increasing with ®0.

4 Estimation and Testing

Conditional on Yt¡1 = (y1; : : : ; yt¡1) the prediction error

et = Yt ¡ µ0 ¡

qX
i=1

µ+i u
+

t¡i ¡

qX
i=1

µ¡i u
¡

t¡i

has the distribution of "tht. Note that the included constant term µ0 catches the mean return

but also any nonzero threshold in the fu+t g and fu¡t g sequences (cf. footnote 2). We assume

f"tg to be normally distributed so that the conditional density of Yt given Yt¡1 is normal with

mean 0 and variance h2t : The log-likelihood function is then

` =
TX

t=r

lnLt / ¡
TX

t=r

³
lnht +

1

2

e2t
h2t

´

where r = max(q;Q; p) + 1. Since, we have moving average terms in the conditional mean and

the conditional variance, the likelihood equations are more complicated than in the absence of

6



moving average terms. The gradient for observation t is

@ lnLt

@µ
= ¡

eµt
h2t

et +
hµt
h3t

(e2t ¡ h2t ) (8)

@ lnLt

@Ã
= ¡

eÃt
h2t

et +
hÃt
h3t

(e2t ¡ h2t ) (9)

where e#t = @et=@# and h#t = @ht=@# are vectors of dimensions corresponding to the num-

bers of elements in the µ = (µ0; µ
+
1
; : : : ; µ+q ; µ

¡

1
; : : : ; µ¡q )

0 and Ã = (®0;®
+
1
; : : : ; ®+Q;®

+
1
; : : : ; ®¡

Q;

¯1; : : : ; ¯p; °1; : : : ; °p)
0 vectors. The gradient expressions are obviously weighted averages of the

residuals for the conditional mean and conditional variance. It follows directly that practically

simplifying, stepwise estimation procedures based on the block-diagonality (for µ and Ã) of the

information matrix are not available in this case.

An estimator of the covariance matrix is most easily obtained from the outer product of the

gradients, i.e.

Cov(^́) =

"
TX
t=r

@ lnLt

@´

@ lnLt

@´0

#¡1
(10)

where ´ = (µ0;Ã0)0.

Hypotheses of symmetric responses in the conditional mean (cf. BrÄannÄas and De Gooijer,

1994), the conditional variance, or in both jointly may be formulated as linear restrictions on the

´ vector, i.e. as ´0 = R´ = 0. Likelihood ratio tests are easy to apply in practice. Given the

estimates and the covariance matrix estimator Wald testing is also quite straightforward. An LM

test against asymmetry in the mean function was given and evaluated by BrÄannÄas, De Gooijer

and TerÄasvirta (1998). Here, we give a new LM test against conditional heteroskedasticity of

the asQGARCH(1;1,1) type. The conditional mean speci¯cation is the asMA(q) model in (2).

Under H0 of no conditional heteroskedasticity, i.e. when ´0
0
= Ã0

¤0 = (®+ = 0; ®¡ = 0; ¯ = 0;

° = 0) so that h2t = ®0, the (4£ 1) ¯nal set of likelihood equations takes the form

`Ã¤0 =
@

@Ã¤

TX

t=q+1

lnLtjH0
=

2

®0

TX

t=q+1

µ
1

2®0
x
0

t(e
2
t ¡ ®0)¡

@et
@Ã

¤0

et

¶

where x0t = @h2t=@Ã¤0 with xt = (u+t¡1; u
¡

t¡1; u
2
t¡1; ®0) evaluated under H0. The ®0 is replaced

by ¾̂2 based on the asMA model. The variance of `Ã¤0 is obtained as the (4 £ 4) lower part of

the diagonal block of the inverted information matrix, i.e. from I
¡1

ÃÃ = (IÃÃ¡IÃµI
¡1

µµ IµÃ)
¡1. The

general expression for the test statistic is then

LM = `Ã¤0
0
I
¡1

Ã¤Ã¤
`Ã¤0

a
» Â2(4):

In Appendix B we give the details for evaluating the blocks of the information matrix.

5 Empirical results

For our empirical analysis, we use the daily returns introduced in Section 1. In the next four

subsections we discuss various issues related to the estimation, evaluation, interpretation, and

forecasting of the models ¯tted to this series.

7



Table 1: Sample autocorrelation functions for the series Yt and Y 2
t (LB is the Ljung-Box statistic

at ten lags).

Lag

Series 1 2 3 4 5 6 7 8 9 10 LB

Yt 0.051 -0.019 -0.031 -0.018 0.030 -0.002 -0.024 -0.009 -0.003 0.006 29.31

Y 2
t

0.091 0.161 0.080 0.020 0.145 0.029 0.011 0.045 0.038 0.009 331.4

5.1 Estimation and evaluation

To model the series fYtg in terms of the conditional mean and variance, the adopted strategy is

to start with the conditional mean function and choose the \best" ¯tted asMA(q) model on the

basis of the minimum value of AIC subject to the condition that the residuals are not serially

correlated. Next, in a second step, the asMA(q) model is augmented with an asQGARCH(1;1,1)

model for conditional heteroskedasticity.

Table 1 shows values of the sample autocorrelation function (sacf) for both the Yt and Y 2
t

series. On comparing the sacf of Yt with the 95% asymptotic con¯dence bands §1:96=p4956 =
§0:028 the autocorrelations of Yt at lags 1 and 5 stand out as large in absolute value. The Ljung-

Box (LB) statistic for ten lags indicates jointly, statistically signi¯cant autocorrelations. Wecker

(1981) has shown that the asMA(q) model can generate series with no manifest autocorrelation

structure. Hence, it is reasonable to include also higher order lags in the asMA model. The LB

statistic for the Y 2
t
series indicates that higher order moment, temporal dependencies are also

present in the series. Note, however, that the LB statistic is incapable of detecting asymmetries

in neither the conditional mean nor the conditional variances.

Table 2 summarizes the maximum likelihood estimates of the various asMA-asQGARCH

models ¯tted to the series of returns. The ¯rst column gives estimation results for the best

¯tted pure asMA model whereas the remaining columns are for the combined asMA-asQGARCH

model. One sees from column one that all parameters in the asMA model are signi¯cantly

di®erent from zero. Speci¯cally, there is strong evidence for asymmetric responses to negative

and positive shocks at the same lags. Also there are di®erent lags coming into the positive

and negative lag MA polynomials. The ¯rst two parameters (µ+
1
and µ+

2
) are positive so that

positive shocks during the previous two days have incremental impacts on returns. A positive

shock three days ago (µ+
3
) has a negative and rather large e®ect on returns. There can only be

a positive response in returns to shocks at t¡ 2, since µ¡
2
is negative and µ+

2
is positive. Shocks

at t ¡ 3 can only have a negative impact as µ¡
3
is positive. A Wald test of symmetry rejects

the hypothesis (p < 0:001) so that a symmetric response to shocks at the included lags can be

rejected.

On the basis of the above ¯ndings the average response lags to shocks (good or bad news) can

be calculated. For the asMA(5) model, giving rise to 25 parameter combinations, the average

response lag is de¯ned as
P

5

i=0
iwi=
P

5

i=0
wi, where wi = jµ+

i
j or wi = jµ¡

i
j with µ§

0
= 1. The

values of this quantity ranges between 0.32 and 0.82 days, i.e. the returns are on average a®ected

by within the day news. Note that the calculated LB values indicate that the residuals, ût, are

uncorrelated up to ten lags. However, the LB statistic is clearly signi¯cant for the squared

residuals, û2
t
, and their sacf fails to die out quickly. A Dickey-Fuller test is employed to test a

8
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Figure 3: Graphical symmetry check of the residual distribution for the asMA model. The

graphs gives size ordered residuals above median (descending ones along y-axis) versus smallest

residuals below median (ascending ones along x-axis). Symmetry is supported if observations

fall on the indicated line with minus one slope. In (a) residuals for asMA model and in (b)

residuals for asMA-asQGARCH model.

unit root hypothesis. This hypothesis is clearly rejected (p < 0:001), providing some indication

that the parameter ° in the asQGARCH(1;1,1) model is likely to be less than one. The asMA

residuals are negatively skewed (¡2:91) and leptokurtic (68:79). To give some additional insight

into the nature of the asymmetry in the residual distribution, Figure 3.a shows a plot of the

largest residual against the smallest, the second largest against the next to smallest, and so

on. For a symmetric distribution we expect points to fall on a line of unit negative slope. For

most values of the residual this holds quite well, and asymmetry is therefore due to only a

few residuals, and these are all con¯ned to the tails of the distribution. Thus a model that

is successful in ¯tting the most extreme observations could well bring the residual distribution

closer to a symmetric distribution with thinner tails. The LM test against conditional variance of

the asQGARCH(1;1,1) type clearly rejects a constant conditional variance (LM = 345:5, p = 0).

Table 2 columns 2-6, show parameter estimates of the considered asMA-asQGARCH(1;1,1)

models. From the values of the log-likelihood function, lnL, it is apparent that the pure asMA

model can be rejected against any of the reported asMA-asQGARCH speci¯cations. Moreover,

we see that the speci¯cation containing all lagged ut¡1 variables cannot be rejected against

any of the rival and nested speci¯cations. The preferred model, given in the ¯nal column of

Table 2, contains an additional asMA parameter µ¡
1
. The standardized residuals, ût=ĥt, of this

model have skewness and kurtosis equal to respectively ¡0:68 and 6:93. Both measures are

substantially smaller than the corresponding values for the skewness and kurtosis for the asMA

model residuals (see also Figure 3.b and note the di®erences in scales). In general, it may be

9



Table 2: Parameter estimates for the conditional mean (asMA) and the joint conditional mean

and variance [asMA-asQGARCH(1;1,1)] models (standard errors in parentheses).

Model-type

Parameter asMA asMA-asQGARCH

µ+
1

0.113 0.116 0.130 0.127 0.123 0.122 0.109

(0.010) (0.013) (0.013) (0.012) (0.013) (0.013) (0.014)

µ+
2

0.072 0.048 0.052 0.054 0.052 0.057 0.056

(0.011) (0.013) (0.013) (0.013) (0.013) (0.012) (0.012)

µ+
3

-0.128 -0.060 -0.039 -0.043 -0.050 -0.044 -0.045

(0.011) (0.013) (0.014) (0.014) (0.013) (0.012) (0.014)

µ¡
1

0.033

(0.014)

µ¡
2

-0.081 0.015 0.009 0.013 0.015

(0.003) (0.012) (0.012) (0.012) (0.012)

µ¡
3

0.075 0.019 0.004 0.012 0.017

(0.006) (0.015) (0.015) (0.015) (0.015)

µ¡
4

-0.035 -0.051 -0.050 -0.046 -0.047 -0.049 -0.051

(0.010) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014)

µ¡
5

0.074 -0.022 -0.024 -0.021 -0.020

(0.004) (0.012) (0.012) (0.012) (0.012)

µ0 0.031 0.005 -0.004 -0.005 -0.001 -0.007 0.004

(0.009) (0.009) (0.010) (0.010) (0.010) (0.008) (0.009)

®0 -0.199 0.003 0.034 0.019 0.010 0.010 0.010

(0.002) (0.001) (0.001) (0.001) (0.002) (0.001) (0.002)

®+ -0.106 -0.032 -0.033 -0.032

(0.005) -0.064 (0.006) (0.006) (0.006)

®¡ -0.113 (0.003) -0.095 -0.094 -0.096

(0.005) (0.006) (0.006) (0.006)

¯ 0.046 0.109 0.076 0.059 0.059 0.059

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

° 0.906 0.892 0.901 0.905 0.905 0.905

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

¾̂2 0.820 0.828 0.829 0.0828 0.828 0.827 0.827

lnL -3964.2 -2511.9 -2530.0 -2511.8 -2508.4 -2509.8 -2508.3

LB10(ût=ĥt) 4.81 8.28 6.92 6.81 7.25 7.95 5.90

LB10(û
2
t
=ĥ2

t
) 184.8 7.11 4.96 5.56 6.24 6.07 6.23

Skewness -2.91 -0.71 -0.59 -0.65 -0.68 -0.67 -0.68

Kurtosis 68.79 7.26 6.01 6.51 6.86 6.89 6.93

Note: ¾̂2 is the variance estimator of the unstandardized residuals.
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noted that all ¯tted asMA-asQGARCH speci¯cations have residual distributions which are much

closer to the normal distribution as compared to the distribution of the residuals of the pure

asMA model. Wald tests for symmetry in the ¯tted asMA-asQGARCH models rejected the

null hypothesis in all cases (p-values < 0:001). An LR test of the QGARCH model of column

four rejects this model against the models corresponding to columns 5-7. The standard errors

of the table are based on the covariance matrix in (10). Using the consistent covariance matrix

estimator of Bollerslev and Wooldridge (1992), which is appropriate for non-normal f"tg, gives

almost identical standard errors.

Comparing column 1 with columns 2-7 in Table 2, some e®ects due to the augmentation of

the asMA model with the asQGARCH(1;1,1) speci¯cation are worth mentioning. First, most

¯tted asMA-asQGARCH models yield substantially smaller parameter estimates at most time

lags. The µ+
1
and µ¡

4
estimates are the only ones to be of the same or larger sizes. Further,

for the best asMA-asQGARCH model in column seven the average response lag ranges between

0.03 and 0.44 days, which is substantially smaller than the range of averaged response lags for

the asMA model. The largest mean lag is found for positive shocks during lags one to three

and a negative shock at lag four. The smallest mean lag arises when the signs of the shocks are

reversed. Finally, except for the parameters dropped from the ¯tted models, all standard errors

are rather constant across di®erent models.

5.2 Interpretation

A characteristic feature of the ¯tted asMA-asQGARCH model in columns 2-3 and 5-7 of Table

2 is that a positive shock has a negative e®ect on conditional heteroskedasticity through the

negative values of the parameter estimates of ®+. Note, however, that the squared shock has a

larger parameter estimate so that for positive shocks larger than about 0.5 the total e®ect is an

enhancing one. A negative shock has a risk enhancing e®ect for all speci¯cations. In Figure 4 the

lag one responses are plotted for the model in column seven. As is obvious the quadratic term

dominates for larger absolute values of ut¡1. The plots also indicate that h2t is always positive

though no restrictions were employed on parameters during estimation. The asymmetric e®ects

are manifest both in the sense that the curves are not centered at zero and in the sense of larger

values for negative values on ut¡1. For the model with all lagged ut¡1 included the negative

innovation increases volatility about 1.3 times more than a positive innovation of the same size.

Another way of depicting the e®ect of asymmetry is through a dynamic simulation of the

conditional heteroskedasticity speci¯cation. Since the estimates of ° are about 0:9 a shock will

have a long lasting e®ect on h2t . In Figure 5 we see that a negative shock prolongs the period

with enhanced risk for the asMA-asQGARCH model in the last column of Table 2, while a

positive shock though prolonging has a much smaller e®ect.

In Figure 6 the observations for September 1988 { December 1999 are displayed with point-

wise 95 per cent con¯dence bands. In common with other conditional variance models the

present one quickly adjusts to a higher variance level, with a subsequent slow return to the

average variance level of about 0.8. A close view suggests that a large negative observation is

followed by a larger variance in the next period, than would be the case for an equally large

positive observation. Note also that the the limits of the con¯dence intervals are rather sym-

metrically located around zero. This indicates the small ¯tted values of the model (following

from the small parameter estimates).

11
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Figure 4: Conditional variance responses to shocks in ut¡1. Model without u+t¡1 (solid line),

model without u¡t¡1 (dashed line), and model with all lagged ut¡1 included (dot-dashed line).

t

2 4 6 8 10 12 14

h t2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Positive shock

Negative shock

Base
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intervals, Ŷt § 1:96ht.

5.3 Forecasting

In this subsection we evaluate the forecasting performance of the best asMA-asQGARCH model,

both in terms of conditional mean forecasting and in terms of risk forecasting. The H-step-ahead

predictor for asMA(q), YT+HjT = E(YT+H jYT ; YT¡1; : : :), given observations up to and including

time T , is given by

YT+HjT = µ0 +

qX

i=H¡1

(µ+
i+1

u+
T+2¡i + µ¡

i+1
u¡
T+2¡i)

+
H¡1X

i=1

[µ+
i
E(u+

T+i
jYT ; YT¡1; : : :) + µ¡

i
E(u¡

T+i
jYT ; YT¡1; : : :)]; if H 6 q

YT+HjT = µ0 +
H¡1X

i=1

[µ+
i
E(u+

T+i
jYT ; YT¡1; : : :) + µ¡

i
E(u¡

T+i
jYT ; YT¡1; : : :)]; if H > q:

Since E(u§
T+i

jYT ; Yt¡1; : : :) = E("§
T+i

)E(hT+ijYT ; YT¡1; : : :) 6= 0 forecast expressions close to

the conventional MA results do not emerge. The values of E("§
T+i

), which are both time

invariant, may be estimated from the standardized residual by calculating the sample aver-

ages of values falling above zero (for "+
t
) or below zero (for "¡

t
). An analytical expression

for E(hT+ijYT ; YT¡1; : : :) is di±cult to obtain as ht is obviously a square root function. An

approximative variant is to use the h2
t
speci¯cation to forecast future conditional variances,

and then to simply take their square roots. In the prediction of future values of h2
t
we face

the similar problem of having to ¯nd E(u§
T+i

jYT ; Yt¡1; : : :) as well as E(u2
T+i

jYT ; Yt¡1; : : :) =

E("2
T+i

)E(h2
T+i¡1jYT ; Yt¡1; : : :) = E(h2

T+i¡1jYT ; Yt¡1; : : :). For the former we use the same av-

erages as for the conditional mean predictor, while for the latter we use the predicted h2
T+i¡1
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rather than its expectation. We will introduce the label \Naive" to indicate a forecast where

all future "§
t
, "t and "2t are set equal to zero. The label \Approx" identi¯es the approximative

predictor outlined above. For the latter forecast, we estimate the values of E("+
T+i

) and E("¡
T+i

)

to 0:74 and ¡0:71, respectively, and E(h2
T+i¡1) to 0:80.

The conditional mean forecast performance is compared to that of the pure asMA model

and to a no-change forecast. The models are re-estimated for the daily returns covering the

period January 1, 1981{October 8 (Friday), 1999 (4896 observations). Subsequently the Naive

and Approx forecasts four days ahead are calculated. Next, the forecast values are compared

to the actual observations. Adding one observation at a time, re-estimating and forecasting we

continue to the end of the series, i.e. we employ a rolling forecasting framework. In total, this

approach gives rise to n = 60 one-step-ahead forecasts, n = 59 two-step-ahead forecasts, and so

on. Before reporting the forecasting results it is worth mentioning that for an e±cient ¯nancial

market one should not expect to beat the no-change forecast. If it was possible this indicates

an ine±cient market and would suggest that the evaluated model is a money-maker. Equally

strong arguments do not apply to the risk forecast.

Table 3 gives the performance measures for conditional mean forecasting. There are small

di®erences in terms of mean performance. On comparing forecast variances, the no-change

forecast has the by far largest one. The variance of the asQGARCH model is marginally smaller

than that of the asMA model for all forecast horizons H.

Figure 7 gives the one-step-ahead risk or conditional heteroskedasticity forecasts over the

evaluation period. The mean of the forecasts is 0.92 and the median is 0.78, based on n = 60

observations. This may be compared to the variance of the time series for the whole period

1981-1999 of about 0.83 or to the variance in the period of 0.89. As the risk distribution is

positively skewed (0.69) the mean of the risk forecasts is not far o® target. The risk forecasts

vary between 0.38 (end of December, 1999) and 1.79 (October, 1999). Over the complete period

the risk forecasts have a signi¯cant negative trend. Also included in Figure 7 are two alternative

risk measures formed as the moving variance over the previous 10 and 15 days, respectively.

The curves are positively correlated (r > 0:9), though the risk forecast series varies much less

than the other two.

5.4 Discussion

To investigate the robustness of the reported estimates several alternative speci¯cations for cap-

turing asymmetry in the conditional variance were ¯tted to the data. Here some of the estimation

results are brie°y discussed.4 For instance, we adapted the Glosten et al. (1993) speci¯cation

by replacing the term ¯u2
t¡1 in the asQGARCH(1;1,1) part of the asMA-asQGARCH model by

the term ¯1u
2
t¡1+¯2(u

+

t¡1
)2. Estimation gave a signi¯cant (positive) additional parameter value

for ¯2. However, at the 5% critical level, it also resulted in a positive though insigni¯cant value

of ®+. More interestingly, the introduction of asymmetry in the quadratric term has hardly

no e®ect on the LB-test for residual autocorrelation nor on the distributional properties of the

residuals.

In trying to expand the asQGARCH part of our model with higher order lags, we found

empirically that most parameters would require restrictions to be introduced during the estima-

tion phase to render h2
t
positive for all t. Only for u¡

t¡2
did we ¯nd a signi¯cant contribution

4Detailed results are available upon request from the authors.
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Table 3: Conditional mean forecasting performance of competing models based on forecast

errors.

Horizon H

Model Measure 1 2 3 4

asQGARCH Mean 0.04 0.07 0.12 0.14

(Naive) Median 0.01 0.07 0.08 0.06

Correct sign (%) 52 59 64 54

Variance 0.87 0.90 0.86 0.81

asQGARCH Mean 0.04 0.02 0.03 0.08

(Approx) Median 0.01 0.01 -0.02 -0.01

Correct sign (%) 53 56 53 54

Variance 0.87 0.90 0.85 0.80

asMA Mean 0.06 0.09 0.14 0.07

Median -0.02 0.04 0.09 0.02

Correct sign (%) 45 47 48 49

Variance 0.88 0.90 0.94 0.94

No-change Mean -0.01 -0.01 0.03 0.06

Median -0.03 0.04 0.03 0.23

Correct sign (%) 60 47 48 49

Variance 1.53 1.88 2.25 1.58

Nr of forecasts (n) 60 59 58 57
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Figure 7: One-step-ahead risk forecasts (black line) with lines for variances over the previous 10

days (grey line, circle) and previous 15 days (grey line, square).

without employing restrictions, but again little e®ect was found on the values of the parameters

and the test statistics reported in Table 2. Nelson (1991) and others have used conditional

moment tests to test aspects of their model speci¯cations. Our reported LB statistics and sig-

ni¯cant skewness and kurtosis statistics are alternative statistics answering the same questions.

Bollerslev and Wooldridge (1992) showed that the covariance matrix estimator (10) is not con-

sistent if normality can be rejected. Empirically we found that their estimator and that in (10)

gave almost identical results. In addition to asQGARCH speci¯cations we have also estimated

some asymmetric versions of the EGARCH model (cf. Nelson, 1991). Using the AIC or lnL

to discriminate between models, all EGARCH speci¯cations are inferior to the asQGARCH

speci¯cations of Table 2.

The conditional mean of the NYSE index returns responds more slowly to positive shocks,

though the response is stronger than for negative shocks. For the conditional variance the impact

of negative shocks is greater. The asymmetric and positive responses in volatility to past shocks

is in line with, e.g., Nelson (1991). To study the previously found inverse relationship between

autocorrelation and volatility (LeBaron, 1992), consider Figure 2 which is based on estimated

versions of (6)-(7) to obtain the autocorrelation coe±cient at lag one, ½1 = °1=°0. Variation in

h2
t
is obtained by varying the constant term ®0 (E(h

2
t
) is increasing from 0.47 to 7.31). Figure 2

is based on a generated series of length T = 100 000 to estimate the unknown expectations. As

the graph manifests a negative slope, the estimated model provides additional support to the

previously found inverse relationship.
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6 Some Concluding Remarks

In this article we presented a general methodology for simultaneously modeling and estimating

asymmetries in the conditional mean and the conditional variance of observed time series. We

also introduced a framework for testing asymmetries in the conditional mean and the conditional

variance, separately or jointly. Finally, we derived some theoretical properties of the proposed

asMA-asQGARCH model and showed how the model can be used in a forecasting context.

Using these results, potential asymmetries in (economic) time series data can be investigated in

a uni¯ed and coherent way. In particular, we explored asymmetries in the NYSE composite daily

returns. The empirical evidence suggests that both the conditional mean and the conditional

variance respond asymmetrically to past information. Speci¯cally, the daily returns are on

average a®ected by within the day news. Furthermore, we noted that positive shocks (good

news) have a negative e®ect on conditional heteroskedasticity. On the other hand negative

shocks (bad news) increase volatility by about 1.3 times more than positive innovations of the

same magnitude. This behaviour is consistent with a partial adjustment price model where bad

news are incorporated faster into current market prices than good news. It implies that the cost

of failing to adjust prices downward is higher.

In a recent paper of Harvey and Siddique (1999) asymmetries introduced through a skew-

ness mechanism were found. Such a model may reduce the importance of conditional variance

asymmetry. For an extension of the model of this paper a density that incorporates, at least,

three non-zero moments is required.
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Appendix A: Moments of h2t

We begin by introducing notation. Let °
bh;c
i;j = E[(btht)

i(ct)
j], °bh

i = E[(btht)
i], and °ch2

i =

E[(cth
2
t )

i] with i and j positive integers. Consider the following, slightly more general, speci¯-

cation of the asQGARCH(1;1,1) model

h2t = ®0 + b("t¡1)ht¡1 + c("t¡1)h
2
t¡1 (11)

where bt = b("t) and ct = c("t) are well-de¯ned functions of "t.

Lemma: Consider the asQGARCH model (11) and (4). Assume that °(c)m < 1. Then the m-th

(m = 1; 2; : : :) unconditional moment of h2
t
can be expressed recursively as

E[h2m
t

] =
1

1¡ °cm

mX
j=1

µ
m

j

¶nµ
°
bh;c
j;m¡j +

j!

(j ¡ 1)!
®0°

bh;c
j¡1;m¡j

¶
E[h

2(m¡j)
t ]

+

jX
i=2

µ
j

i

¶
®i
0°

bh
j¡i°

ch2

m¡j

o
:

Proof: Raising (11) to the power m yields

h2mt =(ct¡1h
2

t¡1)
m +

mX
j=1

µ
m

j

¶(
(bt¡1ht¡1)

j +

jX
i=1

µ
j

i

¶
®i
0
(bt¡1ht¡1)

j¡i

)
(ct¡1h

2

t¡1)
m¡j :

Taking the unconditional expectation of h2t yields

E[h2mt ] = E[cmt¡1]E[(h2t¡1)
m] +

mX
j=1

µ
m

j

¶n
E[(bt¡1ht¡1)

jc
m¡j
t¡1 ]

+
j!

(j ¡ 1)!
®0E[(bt¡1ht¡1)

j¡1c
m¡j
t¡1 ]

o
E[(h2t¡1)

m¡j]

+
mX
j=1

µ
m

j

¶ jX
i=2

µ
j

i

¶
®i
0E[(bt¡1ht¡1)

j¡i]E[(ct¡1h
2

t¡1)
m¡j]: (A.1)

Applying (11) to the ¯rst term on the right-hand side of (A.1) one obtains

E[h2mt ] = E[cmt¡1]E
n
(ct¡2h

2

t¡2)
m +

mX
j=1

µ
m

j

¶n
(bt¡2ht¡2)

j

+

jX
i=1

µ
j

i

¶
®i
0
(bt¡2ht¡2)

j¡i
o
(ct¡2h

2

t¡2)
m¡j
o

+
mX
j=1

µ
m

j

¶n
E[(bt¡1ht¡1)

jc
m¡j
t¡1 ]

+
j!

(j ¡ 1)!
®0E[(bt¡1ht¡1)

j¡1c
m¡j
t¡1 ]

o
E[(h2t¡1)

m¡j]

+
mX
j=1

µ
m

j

¶ jX
i=2

µ
j

i

¶
®i
0E[(bt¡1ht¡1)

j¡i]E[(ct¡1h
2

t¡1)
m¡j]:
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Further recursion gives the unconditional expectation of h2t

E[h2mt ] = (°cm)nE[(h2mt¡n] +
mX
j=1

µ
m

j

¶n
E[(bt¡nht¡n)

jc
m¡j
t¡n ]

+
j!

(j ¡ 1)!
®0E[(bt¡nht¡n)

j¡1c
m¡j
t¡n ]

o
E[(h2t¡n)

m¡j ]

+
mX
j=1

µ
m

j

¶ jX
i=2

µ
j

i

¶
®i
0E[(bt¡nht¡n)

j¡i]E[(ct¡nh
2

t¡n)
m¡j ]

o n¡1Y
u=0

(E[cmt ])u: (A.2)

Assume that the process started at some ¯nite value in¯nitely many periods ago. Then letting

n!1 in (A.2) yields

E[h2mt ] =
1

1¡ °cm

mX
j=1

µ
m

j

¶nµ
°
bh;c
j;m¡j +

j!

(j ¡ 1)!
®0°

bh;c
j¡1;m¡j

¶

£E[h
2(m¡j)
t ] +

jX
i=2

µ
j

i

¶
®i
0°

bh
j¡i°

ch2

m¡j

o

if and only if °cm < 1.

Remark: Explicit expressions for E[hmt ] in the case of asQGARCH(1;1,1) model follow directly

from the above Lemma. In particular, setting bt¡1 = ®+"+t¡1 + ®¡"¡t¡1 and ct¡1 = ° + ¯"2t¡1 in

the (11). Then, assuming that °cm = (°+¯º2)
m < 1 (m = 1; 2), the ¯rst two moments of h2t are

respectively given by

E[h2t ] =
1

1¡ °c
1

f®0 + °bh1 g

E[h4t ] =
1

1¡ °c
2

n
®20 + °bh2 + 2®0°

bh
1 + 2(°bh;c

1;1 + ®0°
c
1)E[h

2
t ]
o

where °bhm = E[(®+u+t + ®¡u¡t )
m], °bh;c

1;1 = E[(®+u+t + ®¡u¡t )(° + ¯"t)], and where we dropped

the subscripts in the parameters of the asQGARCH(1;1,1) model.

Appendix B: Partial derivatives for the LM test statistic

The partial derivatives are given for evaluating the LM test under the null of an asMA(q)

conditional mean speci¯cation is the model in (2) against the asMA-asQGARCH(1;1,1) as given

in (2)-(4). Under H0 of no conditional heteroskedasticity, Ã0

0
= (0; 0; 0; 0) and h2t = ®0, and the

(4£ 1) score vector is (2=®0)
PT

t=q+1(x
0

t(e
2
t ¡ ®0)=2®0 ¡ et@et=@Ã0), where x

0

t = @h2t =@Ã0 with

xt = (u+t¡1; u
¡

t¡1; u
2
t¡1; ®0). The variance of the score is taken from the appropriate diagonal

block of the inverted information matrix, i.e. I
¡1

ÃÃ = (IÃÃ ¡ IÃµI
¡1

µµ IµÃ)
¡1. We use the outer

product of gradients for the matrix blocks of I; which then are estimated using

Îµµ =
4

®2
0

TX
t=q+1

e2t
@et
@µ

@et
@µ0

ÎµÃ =
TX

t=q+1

µ
4

®2
0

e2t
@et
@µ

@et
@Ã0

¡

2

®3
0

@et
@µ

xtet(e
2
t ¡ ®0)

¶

ÎÃÃ =
TX

t=q+1

µ
4

®2
0

e2t
@et

@Ã

@et

@Ã0
¡

2et(e
2
t ¡ ®0)

®3
0

µ
@et

@Ã
xt + x

0

t

@et

@Ã0

¶
+

(e2t ¡ ®0)
2

®4
0

x
0

txt

¶
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and evaluated under H0.

The required ¯rst order partial derivatives are, for k = 1; : : : q, calculated recursively by

@et

@µ+k
=

@ut

@µ+k
= ¡u+

t¡k
¡

Xq

i=1

Ã
µ+i

@u+t¡i

@µ+k
+ µ¡i

@u¡t¡k

@µ+k

!

@et

@µ¡k
=

@ut

@µ¡k
= ¡u¡

t¡k
¡

Xq

i=1

Ã
µ+i

@u+t¡i

@µ¡k
+ µ¡i

@u¡t¡k

@µ¡k

!

@et

@µ0
=

@ut

@µ0
= ¡1¡

Xq

i=1

Ã
µ+i

@u+t¡i

@µ0
+ µ¡i

@u¡
t¡k

@µ0

!

@et

@Ãk

=
@ut

@Ãk

= ¡
Xq

i=1

Ã
µ+i

@u+t¡i

@Ãk

+ µ¡i
@u¡

t¡k

@Ãk

!

where Ãk is equal to respectively ®0; ®
+; ®¡; ¯, and °. In the recursions zeroes are used as initial

values.
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