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Abstract

We construct a novel statistic to test hypothezes on subsets of the structural pa-
rameters in an Instrumental Variables (IV) regression model. We derive the x? limiting
distribution of the statistic and show that it has a degrees of freedom parameter that is
equal to the number of structural parameters on which the hypothesis is specified. The
statistic has this limiting distribution regardless of the quality of the instruments for
the endogenous variables associated with these structural parameters. The instruments
have to be valid for the endogenous variables associated with the remaining structural
parameters. We analyze the relationship of the novel statistic with the Lagrange Mul-
tiplier, the Likelihood Ratio and the GMM over-identification statistic from Stock and
Wright (2000). x? limiting distributions for the first two statistics only hold when the
instruments are valid for all endogenous variables. A ? limiting distribution for the
GMM over-identification statistic is obtained under the same conditions as for our novel
statistic but has a larger degrees of freedom parameter. For some artificial datasets, we
compute power curves and p-value plots that result from the different statistics. We
apply the statistic to an IV regression of education on earnings from Card (1995).

1 Introduction

The quality of the instruments for the endogenous variables in Instrumental Variables (IV)
regression is often not clear. When the quality of these instruments is poor, not only the
estimates of the structural parameters are inprecise but also the standard limiting distribu-
tions do not apply to the estimators. Hence, we can not use the traditional likelihood based
statistics, Wald, Likelihood Ratio and Lagrange Multiplier, to conduct tests on the structural
parameters in the normal manner, see e.g. Staiger and Stock (1997), Dufour (1997) and Wang
and Zivot (1998). Two statistics that can still be applied in these cases, as their limiting
distributions do not depend on the quality of the instruments, are the Anderson-Rubin statis-
tic, see Anderson and Rubin (1949), and the statistic that is recently proposed in Kleibergen
(2000). Both statistics conduct joint tests on all structural parameters but differ in the de-
grees of freedom parameter of their y? limiting distributions, that are equal to the number of
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instruments for the Anderson-Rubin statistic and the number of structural parameters for the
statistic from Kleibergen (2000). In case that our hypothesis of interest only concerns a subset
of the structural parameters, the degrees of freedom parameters of the limiting distributions
of both statistics thus exceed the number of parameters in the hypothesis of interest.

Stock and Wright (2000) show, that in case the hypothesis of interest only concerns a
subset of the structural parameters and the instruments are valid for the endogenous variables
associated with the remaining structural parameters, that a Generalized Method of Moments
(GMM) over-identification statistic has a x? limiting distribution. This limiting distribution
has a degrees of freedom parameter equal to the number of instruments minus the number of
remaining structural parameters and is not affected by the quality of the instruments for the
endogenous variables associated with the structural parameters in the hypothesis of interest.
The GMM over-identication statistic is identical to Basmanns’ (1960) over-identification statis-
tic evaluated using the maximum likelihood estimator. We propose a novel statistic whose
x? limiting distribution applies under the same conditions as the GMM over-identification
statistic but has a degrees of freedom parameter that is equal to the number of structural
parameters in the hypothesis of interest. This degrees of freedom parameter is therefore less
then or equal to the degrees of freedom parameter of the limiting distribution of the GMM
over-identification statistic.

The outline of the paper is as follows. In the second section, we introduce the IV regres-
sion model. In section 3, we construct our novel statistic to test hypothezes on subsets of
the structural form parameters. The statistic results from combining an over-identification
statistic and the statistic from Kleibergen (2000). We therefore first briefly discuss these two
statistics before we propose the novel one. Section 4 discusses the relationship between the
novel statistic and the Lagrange Multiplier statistic. We illustrate the (in)sensitivity of the
sampling distributions of different statistics to the quality of the instruments by generating
datasets from Data Generating Processes (DGPs) with weak instruments and compute the
resulting empirical distribution functions. Section 5 conducts a power comparison of differ-
ent statistics to test hypothezes on subsets of the structural parameters in case of valid and
weak instruments. Section 6 shows the shapes of (asymptotic) p-value plots that can result
from these statistics. Section 7 applies the statistics to test the return on education in an IV
regression of education on earnings from Card (1995). Next to (the length of) education and
(log) wages, this IV regression model also contains two endogenous experience variables for
which the instruments are valid. We can therefore apply the novel statistic to test the return
on education. Finally, the eigth section concludes.

2 Instrumental Variable Regression Model

The Instrumental Variables (IV) regression model in structural form can be represented as

a limited information simultaneous equation model, see e.g. Hausman (1983) and Kleibergen
and Zivot (1998),

91:1/25+Z’Y+€1 (1>
Y, = XTI+ ZT + V.

where y; and Ys are a T'x 1 and 7' x (m — 1) matrix of endogenous variables, respectively, Z is
a T x k; matrix of included exogenous variables, X is a T x ks matrix of excluded exogenous
variables (or instruments), €1 is a T x 1 vector of structural errors and V5 is a T' x (m — 1)
matrix of reduced form errors. The (m — 1) x 1 and k; X 1 parameter vectors 5 and ~y contain
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the structural parameters. The variables in X and Z are assumed to be of full column rank,
uncorrelated with e; and V3, and to be weakly exogenous for  and II, see Engle et. al. (1983).
The error terms £; and V5, where £;; denotes the t-th observation on £; and V5; is a column
vector denoting the t-th row of V5, are assumed to be uncorrelated over time, to have finite
moments up to at least the fourth order and the finite m x m (unconditional) covariance

matrix is represented by
€1t o1 Y12
X =wvar = , 2
(vm) (221 222) @)

which is assumed to be unknown. The degree of endogeniety of Y, in (1) is determined by
the vector of correlation coefficients defined by p = 22_21/ 2/22101_11/ ? and the quality of the
instruments is captured by II.

Substituting the reduced form equation for Y; into the structural equation for y; gives the

non-linearly restricted reduced form specification
Y =XIIB+ 2V +V, (3)

WhereY:(y1 Yg),B:(ﬂ Im_l),\I/:FB—i—(V O),V:(m \/2),1)1:61—1—‘/2ﬁ

and, hence, (vy; V3,)" has covariance matrix

. V1t . W11 ng . 6/1 ' 6/1
Q—l)ar(vm>—<9ﬂ QQQ>_<B>E B ) (4)

where e; : m x 1 is the first m dimensional unity vector. Note that W is a unrestricted k; x m
matrix.

The unrestricted reduced form of the model expresses each endogenous variable as a linear
function of the exogenous variables and is given by

Y = X042V +V, (5)

where ® : ky x m. Since the unrestricted reduced form is a multivariate linear regression model,
all of the reduced form parameters are identified. It is assumed that ks > m — 1 so that the
structural parameter vector [ is “apparently” identified by the order condition. We call the
model just-identified when ks = m—1 and the model over-identified when ky > m—1. ko—m—+1
is therefore the degree of over-identification. [ is identified if and only if rank(II) = m—1. The
extreme case in which 3 is totally unidentified occurs when II = 0 and, hence, rank(Il) = 0,
see Phillips (1989). The case of “weak instruments”, as discussed by Nelson and Startz (1990),
Staiger and Stock (1997), Wang and Zivot (1998), and Zivot, Nelson and Startz (1998), occurs
when II is close to zero or, as discussed by Kitamura (1994), Dufour and Khalaf (1997) and
Shea (1997) when II is close to having reduced rank.

The parameter 3 is typically the focus of the analysis. We can therefore simplify the
presentation of the results without changing their implications by setting v = 0 and I' = 0
(¥ = 0) so that Z drops out of the model. In what follows, let k& = ko denote the number
of instruments. We note that the form of the analytical results for § in this simplified case
carry over to the more general case where v # 0 and I" # 0 by interpreting all data matrices
as residuals from the projection on Z.



3 Pivotal Statistic for Subset of Structural Parameters

The distributions of the likelihood-based statistics, Wald, Likelihood Ratio and Lagrange Mul-
tiplier, to test hypothezes on the structural parameters of the IV regression model depend on
nuisance parameters even asymptotically, see e.g. Dufour (1997) and Staiger and Stock (1997).
In Kleibergen (2000), a statistic for conducting joint tests on all the structural form parameters
is constructed whose limiting distribution is pivotal such that it does not depend on nuisance
parameters. The degrees of freedom parameter of this limiting distribution is also equal to
the number of structural parameters which makes the statistic different from the Anderson-
Rubin statistic whose pivotal x? limiting distribution has a degrees of freedom parameter that
is equal to the number of instruments. In the following, we construct a statistic to conduct
tests on subsets of the structural form parameters. The statistic results from combining the
statistic from Kleibergen (2000) with a statistic to test for over-identification. We therefore
first briefly discuss the over-identification statistic and the statistic from Kleibergen (2000).

3.1 Over-Identification Statistic

Under the null-hypothesis of over-identification, the reduced form is equal to the restricted
reduced form (3) while it is equal to the unrestricted reduced form (5) under the alternative
hypothesis. We can therefore reflect the hypothezes as Hy : ® = [IB and H; : & # IIB. A
statistic that can be used to test this hypothesis reads
F(Ho|Hy) =tr "(5—1 - 5—13'(35—13')—135—1) Y'(My — MX)Y]
—tr | BL(BLSB) T BLY (M - MX)Y}

= L _ ( Ygﬁ) (Myq — Mx) (yl - 3/23)

T—l ( Yzﬂ) Mx(yl—Y2ﬁ)
—tr [(B. )—1BLY'X(X'X)—WL(H;(X'X)—lm)—lﬂfl(X'X)—l)('wéfL
= tr X& =5,

(6)

where My = Ir — V(V'V)~'V’ for any T x j dimensional full rank matrix V,

A= (I (X'X) I~z 10 (X' X) ' X'Y B (BLSB', )2, )
S =Y MyY,
I, B= (3 I, ) are/contain the maximum likelihood estimators (mles) of # and IL!

I, : kx (k—m+1) and B, : 1 x m are the normalized orthogonal complements of 1T and
B such that H’ = 0, I HL = lk_mi1 and BB = O BLB’L = 1. The third equation of (6)

then results from specifying B, as (1 —3 (1 + 3 3)~2. To obtain (6) we have also used that,
see e.g. Johansen (1991, lemma A.1),

S-S 'B(BS'B)'BS ' =B/ (B.SB,) B,
Y'(Myy — Myx)Y = Y'X(X'X)™ I, (I, (X' X) 1L ) =T, (X' X) "1 XY.
(8)

'The maximum likelihood estimator of II is obtained as II = (X'X)~'X'YS~'B/(BS~'B’)~" and the
maximum likelihood estimator of (3 is the limited information maximum likelihood estimator.
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Under Hy : @ = IIB and the least squares estimator of ® converges as
VT (ci> - HB) = N(0,Q2 QY 9)

where & = (X'X)1X'Y, Q = plimy_o X'TX and “ = ” stands for weak convergence, see
Billingsley (1986). To obtain the limiting behavior of (6), we assume that II has a fixed full
rank value such that

VT &B', = N(0, B.QB, @ I, Q11 ) (10)
and
A= N0, It_mi1), (11)
which implies the limiting distribution of (6) under Hy and a full rank value of II
F(HolHy) = x*(k —m +1). (12)

We explicitly construct A in the derivation of the limiting distribution of (6) as we combine it
with part of the statistic from Kleibergen (2000) that conducts a joint test on all structural
parameters.

3.2 Joint Test on all Structural Parameters

In Kleibergen (2000), an asymptotically pivotal statistic for conducting joint tests on all of the
structural parameters of the IV regression model is constructed. Before we adapt this statistic,
by using the over-identification statistic discussed previously, for use to test hypothezes on
subsets of the structural parameters, we first briefly discuss the statistic from Kleibergen
(2000).

We consider the null-hypothesis Hy : # = 0 under which the limiting distribution of the
least squares estimator d of the parameters of the unrestricted reduced form is normal

VT (<i>— (0 H)) = N(0,Q2Q). (13)

By either post-multiplying (13) by R, with

|
R— ( (1) Wiy Wi2 > ’ (14)

Im—l

or using the marginal and conditional limiting distributions of ¢; and &, with & = (¢ o, ),
¢k x 1, Dy kx (m—1), we obtain

.z . 0 B
VT (( 1 ®2—@rwpwrn ) = (0 I1)) = N(0, < u1011 Do 1 ) ® Q1)
&

VTp, = N(0,w ® Q1)
VT (<I>2 — Qwitwis — H) = N(0,Q01 Q") |’



where 922.1 = QQQ — wglwﬁlwlg, as

/ o W11 0
wor— (9 0. a6

Since R'QR is block diagonal, vT®, and VT (&)2 — gblwilwlg) are asymptotically stochastic
independent.

Expression (15) contains the unobserved parameters wy; and wis that have to be replaced
by observable ones. We use the estimator S (7) for this purpose that we specify as S =

( zn ;12 ) ,s11:1x 1, s19=38h : 1x (m—1), Sy :(m—1)x (m—1). S is asymptotically
21 922

stochastic independent from ® and sy,'s1, is a consistent estimator of wi'wi,. We therefore
replace wi'wiz by s7;'s12 in (15) and obtain that

VT (é - H) = N(0,Q901 ® Q71), (17)

where © = &, — @511 512 and VTO is asymptotically stochastic independent of /T, .2
Consequently, since s1; is a consistent estimator of wq;

N

(é’X’Xé) P OX XpysiE = N(O, Ln_y) (18)

and
F(HolH1) = e i X (X'X) X (Yo — yisiy si2) [(Ya — yisiy s12) X (X'X) 71X
(Yé - y151_11512)} - (YQ — y151_11512)/X(X/X)71X/y1

. 427'1XIX(<i>2—¢131—11312) ((&)2_‘27131_11512)/X'X(i>2_¢151_11312)) -1 (&2—<,‘0131—11512)’X1X¢71

(19)

. (m—1)s11
PX'X6(6/'X'X6) O'X'X¢,
(m—1)s11
x2(m—1)
m—1

which shows that the asymptotic distribution of (19) is completely characterized by the pa-
rameters under Hy and does not depend on unobserved nuisance parameters. The difference
between the limiting distribution in (19) and the limiting distributions of Likelihood Ratio,
Wald and Lagrange Multiplier statistics, is that the limiting distribution (19) is independent
of nuisance parameters. The limiting distribution of the other statistics is based on the as-
sumption of a fixed full rank value of II, see e.g. Dufour (1997), Staiger and Stock (1997) and
Wang and Zivot (1998). Another asymptotically pivotal statistic that can be used to test Hy is
the Anderson-Rubin statistic, see Anderson and Rubin (1949). The degrees of freedom of the
limiting distribution of (19) is exactly equal to the number of parameters pre-specified in H
while it is equal to the sum of this number of parameters and the degree of over-identification,
k —m + 1, for the Anderson-Rubin statistic.

2(17) results as \/T(fol = N(O,w;; ® Q') and silslg = wilwlg. Hence, /T (é—H) =
VT (@2 — gblwilwlg — H) + (\/ifol) (wﬁlwlg — sfllslg) = VT (@2 — ¢1wf11w12 — H) as
(\/T%) (wifwiz — sii's12) = 0 since @; and sj;'s;2 are (asymptotically) stochastic independent and
VT@, = N(0,wi1 @ Q71), sy s12 = wij'wia.



In the just-identified case k is equal to m — 1 and © in (19) is invertible. Statistic (19)
and the Anderson-Rubin statistic are then identical. This shows that statistic (19) is a gen-
eralization of the Anderson-Rubin statistic from the just-identified to the over-identified case
as a statistic to only test Hy. We note also that statistic (19) is invariant to transformations
like (y7 Y5) = (y1 Ya2)A, with A a upper (block) triangular matrix, and X* = XC, with C' a
square non-singular matrix.?

By using yi = y1 — Y20, instead of y; in all elements of (19) that contain y;, (19) is an
asymptotically pivotal statistic to test Hy : = [,. In this manner (19) can be used to
construct confidence sets, see Kleibergen (2000) for more details. In Kleibergen (2000) also
the relationship between (19) and the likelihood ratio statistic is discussed and its’ power is
investigated.

3.3 Test on Subset of Structural Parameters

Statistic (19) can be used to conduct a joint test on all structural parameters and is asymptot-
ically pivotal which implies that its’ limiting distribution is not affected by weak instruments,
see e.g. Staiger and Stock (1997) and Wang and Zivot (1998) for a discussion of the concept
of a weak instrument. When we can determine a subset of the endogenous variables for which
the instruments are known to be valid, we can also construct a statistic to test hypothezes on
the structural parameters of the remaining subset of endogenous variables. The asymptotic
distribution of the resulting statistic does not depend on the quality of the instruments for the
latter subset of endogenous variables. To construct this statistic we consider the IV regression
model

Y, = XII, + W,
Y, = XIIh + Vs, (20)
Y3 :leﬁl_‘—YvQﬁQ_*—E?

where ys, e : T'x 1; Yo, Vo : T'xmo; Y1, Vi : T Xmy,m =my+ma+1, By :my X1, By :mo X1,
Il : kxmy, Iyt K xmg, Y = (Y] Yy y3). We assume that the instruments for Y, are valid,
which implies that Il; has a fixed full rank value, but make no assumptions about the quality
of the instruments for Y7, ¢.e. we make no assumptions about II;. We are interested in testing
the hypothesis Hy : 3; = 0 against the alternative hypothesis H; : 3; # 0. We specify the
covariance matrix 2 and its estimator S (7) of the reduced form as,

Qi Qo S Sie
0= .S = , 21
( O Qs ) ( S S ) (21)
where €11, Si1 : my X my; (g, lep Si2, Sél tmy X (m2 + 1); Qag, Soy - (m2 + 1) X (m2 + 1)7

and assume that the order condition is satisfied such that k& > mq + mo.
The unrestricted reduced form of (20) can be specified as

Y =X®+V, (22)

3The invariance to transformations of X is straightforward to show. To show the invariance to the
ailp  ai2
0 Ag
and Y5 = YaAos + y1a12 such that s§; = ai1s11a11 and sy = ai1(s12422 + s11a12). As a consequence,
Yy — yisiT sty = Yados +yra12 — yrar1(a11811a11)  tari (s12422 + s11a12) = (Ya — y1877 s12) A22. Both aq;
and Agy cancel out in the expression of (19) which shows that (19) is invariant to these transformations.

transformation (y; Y5) = (y1 Y2)A, consider that A = ) This implies that y7 = y1a11



where V = (V] Vo v3), v3 =+ Vi3, + Vofy, & = (®1 §y), @1 : k xmy, and $y: k X (Mg + 1).

A

Under Hy : 3; = 0, the limiting distribution of the least squares estimator ® reads
ﬁ(cﬁ— (I, IB, )) = N(0,Q®Q™), (23)

where By = ( I, (5 ). When we post-multiply (23) by

T 0
R = iy , 24
( _9221921 Im2+1 ) ( )

the limiting expression becomes

VT (( P, — $2Q§21921 o, ) — ( I, — [y BoS2y Qo1 11 By ))

QII.Q 0 -1
= vo. (%) oo
& (25)
VT (@1 = 22001) — (I - 12B:05/ 1) ) = N(0, 12 ® Q™)
\/T ((i)g - HQBQ) = N(O7 QZQ & Qil) ’

where (i)l = (X/X)_IX/YI, (i)g = (X/X)_lX/(YQ yg), D10 = Q1 — 9129521921. Equation (25)
shows that, under Hy, Ci)l - égQQQIle and <i>2 are asymptotically stochastic independent. This
asymptotic stochastic independence remains valid when we replace 522_215221 by 52_21 Soq.k

Equation (25) shows that under Hy, because 3, = 0, we can just consider the IV regression
model that consists of the last mq + 1 equations of (20),

}/2 :XH2+‘/27

ys = Yo, +¢. (26)

We can test the hypothesis of over-identification in (26) by comparing the restricted and
unrestricted reduced forms of (26). In order to do this, we use statistic A (7)

~

A= (I, (X'X) )

21 (X'X)"'X'(Ya ys ) By (BoiSwBh )2
= (I, (X' X)"MIpy)

!/
21
b (XX) X (s = Yalh) 1 ;@

= (ys—Y2ﬁ2)lMx (y3—Y2ﬁ2)) :

Nl Nl

II
II

I

where II, and 3, are the mles of II, and 3, under Hy, so in (26). Equation (11) shows that
under Hy and when II, has full rank, such that also ®; = II, B, has full rank,

A= N0, It_pm,). (28)

A can be used to test the over-identification when we have imposed that 3, = 0. The unre-
stricted reduced form equation of y3 encompasses the restricted reduced form equation of ys3

19 s asymptotic stochastic independent from S. 5521521 is therefore also asymptotic stochas-
tic independent from @. As a consequence, \/T((@l—i)23521521>—(Hl—HgBQQQ’QIQQID =

JT ((él - <i>29521921> — (1 - H2329521921)> — VT, (Sp3-Sa1 — 53 ) =
VT ((él - <i>292—21921> — (T - HQBQQ;;QQlD as Sy So1 = Q51 Q01, VT (<i>2 - HQBQ> = N(0,222Q")
and 5521521 and /T, are asymptotically stochastic independent.
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that results from (20) which again encompasses the restricted reduced form equation of ys
that results from (26). The over-identification statistic that reflects the difference between
the unrestricted reduced form and (26) therefore also contains the difference between the re-
stricted reduced form equations of y; that result from (20) and (26). To determine this latter
difference, we use (25) to project A onto an estimate of IT; in the direction that is not explained
by Il,. Since we estimate Il beforehand in (26), only the part of IT; that does not lie in the
direction of II, is identified and can be used to identify ;. The estimate that we then use is
under H, asymptotically stochastic independent of ) and results from f[z and Cf)l — @252_21 So1,
which are also under H, asymptotically stochastic independent from one another. To conduct
the projection, we pre-multiply A (27) by

(®1 = 825,," 51 ) Tl (T, (X'X) MIp1) (29)
and obtain the statistic
= (#- @252—;521)’ fly, (T, (X7 X) "1 M1p0 )T, o By, (Bar SesB), )
= M—(Y2 y3) 5521521)/ [Myg, — Mx] (Yo y3) By, (Ba1S»By, )73,

Equation (25) shows that, under H, d, is a consistent estimator of II,B,. Furthermore,
we have assumed that I, has full rank such that IIs, is properly defined. Hence, the limiting

distribution of f[’2 N (ﬁ)l — @282_21 821) can be characterized as

(30)

VT (ﬂ;L (<i>1 _ ci>252—21521) _ H’uﬂl) = N0, Q12 ® 11, Q7L ), (31)

which results as Hg | is a consistent estimator of Il, |, such that HQBQQQQ (29; cancels out
of the limiting expression, and since Il 1, that results from <I>2, is asymptotically stochastic
independent of &; — $,55;,'S,;. Equation (31) shows that & (30) is indeed a projection of A
onto an estimate of II; in the direction that is not spanned by Ils, i.e. 1T, II;.

We further normalize £ and then obtain the statistic

N A [N N N N A N
IEL = |:((I)1 — @28521821) HQL(HIQL(X/X)_IHQL)_IHIQL (q)l — @25521521)

= (= (Yo u ) S/ Sor) [M, = Mx] (Vi— (Y 4 ) S'Sr)|
(Yl - ( Yo ys )522 521) [ XTIy MX} (y3 - Y2B2) :

K
_1
2
1

Y

() Mo (1))
(32)

which has, under Hy, a limiting distribution that is characterized by
= N(0,1Ipn,). (33)
The limiting distribution in (33) results as (28) and (31) are asymptotically stochastic inde-

pendent and the order condition is satisfied in (20) such that k& — mg > m;. The statistic for
testing Hy : #; = 0 against H; : 3; # 0 then results as

F(Ho|Hy) = =i ju
a

N mlﬁ(a i (o YQ@) [Myp, — Mx] (V1= (Vs v 1) S5'5)
(V= (Y2 w5 ) Su'Sn) [Myq, — Mx] (Yi— (Yo 3 ) S'S)]
( ( YQ Ys )522 521)/ [ XTly MX} (y3 — Ysz) )

(34)



and its’ limiting behavior is under H, and the valid instrument assumption for Y, characterized
by

X2(m1)
ma '

F(Hy|H,) =

(35)

The limiting distribution (35) does not depend on the quality of the instruments for ¥; and also
its’ degrees of freedom parameter is equal to the number of elements of ;. This is because the
limiting distribution (35) results from projecting A onto the estimate of II; in the direction of
II5, , under Hy, (29). As (27) is asymptotically stochastic independent from (29), the limiting
distribution (35) is not different when the instruments are weak or even invalid for Y;. Statistic
(34) is invariant to transformations of the variables that do offend H,. Examples of these kind
of transformations are Y* = (Y7 (Y2 y3))A, with A a lower (block) triangular m X m matrix,
and X* = XC, with C a full rank k x k matrix.’

Statistic (34) results from decomposing the joint statistic (19) which can be used to conduct
a test on all structural parameters. The limiting distribution of the joint statistic (19) does
not depend on the quality of the instruments. Statistic (34) conducts a conditional test on 3,
given (3,. The relationship on which we condition therefore has to be a valid one such that the
instruments for Ys have to be relevant. This result is not surprising since when we decompose
(19), the irrelavency of the quality of the instruments for the limiting distribution can only be
present in one of the parts where we decompose (19) into. In our case this implies that the
instruments are allowed to be weak for Y; but have to be valid for Y5.

4 Relationship with Lagrange Multiplier Statistic

Although statistic (34) looks complicated, it is straightforward to compute. By using y} =
ys — Y1, instead of ys in all elements of (34) that contain ys, (34) can also be used to
test hypothezes for other non-zero values of 3,, H} : 8, = [;,- The expression for (34) then
becomes

>\’ *—1
F(HS‘HI) = L v ) (y§‘ _1/252) [Mxﬁg - MX} (Yl - ( Y, y§ )8221 21)

M (45~ YaP5) Mx (y3—YaPs /
(= (Y2 wi) SS0) [Myny — Mx| (= (Yo w3 ) S5Sn)]
(Vi— (Y2 w5 )55'85) [Mxﬁ; - Mx} (y3 - YzBZ) :

(36)

where B; and II; are the mles of (3, and II, in (14) with ys replaced by 15 = y3 — Y15,

22 = ﬁ( Yo ys = Y1By ) Mx( Y2 ys—Y18y ), S5 = ﬁ( Yy ys — Y1y )'MxYi. By
specifying a grid of values of (3,,, we can use statistic (36) to construct a (asymptotic pivotal)
confidence set for ;. Note that the (asymptotic pivotal) confidence sets of the parameters of

5To show the invariance of (34) to the transformation Y* = (¥ (Y2 y3))A with A lower block triangular,

consider that A = ( ill AO ) . This implies that Y7" = Y1 A1y + (Y2 y3)Ao1, (Y5 y3) = (Y2 y3) Az and
21 A2

therefore 551 = A/22 (SQQAgl +521A11), 552 = A/QQSQQAQQ. As a consequence, Yl*—(YQ* yg‘)S;;ngl = )/11411+(Y2

y3)A21 — (Yg yg)AQQ(AIQQSQQAQQ)_lA/QQ (SQQAgl + SQIAII) = (Yi — (Yé y3)5521321)A11, which is the result that

is needed to have invariance of (34) to the transformation Y* = (Y1 (Y2 y3))A. The invariance to the

transformation X* = XC can be shown by considering that I} = C~'Il,. As a consequence, ‘Mx*ﬁg — My =

Myp, — Mx.
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the IV regression model can be unbounded, discontinuous or empty, see e.g. Dufour (1997)
and Zivot et. al. (1998).

In order to understand statistic (36), we compare it with the Lagrange Multiplier statistic
to test the hypothesis Hj : 3; = (3, which has, when both the instruments for Y7 (!) and
Y, are valid, a x? limiting distribution with m; degrees of freedom. The Lagrange Multiplier
Statistic, see e.g. Engle (1984), for testing H{ : 3, = 5, against H; : 3, # [, results from
an auxiliary regression of X®; on the estimated residuals for the equation of y3 in (26) with
ys replaced by y3 = ys — Y10,

Ak A A a -1 . Ak

LM(Hi|Hy) = b (5 = Vol Xy (91X ) $1X (35 — o))
* o - - -1

= o W — Vel X (X0 TLXY: (VX (XX) T LXY))

YIX(X'X) "X (g5 — Yafy).

(37)

There are two important differences between (37) and (36). The first difference results from
(8) which shows, as

Myq, — Mx = X (X'X)~ML (T (X' X)L )~ (XY X)X (38)

that (36) only contains the elements of ((X'X) 1X") (i — Yaf3,) and ((X'X) 1X') (Yi—
(Yo w5 ) S5 163 ) that lie in the space orthogonal to ITf. The Lagrange Multiplier statistic
(37) uses all components of ((X’'X) 1X") (y; — Y2/3,) and ((X'X) 1X’) Y;. The second differ-
ence is that (36) involves (Y; — ( Y2 3 ) Ss;'S3;) while (37) only involves Y. These two dif-
ferences imply that (36) uses the estimate of (IT, ) ITy, II3, (X'X) 1 X’ Vi— (Y2 u3)S5'53),
that is under Hy asymptotically stochastic independent of (X'X) 1 X’(y} — Y2f3,). The La-
grange Multiplier statistic uses the estimate of IT;, (X’ X) 1 X"Y; which is under Hy not asymp-
totically stochastic independent of (X'X) 1 X'(y3 — Ya/3,). This implies that the limiting dis-
tribution of the Lagrange Multiplier statistic depends, like the other likelihood-based test
statistics, Likelihood Ratio and Wald, on nuisance parameters and is not pivotal.

4.1 Empirical Distribution Function

To illustrate the properties of the limiting distribution of (36) compared to the limiting distri-
butions of the Lagrange Multiplier statistic (37) and the likelihood ratio statistic, we computed
the empirical distribution functions of these statistics for an IV regression model with strong
endogeneity. We therefore simulated data from the model

Y1 = 117 + v,
Yo = T2y + Vg, (39)
Ys = y151 + 9262 + €,

where 1, y2, Y3, T1, Lo, V1, V2, €: T x 1; T =100, 5, =0, 3, =1, o = 1, and x; and x, are
independently generated from a N(0, I) distribution and are fixed throughout the simulation
experiment. Both m; and my are thus equal to one. We generate disturbances (v; ve €) from
a N(0,X ® Ir) distribution with

1 08 09
s=|08 1 06 |. (40)
09 06 1

11



The covariance matrix Y implies strong endogeneity between 1, 2, ys3.

Our first Data Generating Process (DGP) has a value of 7; equal to one which implies
a valid instrument for y;. Instead of estimating the just-identified model (39), we add three
additional nonsense instruments that are independently generated from a N (0, I;) distribution.
We thus estimate a model like

y1 = Xy + oy,
Y2 = X¢2 + Vg, (41)
ys =B By +e,

with X = (27 29 X3), X3 : T x (k—m+1); ¥y, ¥y : k x 1, k = 5, which has a degree of
over-identification equal to three, while the model from which we generate the data is (39).
We simulated 5000 datasets from DGP (39) with 7; equal to 1 and for each simulation we
estimated the over-identified model (41). Figure 1 contains the empirical distribution functions
based on these simulations for statistic (36), the Lagrange Multiplier statistic (37) and the
likelihood ratio statistic that test the hypothesis Hy : 3; = 0. As the instrument for y; is a
valid one, all empirical distribution functions coincide with the limiting distribution which is
also shown.

For figure 2 we have again simulated from DGP (39) but now with a value of m; equal
to 0.1 which implies that the instrument for y; is weak. For the estimation model (41) we
have added 18 nonsense instruments, such that & = 20, that are independently generated
from N(0, I;) distributions. Figure 2 contains the empirical distribution functions based on
these simulations for statistic (36), the Lagrange Multiplier statistic (37) and the likelihood
ratio statistic that test the hypothesis Hy : 3; = 0. As the instrument is weak and the degree
of over-identification is substantial, both the distributions of the Lagrange Multiplier and
the likelihood ratio statistic lie relatively far from their x?(1) limiting distribution. Since
the limiting distribution of statistic (36) is pivotal, its’ empirical distribution function still
coincides with the limiting distribution.

5 Power Comparison

To further investigate statistic (36), we conducted a power comparison of it with a few other
statistics. Next to the Lagrange Multiplier statistic (37), we also compare statistic (36) with
the likelihood ratio statistic and the GMM objective function statistic that is analyzed in Stock
and Wright (2000). Stock and Wright show that the GMM objective function can be used as
a statistic to conduct tests on subsets of the structural form parameters and is closely related
to the Anderson-Rubin statistic, see Anderson and Rubin (1949). They show that, under
the same assumptions that we make to obtain the limiting distribution of (36) of which the
valid instrument assumption for Y5 is the most important one, the GMM objective function
as a statistic to conduct tests on [3; has a limiting distribution that does not depend on the
validity of the instruments for Y;. The difference between the limiting distributions of the GMM
objective function statistic and statistic (36) therefore only concerns the degrees of freedom
parameter which is equal to the number of elements of 3, for (36) and the number of elements
of 3, plus the degree of over-identification for the GMM objective function statistic, see Stock
and Wright (2000, theorem 3). In our setting, a way to represent the GMM objective function
as a statistic to test Hy : 8, = 0 against H; : 3; # 0 is by means of the over-identification

12
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Figure 1: Empirical distribution functions of statistic (36) (-), Lagrange Multiplier statistic
(37) (- -), likelihood ratio statistic (-.-), and x?(1) limiting distribution (..) for DGP (39) with
71 = 1 while the estimated model is (41) with k =5, k —m+1 = 3.

25

Figure 2: Empirical distribution functions of statistic (36) (-), Lagrange Multiplier statistic
(37) (- -), likelihood ratio statistic (-.-), and x?(1) limiting distribution (..) for DGP (39) with
71 = 0.1 while the estimated model is (41) with £ =20, k —m + 1 = 18.
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statistic, see Basmann (1960),

1 1
ke —my ﬁ(% - %BQ)IMX(ZJS - 3/232)

(ys — YaBy) X (X'X) 71X (y5 — YafBy).

(42)

S(Ho|Hy) =

Under the assumptions made in section 2 and that Il; has full rank, such that the instruments
are valid for Y3, the limiting distribution of S(Ho|H;) evaluated using the maximum likelihood
estimator 3, is under Hy : 3, = 0 characterized by, see e.g. Stock and Wright (2000),

2

S(Ho|H:) = X l(l), (43)
where [ is equal to the number of elements of 3, plus the degree of over-identification, [ =
my + (k—m —1) = my + (kK —my —my) = k — my. Statistic (42) is identical to the over-
identification statistic 5\/5\/ I (6), where A results from (27), which can therefore in the same
manner as (42) be used to test hypothezes on 3.

We use DGP (39) with all of its’ parameter settings to construct power curves for tests of
the hypothesis Hy : 3, = 0 for various values of the true underlying value of 3,. We varied
the quality of the instrument(s) for Y7 in DGP (39) by using values of m; equal to 0.1, weak
instrument, and 1, valid instrument. In a similar way as in section 4.1, (41) is the estimated
model and contains additional nonsense instruments. By adding nonsense instruments, we
can analyze the sensitivity of the power curves of the different statistics to the degree of
over-identification.

5.1 Valid Instrument, 71 =1

Figures 3 to 5 contain power curves of statistic (36), the over-identification statistic (42), the
Lagrange Multiplier statistic (37) and the likelihood ratio statistic that test the hypothesis
Hy : B, = 0 against Hy : 3, # 0 with 5% (asymptotic) significance in case of a valid instrument
for Yy, i.e. my = 1. The estimated model (41) is exactly identified in figure 3 (k = 2) while
it is over-identified with a degree of over-identification equal to three (k = 5) in figure 4 and

®The maximum likelihood estimator of 3, is obtained from an eigenvector of the polynomial equa-
tion |n(Ya y3)'(Ya y3) — (Yo y3)'X(X'X) " 1X'(Ya y3)| = 0, see e.g. Hausman (1983). This eigenvec-
tor is therefore also an eigenvector of the polynomial equation |u(Y2 y3) (Y2 y3) — (T — k)(Ya y3)'S22(Ya

y3)] = 0 as Sy = 77 (Y2 y3)' Mx(Ya ys). Hence, (Y2 y3)'(Ya ys) P2} o ormkg, (P2 gy
1 H 1

some value of p. When we construct the maximum likelihood estimator of f[g as, in footnote 1 such that,
II, = (XIX)ilX/(YQ yg)SilBé(BQSQQBé)il, it results that H/QX/(yg — YQ,QQ) = (BQSQQBé)ilBQSil(YQ

y3) X (X' X)"1X'(Ys y3)< _1’62 > We can now use that BQ( _162 > =0, as By = (I, (), and the

expression for Sao, to obtain fI’QX’(yg — YQBQ) = (3252235)_1325’2}1 (Y2 y3)'(Yz2 y3) ( _1’62 > . We note that

< _162 ) is such that (Y2 y3)' (Y2 y3)< _152 ) = £%LS@( _162 ) and therefore TIH X' (y3 — Ya3y) =

(T;k) (3252235)713252_21522 ( _152 > = (T;k)(BQSQQBé)il.éQ ( _152 > =0 as BQ ( _fQ > = 0. This im-

plies that M. (y3 — Ya35) = (y3 — Yaf3,) and that statistics (42) and (6) coincide. This shows the importance
of using the maximum likelihood estimator when we construct the statistics as the equality of (42) and (6)
only holds when they are evaluated using the maximum likelihood estimator.
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Figure 3: Power curves of statistics (36) (-), (42) (-.), LM (37) (..) and LR (- -) that test the
hypothesis Hy : 3; = 0 against H; : 3, # 0 for various values of the true 3, in DGP (39) with
T = 1, k=2.

Figure 4: Power curves of statistics (36) (-), (42) (-.), LM (37) (..) and LR (- -) that test the
hypothesis Hy : 3; = 0 against H; : 3, # 0 for various values of the true 3, in DGP (39) with
T = ]_, k=25.
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Figure 5: Power curves of statistics (36) (-), (42) (-.), LM (37) (..) and LR (- -) that test the
hypothesis Hy : 3; = 0 against H; : 3, # 0 for various values of the true 3; in DGP (39) with
=1, k=20

eighteen (k = 20) in figure 5. For every value of (3;, we computed the power for testing Hy
using 5000 simulations.

In case of exact identification, k = 2, figure 3 shows that the power curves of statistics (36),
(42) and the likelihood ratio statistic coincide. The power curve of the Lagrange Multiplier
statistic (37) slighty differs from the other power curves. When k = 5 such that the degree of
over-identification is equal to three, figure 4 shows that the power curves of statistic (36) and
the likelihood ratio statistic still coincide. Because of the larger degrees of freedom parameter
of its” limiting distribution (k — 1 = 4), the power curve of statistic (42) lies below the power
curves of the likelihood ratio statistic and statistic (36). Figure 4 also shows that the difference
between the power curves of the Lagrange Multiplier statistic (37) and the likelihood ratio
statistic and statistic (36) has increased compared to figure 3. Figure 5 shows the power
curves in case of a large degree of (nonsense) over-identification (k —m + 1 = 18). The power
curves of the likelihood ratio statistic and statistic (36) still coincide but the difference with
the power curve of statistic (42) has further increased compared to figure 4. This is because of
the substantial difference in the degrees of freedom parameters of the limiting distribution of
statistic (42), for which it is equal to kK — 1 = 19, and the likelihood ratio statistic and statistic
(36), for which it is equal to 1. Also the difference with the Lagrange Multiplier statistic (37)
has increased and it now has a substantial size distortion.

Since the instrument for Y; is valid, the likelihood ratio statistic has a x? limiting distri-
bution and the limiting distribution is a good approximation of the finite sample distribution.
This explains why the likelihood ratio statistic has the correct (asymptotic) size for all values
of k. To analyze the potential size distortion of the likelihood ratio statistic, we therefore in
the next simulation experiment use a weak instrument for Y;.
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Figure 6: Power curves of statistics (36) (-), (42) (-.), LM (37) (..) and LR (- -) that test the

hypothesis Hy : 3; = 0 against H; : 3, # 0 for various values of the true 3, in DGP (39) with
mm =01 k=2
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Figure 7: Power curves of statistics (36) (-), (42) (-.), LM (37) (..) and LR (- -) that test the

hypothesis Hy : 3; = 0 against H; : 3, # 0 for various values of the true 3, in DGP (39) with
T = 01, k=25.
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Figure 8: Power curves of statistics (36) (-), (42) (-.), LM (37) (..) and LR (- -) that test the

hypothesis Hy : 3; = 0 against H; : 3, # 0 for various values of the true 3; in DGP (39) with
m = 0.1, k = 20.

5.2 Weak Instrument, 71 = 0.1

Figures 6 to 8 contain power curves of statistic (36), the over-identification statistic (42), the
Lagrange Multiplier statistic (37) and the likelihood ratio statistic that test the hypothesis
Hy : B, = 0 against Hy : 3, # 0 with 5% (asymptotic) significance in case of a weak instrument
for Y3, i.e. m = 0.1. The estimated model (41) is exactly identified in figure 6 (k = 2) while
it is over-identified with a degree of over-identification equal to three (k = 5) in figure 7 and
eighteen (k = 20) in figure 8. For every value of (3;, we computed the power for testing Hy
using 5000 simulations.

Figures 6 to 8 show that all test statistics have low power in case of a weak instrument.
This already low power further decreases when we add the nonsense instruments. In case of
just identification (k = 2), the likelihood ratio statistic has the correct (5%) asymptotic size
and its’ power curve coincides with the power curves of statistics (36) and (42). The size
of the likelihood ratio statistic gets distorted when we add nonsense instruments. This size
distortion also occurs for the Lagrange Multiplier statistic but not for statistics (36) and (42).
The latter two statistics do not get size distorted as they have pivotal limiting distributions.
This illustrates the importance of using statistics with pivotal limiting distributions. Note
also that in case k = 20, figure 8, the Lagrange Multiplier statistic has a lot of spurious power
while the likelihood ratio statistic is severely size (larger than 30%) distorted.

6 Confidence Sets

By specifying a grid of values of (3,,, we can use statistic (36) to construct a confidence set for
B1. The resulting confidence set does (asymptotically) not depend on the value of the other
parameters as we use a statistic with a pivotal limiting distribution. These confidence sets
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Figure 9: p-value plots of statistics (36) (), (42) (-.), LM (37) (..) and LR (- -) that test the
hypothesis Hy : 8, = (3,, against H; : 3, # ,, for various values of the true 3, for dataset
that is simulated from DGP (39) with 8, =0, m =1, k = 2.
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Figure 10: p-value plots of statistics (36) (-), (42) (-.), LM (37) (..) and LR (- -) that test the
hypothesis Hy : 3, = (4, against Hy : 3, # [, for various values of the true (3, for dataset
that is simulated from DGP (39) with 8, =0, m =1, k = 5.
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Figure 11: p-value plots of statistics (36) (-), (42) (-.), LM (37) (..) and LR (- -) that test the
hypothesis Hy : 3, = (3, against H; : 3, # [, for various values of the true 3, for dataset
that is simulated from DGP (39) with g, =0, 7y = 1, k = 20.

can have peculiar shapes and can, for example, be infinite, discontinuous or empty, see e.g.
Dufour (1997).

We use DGP (39) with 8, = 0 and the other parameters at their initial settings, such that
w9 = 1, to generate two datasets. One of these datasets has a valid instrument for Y;, i.e.
w1 = 1, and one has a weak instrument for Y7, i.e. m; = 0.1. We then add nonsense instruments
to the model that we estimate and analyze the sensitivity of the confidence sets to the quality
of the instruments and the addition of nonsense instruments.

6.1 Valid Instrument, 7 =1

Figures 9 to 11 contain (asymptotic) p-value plots of statistic (36), the over-identification
statistic (42), the Lagrange Multiplier statistic (37) and the likelihood ratio statistic that test
the hypothesis Hy : 3, = [, against H; : 3, # [3;, for various values of /3, in case of a valid
instrument for Y3, i.e. m; = 1. The estimated model (41) is just identified in figure 9 (k = 2)
while it is over-identified with a degree of over-identification equal to three (k = 5) in figure
10 and eighteen (k = 20) in figure 11. The figures also contain a straight line at 0.95 that
enables us to construct the 95% confidence set in a straightforward way.

The p-value plots almost completely coincide in case that k = 2, figure 9. When k = 5,
figure 10 shows that the confidence sets that result from statistic (42) are distinctly larger than
the confidence sets that result from the likelihood ratio statistic and statistic (36). This results
because of the larger degrees of freedom parameter of the limiting distribution of statistic (42),
4, compared to the degrees of freedom parameter of the limiting distributions of statistic (36)
and the likelihood ratio statistic, 1. The difference becomes even more pronounced when
k = 20. Figure 11 shows that the p-value plot that results from the Lagrange multiplier
statistic (37) especially becomes different from the p-value plots from the likelihood ratio
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Figure 12: p-value plots of statistics (36) (-), (42) (-.), LM (37) (..) and LR (- -) that test the
hypothesis Hy : 3, = (3, against H; : 3, # [, for various values of the true 3, for dataset
that is simulated from DGP (39) with 8, =0, 7y = 0.1, k = 2.

statistic and statistic (36) when the degree of (nonsense) over-identification is large.

Because the instrument for Y; is valid, the p-value plots of the likelihood ratio statistic
and statistic (36) almost completely coincide for all values of k. A reason for this is that
the limiting distributions of (36) and the likelihood ratio statistic coincide in case of valid
instruments. This was also found in section 5.1 where the power curves of these statistics
almost completely coincided for all values of £ in case of a valid instrument for Y;. We therefore
also simulate a dataset from DGP (39) with a weak instrument for Y; such that the similarity
of the limiting distribution does not apply.

6.2 Weak Instrument, m; = 0.1

Figures 12 to 14 contain (asymptotic) p-value plots of statistic (36), the over-identification
statistic (42), the Lagrange Multiplier statistic (37) and the likelihood ratio statistic that test
the hypothesis Hy : 3, = By, against Hy : #; # (3, for various values of 3, in case of a
weak instrument for Y7, i.e. m; = 0.1. The estimated model (41) is just identified in figure 12
(k = 2) while it is over-identified with a degree of over-identification equal to three (k = 5) in
figure 13 and eighteen (k = 20) in figure 14. The figures also contain a straight line at 0.95
that enables us to construct the 95% confidence set in a straightforward way.

In case of just-identification, k = 2, figure 12 shows that all p-value plots coincide. When
k = 5, figure 13 shows that the p-value plots become substantially different but still a close
relationship between statistic (36) and the likelihood ratio statistic exists. Statistic (36) leads
to larger confidence sets than the likelihood ratio statistic and its’ p-value plot also has a
sudden decrease at (3;, =~ 1.5. This decrease becomes even more pronounced when we add
more nonsense instruments as shown in figure 14. The p-value plots of the likelihood ratio
statistic and statistic (36) in figure 14 are quite different. This results from the large size
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Figure 13: p-value plots of statistics (36) (-), (42) (-.), LM (37) (..) and LR (- -) that test the
hypothesis Hy : 8, = (3, against H; : 3, # ,, for various values of the true 3, for dataset
that is simulated from DGP (39) with 8, =0, m; = 0.1, k = 5.
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Figure 14: p-value plots of statistics (36) (-), (42) (-.), LM (37) (..) and LR (- -) that test the
hypothesis Hy : 3, = (4, against Hy : 3, # [, for various values of the true (3, for dataset
that is simulated from DGP (39) with g, =0, m; = 0.1, k = 20.
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distortion of the likelihood ratio statistic shown in figure 8 for this DGP. The p-value plot of
statistic (36) shows that one can not make any statement about the value of 3, in this DGP
which accords with the flat power curve shown in figure 8. The p-value plot of the likelihood
ratio statistic gives the false impression that something can be said about the value of ;.
This is even more so for the Lagrange multiplier statistic which even gives the (very mistaken)
impression that one can make an accurate statement about the value of ;. Figure 14 shows
the importance of using statistics with pivotal limiting distributions as both statistics (42)
and (36) show that no sensible statement about the value of 3, can be made.

7 Application to Return on Education

Card (1995) analyzes the return of education on earnings. He uses proximity to college as
an instrument in an IV regression of (length of) education on (the log) wage. The proximity
influences the costs of college education and is therefore directly related to the (length of)
education but only indirectly (through the education) to earnings. We use the dataset from
Card (1995) and the statistics discussed previously to construct confidence sets for the return
on education. The dataset of Card (1995) consists of data obtained from the National Lon-
gitudinal Survey of Young Men. This survey started in 1966 and continued untill 1981. We
use the 1976 subsample which is a cross-sectional dataset that consists of 3010 observations.
Other variables that are contained in the dataset are besides four variables indicating the
proximity to college, the length of education, the log-wages, experience, 1Q score, age and
racial, metropolitan, family and regional indicators. For more details on the dataset we refer
to Card (1995).
The model that is used by Card is identical to (20) and reads for individual ¢

€ = x;T1+ zZiYy V1
Y, = x;1l+ zil'y  + V5 (44)
w; = 62‘51 + Y;ﬁz + 26 +e;

where ¢; is the length of education of individual i, Y; = (exp; exp?)’ contains the experience
(exp) and experienced squared of individual ¢, z; = (1 race; smsa; south;)" consists of a constant
and indicator variables of the race, residence in a metropolitan area and residence in the South
part of the United States, w; is the (logarithm of the) wage of individual 7. z; contains the
included exogenous variables and x; contains the instruments. The instruments in x; consist
of the age and squared age of individual ¢ and a selection of at least one of the four proximity
to college indicators. vy;, v9; and ¢; are the disturbances of the model. The IQQ score is lateron
added to z; as an additional included exogenous variable.

Estimates of the unrestricted reduced form equations of the endogenous variables included
in the equation of w; in (44) reveal that the R? is high for the equations for the experience
variables exp;, and exp? (R? ~ 61%) and low for the education equation (R* ~ 12%). This
results as experience is partly constructed from age (exp;=age;-6-¢;). The R?’s show that the
instruments are valid for the experience variables and perhaps weak for education. This implies
that the assumptions under which statistics (36) and (42), when applied to conduct tests on
B, have pivotal x? limiting distribution are satisfied since the instruments are valid for the
endogenous experience variables.

Table 1 contains estimates of the return on education 3, for three different specifications of
model (44) and three estimation methods. Figures 15 to 17 show p-value plots of statistics that
test the hypothesis Hy : 3, = 3, for various values of 3, for the three different specifications
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Instrument)\ Estimation Method OLS | 2SLS | LIML

age, age?, indicator for prox to 4 year college 0.074 | 0.133 | 0.133
0.0035 | 0.051 0.051

age, age?, indicators for prox to 2, 4 and 4 year public college | 0.074 | 0.162 | 0.18
0.0035 | 0041 | 0.048

age, age?, indicators for prox to 2, 4 and 4 year public college | 0.072 | 0.172 | 0.21
0.0036 | 0054 | 0.073

+ IQ score is incorporated as included exogenous variable

Table 1: Estimates of return on education 3, (standard error is listed below).

0.2 0.25 0.3 0.35 0.4

Figure 15: p-value plots of statistics (36) (-), (42) (-.), LM (37) (..) and LR (- -) that test
the hypothesis Hy : 3, = (3, against H; : 3, # [, for various values of (3;, for return on
education dataset from Card (1995). Instruments are age, age? and proximity to four year
college.
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Figure 16: p-value plots of statistics (36) (-), (42) (-.), LM (37) (..) and LR (- -) that test
the hypothesis Hy : 3, = (1o against H; : 3, # (1o for various values of (3;, for return on
education dataset from Card (1995). Instruments are age, age* and indicators for proximity
to two, four and four year public colleges.

Figure 17: p-value plots of statistics (36) (-), (42) (-.), LM (37) (..) and LR (- -) that test
the hypothesis Hy : 3, = [, against Hy : 3, # [;, for various values of 3, for return on
education dataset from Card (1995). Instruments are age, age? and indicators for proximity to
two, four and four year public colleges. The 1Q score is incorporated as an exogenous variable
in the earnings equation.
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of model (44). The first specification in table 1 and figure 15 is just identified as the number of
instruments in x;, 3, is equal to the number of endogenous variables included in the earnings
equation. Because of the just identification, the 2SLS and LIML estimates of 3; and the
p-value plots that result from the over-identification statistic (42) and statistic (36) coincide.
The p-value plots of the latter two statistics are, because of this just identification, almost
identical to the p-value plot of the likelihood ratio statistic.

The OLS estimates of 3, in the first and second specification of (44) are also identical
which results as the models only differ with respect to the instruments and these are not used
to construct the OLS estimates. The degree of over-identification in this second specification
of (44) is equal to two. Hence, the LIML and 2SLS estimates of 3, and the p-value plots
in figure 16 that result from the over-identification statistic (42) and statistic (36) no longer
coincide. Also the difference between the p-value plot of statistic (36) and the likelihood ratio
statistic has slightly increased compared to figure 15.

The third specification of (44) includes the IQ score as an exogenous variable in the equation
for w;, so in z;. With respect to the estimates of 3;, it primarily leads to a change of the LIML
estimate but hardly of the OLS and 2SLS estimates. It also leads to an increase of the standard
errors. When we evaluate the p-value plots in figure 17, however, we notice a dramatic change.
The asymmetry that was already present in the p-value plots in figure 15 and 16 has strongly
increased. Also the difference between the p-value plots that result from the Likelihood Ratio
statistic and statistic (36) has increased especially with respect to the 95% confidence set
that results from them. These 95% confidence sets are also much larger than the ones that
result from the standard errors. This shows that the 95% confidence sets that are based on
the standard errors will have a too small asymptotic coverage probability as the standard
errors under-estimate the uncertainty associated with ;. This shows that we should use the
(pivotal) p-value plots to construct confidence sets. We also note the similarity in figures 15-17
between the p-value plots that result from statistic (36) and the Likelihood Ratio statistic and
the substantial difference between these and the confidence sets that are based on the 2SLS
t-values that are primarily used in the literature, see e.g. Card (1995).

8 Conclusions

We developed a novel statistic to test hypothezes on subsets of the structural parameters in
an IV regression model. The statistic has a x? limiting distribution with a degrees of freedom
parameter that is equal to the number of tested parameters. The x? limiting distribution is not
affected by the validity of the instruments for the endogenous variables that are associated with
the structural parameters in the hypothesis of interest. A key assumption is, however, that
the instruments are valid for the remaining endogenous variables. Applications of the statistic
show that it is closely related to the likelihood ratio statistic in case of valid instruments
but can be quite different in case of weak instruments. This results as the standard limiting
distribution does then not apply to the likelihood ratio statistic. The limiting distribution of
the novel statistic is not affected by the validity of the instruments.

In future work, we will analyze the possiblity of generalizations of the statistic for joint tests
on all structural parameters from Kleibergen (2000) and the statistic for subsets introduced
in this paper that are applicable in a GMM setting.
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